
Pergamon
Computers Math. Applic. Vol. 27, No. 5, pp. 63-70, 1994

Copyright01994 Eleevier Science Ltd
Printed in Great Britain. All rights reserved

0898-1221(94)E0006-6
089%1221/94-$6.00 + 0.00

An Authentication-Combined Access
Control Scheme Using a One-Way Function

T.-C. Wu
Department of Information Management
National Taiwan Institute of Technology

Taipei, Taiwan 107, R.O.C.

C.-C. CHANG
Institute of Computer Science and Information Engineering

National Chung Cheng University, Chiayi, Taiwan 601, R.O.C.

Y.-S. YEH
Institute of Computer Science and Information Engineering

National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C.

(Received November 1992; accepted June 19%‘)

Abstract-In this paper, we propose an authentication-combined access control scheme for in-
formation protection systems. Let aij be the access privilege of User i to File j. Initially, by the
Diffie-Hellman public key distribution scheme, the system and the users are assigned distinct secret
keys, and their corresponding public keys, respectively. Let K, be the secret key and yS be the public
key of the system, and let Ki be the secret key and yi be the public key of the User i. By using
a predefined one-way function F, we compute rij = F(Ki, ys, aij). Reversely, the access privilege
can be retained es eij = F(K,, yi, Tij). Being different from the previously proposed schemes, our
scheme is safer and the user’s secret key is used not only for computing the corresponding access
privilege to the intended file, but also for authenticating the requesting user not to illegitimately
access the protected files. The proposed scheme is simple to establish. Besides, it can perform the
access control in dynamic environments, such as change access privileges and insert/delete users or
files.

1. INTRODUCTION

With the advent of computer systems, vast amounts of personal, financial, commercial, and
technological information are stored in computer data banks and shared by various users. In
order to ensure the privacy and data security of this information, the necessity for providing
access control mechanisms in information systems has become overwhelming [1,2]. In 1972,

Graham and Denning introduced an abstract protection model for access control [2]. In their
model, an information protection system basically consists of the following elements:

(1) a set of subjects,
(2) a set of objects, and
(3) an access control matrix.

Each entry (i, j) of the access control matrix represents the access privilege of subject i to
object j. In practical applications, a user can be regarded as a subject and a file can be regarded
as an object. Figure 1 shows an access control matrix with four users and five files. In Figure 1,

we see that User 1 has “no access” to File 5, User 2 has “write” privilege to Files 1 and 2, and

so on.

Typeset by d&-W

63

64 T.-C. WV et al

Users
\

Files

i jl2345 0 : no access

I:read
144120

2 22103 r- 2 : write

3 01433
3:execute

4 : owned
4 12004

Figure 1. An access control matrix with four users and five files.

Conventionally, three methods are used to implement the access control matrix, namely, as the

accessor-list method [3], the capability-list method [3], and the key-lock matching method [2].

Although the accessor-list and the capability-list methods are easy to be constructed by linked

lists, both methods have disadvantages, such as propagation, revocation, and review problems.
As to the key-lock matching method, it suffers from finding such a key-lock pair.

In the past decade, several schemes have been proposed for the implementation of access
control matrices [4-lo]. Among them, the information protection system was established through

sophisticated computation. Further, the whole system may need to be reestablished for the access
control in dynamic environments, such as change access privileges and insert/delete users or files.

Another common drawback exhibited by the previously proposed schemes is that the constructed
system cannot withstand potential attacks, such that an intruder may pretend to be a certain

legal user and enter the system to illegitimately access protected files. And this insecure leak will
make the access control efforts be in vain.

The aim of this paper is to propose an authentication-combined access control scheme to
overcome the disadvantages stated above. Before describing our scheme, we will give brief reviews

of previous research works on access control.

2. PREVIOUS RESEARCH WORKS ON ACCESS CONTROL

Suppose there are m users and n files in the information system. For simplicity, let i be the
identification number of User i, j be the identification number of File j. Let a~ be the access
privilege of User i to File j. Wu and Hwang [lo] first initiated an elegant single-key-lock scheme

for implementing an access control matrix. In their scheme, a random m x m nonsingular matrix
is chosen. The ith row vector in that matrix is assigned as the key K, of User i. By solving a

system of linear equations in a Galois field GF(p), an m-dimensional vector Lj, used as the lock

of File j, is computed from

aij = Ki * L.j modp, (2.1)

where the operator * means the inner product in GF(p), and p is a prime number greater than
the maximum value of the aij’s. Once the keys and locks are determined, it is easy to recompute

the access privilege from (2.1). The concept of single-key-lock is very simple. However, the
construction of Lj’s is computationally sophisticated and time-consuming when the number of

users is large. Recently, Chang and Jiang [7] proposed a binary implementation of a single-key-
lock system to improve the computation time of the Lj’s. However, by Wu and Hwang’s method
and Chang and Jiang’s method, changing access privileges and inserting/deleting users or files
will lead the whole system to be reestablished.

Later, Chang [4] proposed a key-lock-pair scheme baaed on the Chinese remainder theorem.
In his method, a set of relatively prime numbers Li, Ls, . . . , L, are assigned as the locks of files
1, 2,..., n, respectively. Then the key Ki of User i is computed as

Ki =kDjbjaij, where D, = fi Lk and Dj bj E 1 (mod Lj). (2.2)
j=l izf

Access Control Scheme 65

The access privilege is computed as

aij = Ki mod Lj. (2.3)

Another key-lock-pair scheme was also proposed by Chang [5] based upon Euler’s theorem. Again,

the locks Lj’s are assigned relatively prime numbers. The key Ki of User i is computed as

(2.4)

where Nij =]aij Lj/n] and 4 is Euler’s totient function. The access privilege is computed as

mod n. (2.5)

From the above two methods proposed by Chang, we see that Ki needs to be recomputed when

an access privilege aij is changed. To insert a user, the corresponding key Ki is computed. As

to insert/delete a file, all Ki’s need to be recomputed.

Recently, two single key schemes for access control were proposed by Jan [8] and Laih, Harn,

and Lee [9], individually. In Jan’s method, the key Ki of User i is computed as

Ki = eaij (t + i)j-l,
j=l

where t is the maximum value of the aij’s; and the access privilege is computed as

aij = [(t$j_il mod(tt1).

(2.6)

(2.7)

In Laih, Harn, and Lee’s method, the keys of users are selected such that Ki # K3 and Ki #

Kj modp, where p is a prime number greater than the maximum value of the aij’s. By using

Newton’s interpolation method [ll], the access privilege is computed as

aij = Gnj (Ki - Kn-I) (Ki - Kn-2) +. . (Ki - Kl) +. ‘. + G2j (Ki - Kl) + Grj(modp),

where G, = EL: Gtj IIfZ:(Ki - Ks)
23

l-I::; (Kn - K,)
(mod p) and Gij = aij.

(2.8)

It can be seen that Jan’s method has the overflow problem when computing the keys if the

number of files is large, and Laih, Harn, and Lee’s method suffers from the computational com-

plexities for solving the G,‘s. Derived from Jan’s method, another single key scheme for inserting

new users and files has been proposed by Chang and Jan [6]. By the recursive characteristic of

Newton’s interpolation method, it is easy to insert users or files in Laih, Harn, and Lee’s method.

When deleting a file, all Ki’s should be recomputed by Jan’s method; in Laih, Harn, and Lee’s

method, deleting User i needs to recompute Kj’s for j > i.

Note that the keys (or locks) produced from the above methods are managed by the system.

Consequently, an intruder may pretend to be a certain legal user and illegitimately access the

protected files.

66 T.-C. Wu et al.

3. AUTHENTICATION-COMBINED ACCESS CONTROL

3.1. One-Way Function and Key Distribution

One-way functions are significantly useful in solving cryptographic problems [12]. By a one-way
function, we mean a function F such that

(1) F(z) is easy to compute for any given z in the domain of F,

(2) given any y such that y = F(z) for some 5, it is computationally infeasible to find z unless
certain special information used in the design of F is known.

The Diffie-Hellman public key distribution scheme [13] is one of the well known one-way functions
based on the computing discrete logarithms problem. We first describe the Diffie-Hellman public
key distribution scheme in the following.

Let p be a large prime number and (Y be a primitive element modp. Let K be the secret key.
The public key y corresponding to K is computed as

y = oKmodp. (3.1)

From (3.1), it is easy to compute y for a given K; while computing K from y is equivalent to
the problem of computing discrete logarithm in a Galois field GF(p). Further, if K is between
0 and p - 1, then the relation of K to y is a one-to-one correspondence. That is, y is uniquely
determined for a given K between 0 and p - 1, or vice versa. It was pointed out [14] that if
we carefully choose a prime number p such that (p - 1)/2 is also a prime, then computing the
discrete logarithm in GF(p) is very difficult.

The Diffie-Hellman public key distribution scheme can be used for constructing a common key
shared by two communicating members. Let K, be the secret key and ya be the public key of
User A, and, similarly, let Kb be the secret key and yb be the public key of User B, derived
from (3.1). The common key Kab shared by Users A and B is computed as

Kab = oKa Kb mod p = y? mod p = y,Kb mod p. (3.2)

That is, User A can recompute the common key K,b by using his secret key K, and User B’s
public key yb. Similarly, User B can retain Kab by using his secret key Kb and User A’s public
key ya. This shared common key Kab offers authentication capability between Users A and B.

3.2. Our Scheme

In this section, we present an authentication-combined access control scheme by using a one-
way function. Let there be m users and n files in the information system. Let aij be the access
privilege of User i to File j. Initially, by the Diffie-Hellman public key distribution scheme,
the system and the users are assigned distinct secret keys and the corresponding public keys,
respectively. Let K, be the secret key and y/s be the public key of the system, and let Ki be
the secret key and yi be the public key of User i. Notice that the users’ secret keys are kept by
themselves. Let q be a number greater than the maximum value of the aij’s. The procedure for
establishing the information protection system is stated as follows.

PROCEDURE Establish.

Step 1. Compute the common key K,i shared by the system and User i as

K,i = $’ modp, fori=1,2 ,..., m.

Step 2. Compute

TQ = ((K,i + j) mod q) @ aij, for i = 1,2,. . .,mandj=1,2 ,..., n,

where @ is the exclusive-or operator.
Step 3. Put the yi’s and rij’s into a public information table.

(3.3)

(3.4)

Access Control Scheme 67

The main purpose of procedure Establish is to construct common keys shared by the system

and the users, respectively. Meanwhile, the access privileges are scrambled by the common keys.

After performing procedure Establish, the system manages the public information table as

shown in Figure 2.

Figure 2. The public information table managed by the system.

Once the public information table has established, the User i can present his secret key Ki

and request the system for accessing the intended File j with the privilege a,;. The procedure

for verifying the user’s request is given as below.

PROCEDURE Verify (Ki, i, j,a;).

Step 1. Recompute the common key

(3.5)

Step 2. Authenticate the requesting user by checking if

Ksi = y? modp. (3.6)

If it is false, then reject the request and terminate.

Step 3. Compute the access privilege as

eij = ((K,i + j) mod Q) @ rij. (3.7)

Step 4. Check if at matches aij.

If it is true, then accept the request; otherwise reject the request.

With the property of exclusive-or operation, (3.7) is obviously derived from (3.4). By the

shared common key, the procedure Verify is used not only for computing the access privilege,

but also for excluding intruders trying to illegitimately access the protected files. We show how

procedure Verify can achieve authentication capability. If an intruder pretends to be User i and

requests the system for accessing certain protected file, he must first present the correct secret

key Ki to pass the test in Step 1 of procedure Verify. Again, by the Diffie-Hellman public key

distribution scheme, computing Ki from yi is based on the difficulty of computing a discrete

logarithm in GF(p). Thus, procedures EstabLish and Verify form a one-way function such that

rij = F(Ki, ~8, aij) and ~ij = F(K,, yi, Tij).

The following example illustrates how procedures Establish and Verify work.

EXAMPLE 3.1. Consider an information system with the access control matrix shown in Figure 1.

Let o = 2, p = 19 and q = 5. Initially, let KS = 4, ys = 16, K1 = 2, y1 = 4, Kz = 3, y2 = 8,

Ks = 5, y3 = 13, K4 = 7 and y4 = 14. From (3.2), we have KS1 = 9, K,s = 11, Kss = 17 and

KS4 = 17. After performing procedure Establish, we have the public information table shown

in Figure 3.

68 T.-C. WV et al.

users .
\

Files

(i, yi) ’ 1 2 3 4 5

(1.4) 4 5 3 1 4

(2.8) 0 1 5 0 2

(3, 13) 3 5 4 2 1

(4.14) 2 6 0 1 6

Figure 3. The public information table for Example 3.1

From Figure 3, by (3.7), we compute

~12 = (((yf* modp) + 2) mod q) @ 7-12 = ((K,I + 2) mod 5) @ ~12

=((9+2)mod5)@5=1@5

= 4, which is correct.

Again,

a24 = (((YZK” modp) + 4) mod q) @ r24 = ((&z + 4) mod 5) @ r24

=((11+4)mod5)@0=0@0

= 0, which is correct.

The reader may verify the other privileges by using (3.7).

Now, consider the access control of our scheme in dynamic environments, such as change access

privileges and insert/delete users or files. It is an easy task to change access privileges and delete

users or files. To change the access privilege of User i to File j to a$, we only compute

rj = (((y:, mod p) + j) mod q) @ a&,

and update the entry (i, j) of the public information table to T,*~. To delete User t from the system,

we only eliminate yt and rtj’s, for j = 1,2,. . . ,n, from the public information table. Similarly,

we only eliminate rit’s, for i = 1,2, . . . , m, from the public information table for deleting File t.

To insert a File t into the system, we compute

rit = (((yK* modp) + t) modq) @ ait, for i = 1,2 ,..., m,

and add the rit’s to the public information table. As to insert a User t into the system, we first

assign a distinct secret key Kt and its corresponding public key yt to User t. Then, we compute

K.
~t*j = (((it . modpI +J)modd @atj, forj=1,2 ,..., 72,

and add the rtj’s to the public information table. For the consideration of security, the newly

assigned secret key Kt should not be previously used in key distribution. A pseudo-random

number generator with large period can be applied for this purpose [ll]. The following example

shows the dynamic access control of our scheme.

EXAMPLE 3.2. Reconsider the access control matrix in Figure 1. Figure 4 shows the public

information table after deleting User 2 and File 3. Figure 5 shows the results of inserting File 6.

For inserting File 5, we first assign KS = 6 and ys = 7. The results of inserting User 5 are shown

in Figure 6.

Figure 4. The public information table after deleting User 2 and File 3.

Access Control Scheme

Files -

1234 56 123456

1441202 (1.4) 4 5 3 1 4 2

2 221031 (2,8) 0 1 5 0 2 3

3 014334 (3, 13) 3 5 4 2 1 7

4 120040 (4. 14) 2 6 0 1 6 3
- L

(a) Access control matrix. (b) Public information table.

Figure 5. The results of inserting File 6.

Files

12345 1 2 3 4 5

144120 (1.4) 4 5 3 1 4

2 22103 (2,8) 0 1 5 0 2

3 01433 (3. 13) 3 5 4 2 1
4 12004 (4, 14) 2 6 0 1 6

5 2 3 1 0 2 (5.7) 1 7 1 1 0

(a) Access control matrix. (b) Public information table.

Figure 6. The results of inserting User 5.

4. CONCLUSIONS

69

We have presented an authentication-combined access control scheme by using a one-way func-

tion. By the Diffie-Hellman public key distribution scheme, the system and the users are initially

assigned distinct secret keys and the corresponding public keys, respectively. The users’ secret

keys are kept by themselves. When request the access to an intended file, the user should present

his secret key to the system. Being different from the previously proposed schemes, our scheme

is safer, and the presented user’s secret key is used not only for computing the access privilege

but also for authenticating the user himself.

As to the establishment of our access control system, we see that it needs only [log K,] multipli-

cations, one addition and two modular operations plus one exclusive-or operation. For verifying

an access request, it requires [logICi] + [logK,l multiplications, one addition, two modular op-

erations, two comparisons plus one exclusive-or operation. Besides, our proposed scheme can

perform the access control in dynamic environments without affecting any user’s secret key.

REFERENCES

1.
2.

3.

4.

5.

6.

7.

8.

D.E.R. Denning, Cryptography and Data Security, Addison-Wesley, Readings, MA, (1982).
G.S. Graham and P.J. Denning, Protection-Principals and practices, Proceedings AFZPS 1972 SJCC,
pp. 417-429, AFIPS Press, Montvale, NJ, (1972).
J.H. Saltze and M.D. Schroeder, The protection of information in computer system, Proceedings of ZEEE
63, 1278-1308 (1975).
C.C. Chang, On the design of a key-lock-pair mechanism in information protection systems, BIT 26 (4),

410-417 (1986).
C.C. Chang, An information protection scheme based upon number theory, The Computer Journal 30 (3),
249-253 (1987).
CC. Chang and J.K. Jan, An access control scheme for new users and files, The International Journal of
Policy and Information 12 (Z), 89-98 (1988).
C.K. Chang and T.M. Jiang, A binary single-key-lock system for access control, IEEE Trans. on Computers
C-38 (lo), 1462-1466 (1989).
J.K. Jan, A single key access control scheme in information systems, Information Science 51 (l), l-11
(1990).

70 T.-C. WV et al.

9. C.S. Laih, L. Harn and J.Y. Lee, On the design of single-key-lock mechanism based on Newton’s interpolating
polynomials, IEEE ZVsns. on Softvrare Engineering SE15 (9), 113551137 (1989).

10. M.L. Wu and T.Y. Hwang, Access control with single-key-lock, IEEE Runs. on Softuxme Engineering SE-10

(2), 185-191 (1984).
11. D.E. Knuth, The Art of Computer Programming, Volume 2, Semi-numerical Algorithms, 2nd edition,

Addison-Wesley, Reading, MA, (1981).
12. H.C. Williams, Computationally ‘hard’ problems as a source for cryptosystems, In Secure Communications

and Asymmetric Cryptosystems, AAAS Selected Symposium 69 (Edited by G.J. Simmons), pp. 11-39,
Westview Press, Colorado, (1982).

13. W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Buns. on Information Theory IT-22
(6) 644-654 (1976).

14. S.C. Pohlig and M.E. Hellman, An improved algorithm for computing logarithms over GF(p) and its cryg
tographic significance, IEEE ‘Pram?. on Information Theory IT-24 (l), 106-110 (1978).

