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Abstract

Coarse-grain multi-threshold CMOS (MTCMOS) is an effective
power-gating technique to reduce IC’s leakage power consumption
by turning off idle devices with MTCMOS power switches. In this
paper, we study the usage of coarse-grain MTCMOS power switches
for both logic circuits and SRAMs, and then propose corresponding
methods of testing stuck-open power switches for each of them.
For logic circuits, a specialized ATPG framework is proposed to
generate a longest possible robust test while creating as many
effective transitions in the switch-centered region as possible. For
SRAMs, a novel test algorithm is proposed to exercise the worst-
case power consumption and performance when stuck-open power
switches exist. The experimental results based on an industrial
MTCMOS technology demonstrate the advantage of our proposed
testing methods on detecting stuck-open power switches for both
logic circuits and SRAMs, when compared to conventional testing
methods.

I. INTRODUCTION

IC’s leakage power consumption has greatly increased in the past
due to the continual scaling of process technologies [1] [2]. One
solution to reduce this leakage power is to use power gating, which
will turn off the power of the devices with header or footer power
switches when the circuit is idle. This power-gating technique is
especially useful for those portable, event-driven applications, such
as cell phones, GPS, or PDAs, whose certain functions (mostly
multi-media functions) are in the idle state most of the time.

Being able to simultaneously reduce leakage power for the
always-on circuits and maintain performance for the power-
gated circuits, the Multi-threshold CMOS (MTCMOS) technology
emerges to be an attractive process technology to realize the power-
gating designs. For an MTCMOS design, the always-on power-
gating circuits (including header/footer power switches, retention
flip-flips, and always-on buffers) are implemented in high-Vt transis-
tors, such that their leakage current can be lowered during the sleep
mode. On the other hand, the power-gated circuits are implemented
in low-Vt transistors, such that their performance can be increased
during the active mode. By its granularity, the MTCMOS designs
can be classified into (1) the fine-grain MTCMOS designs, in
which a power switch is built into each cell, and (2) the coarse-
grain MTCMOS designs, in which a relatively small number of
power switches are used to supply the power mesh of all power-
gated devices. In fact, fine-grain MTCMOS designs require high
area overhead and may not be practical or cost-effective for large
industrial designs. Therefore, this paper focuses on the discussion
of coarse-grain MTCMOS technologies only.

During the past decade, a lot research effort has been put
into the area of MTCMOS technologies. One group of research
works focused on developing MTCMOS power-gating structures
to lower the power consumption produced during the sleep-to-
active mode transition [3] [4] or provide the flexibility for various
demands of the power-performance trade-off [5]. Another group
of research works attempt to optimize different design parameters
under different constraints (such as circuit performance, mode-
transition power consumption, power-supply noise, area overhead,
and wake-up time) by using the sleep-transistor sizing [7] [8], circuit
clustering [9], wake-up scheduling [10] [11], or simultaneous clus-
tering and scheduling [12]. However, to the best of our knowledge,
no previous work has discussed the testing-related issues for coarse-
grain MTCMOS designs so far.

In current coarse-grain MTCMOS design flow, designers first
need to determine the type and the number of (header) power
switches used for connecting the true VDD with the power mesh
of the virtual VDD, which can affect the IR drop between the true
VDD and the virtual VDD as well as the affordable current supply
to the power-gated circuits. A larger number of power switches in
use can lead to a lower IR drop and a larger current supply, but
at the same time requires a larger area overhead. Next, the given
number of power switches will be evenly placed all over the chip
except the hard macros, such as SRAMs or analog circuits, where
no MTCMOS switches can be inserted. After the power-switch
placement, the power switches are then be routed with a chain-style
connection or a tree-style connection. A chain-style connection may
result in a smaller sleep-to-active power consumption but a longer
wake-up time while a tree-style connection does the other way. For
most applications, chain-style connection is more preferred since
adding several micro seconds to the wake-up time may not be felt
by users when they wake up the system. But a large sleep-to-active
power consumption may directly damage and fail the chip.

Once the power network is built, the rest design flow is the same
as the conventional CMOS designs, including the scan-chain inser-
tion and test generation. However, the conventional test generation
only targets the modeled faults on the power-gated circuits, and the
functionality of a power switch may not be guaranteed. Even though
the wake-up and acknowledge signals can be provided from a chain-
style switch connection, we can only know whether the wake-up
signal is successfully sent to each switch. The actual on or off of
a power switch remains unknown. If a power switch is stuck-on,
the power consumption of the gated circuits may be significantly
increased during its sleep mode. Such a stuck-on power switch
can be easily defected by measuring the sleep-mode current. On
the other hand, if a power switch is stuck-open, the current supply
near the region of the faulty switch may become weaker. However,
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its neighbor power switches may help to supply the current to the
virtual-VDD power mesh originally supplied by the faulty power
switch. As a result, to detect such a stuck-open power switch may
require specialized test patterns which can create a large number
of 0-to-1 signal transitions within the region centered by the faulty
power switch and then propagate a signal transition within the region
through a critical long path.

Previous research works [13] [14] [15] [16] [17] [18] have
suggested that testing delay faults needs to consider the effect of
power supply noise in order to exercise the worst-case delay of a
circuit and in turn guarantee the circuit’s performance. ATPG tools
were also developed to generate test pattern which can maximize the
power supply noise while sensitizing the target delay fault. However,
our test generation for MTCMOS power-switch faults is different
from the previous power-noise test generation for delay faults due
to the following reasons. First, our fault model is associated with
power switches, while the target fault model for power-noise test
is based on critical paths. It also means that the total number of
faults considered in our test generation is equal to the number of
power switches, while the total number of path delay faults can be
huge. Second, our test generation attempts to maximize the signal
transitions mainly within the region centered by a target power
switch, while the power-noise test attempts to maximize the signal
transitions for the whole chip or along the target path. Third, in our
test generation, we only need to maximize the number of signal
transitions with single direction, i.e., 0-to-1 transitions if header
power switches are used. On the other hand, the signal transitions
required in the power-noise test can be bidirectional.

In this paper, we first introduce the design flow of coarse-grain
MTCMOS technologies and study the usage of MTCMOS power
switches for logic circuits and SRAM macros. Next, we propose a
SAT-based ATPG framework to generate the hot-spot-attack delay-
fault (HSAD) tests, which can help to detect the stuck-open power
switches used for logic circuits. Also, we propose a memory test
algorithm with a specialized address traversing to detect stuck-
open power switches used for SRAM macros. The experiments are
conducted based on the MTCMOS technology provided by an IC
foundry [19] and demonstrates that the proposed testing methods can
effectively help to detect stuck-open power switches for both logic
circuits and SRAM macros, when compared to the conventional
testing methods.

II. BACKGROUND

In this section, we will introduce the MTCMOS technology used
in a major IC foundry [19] and its corresponding design flow. In the
rest of this paper, we will mainly focus on the MTCMOS designs
using header power switches. The proposed test generation can be
easily applied to footer power switches in a similar manner.

A. Architecture of Header-Switch MTCMOS Designs

Figure 1 first illustrates the overview of an MTCMOS design
using header switches. The power-gated low-Vt cells are connected
to the virtual VDD , whose power supply is controlled by the
MTCMOS switches placed between the virtual VDD and true VDD .
When the system turns on the wake-up-request signal, the header
switches are turned on in order so that the virtual VDD can obtain
the power from the true VDD . After the system receives the wake-
up-acknowledge signal, the system starts to send jobs to the gated
logics. When the system turns off the wake-up-request signal, the
switches are turned off and the virtual VDD cannot provide any
power to the gated cells, meaning that no leakage current can be
generated on the gated cells.

Figure 2 illustrates the true-VDD mesh and the virtual-VDD

mesh used in general MTCMOS designs. Both true-VDD mesh and
virtual-VDD mesh are formed by an outside power ring connected
with horizontal stripes and vertical stripes inside the ring. But
the virtual-VDD mesh contains additional horizontal rails, where

header
switch

true VDD

virtual VDD

header 
switchwake_up_req. wake_up_ack.• • •

VSS

power-gated  low-Vt cells

header
switch

Fig. 1. MTCMOS power-supply architecture using header switches

standard cells can directly connect to. The connection between true-
VDD mesh and virtual-VDD mesh is made by the MTCMOS power
switches, which locate only on the intersection of a vertical true-
VDD stripe and a horizontal virtual-VDD rail. Note that the VSS

mesh is omitted in Figure 2 for simplicity. The VSS mesh is actually
similar to the virtual-VDD mesh, and the horizontal VSS rails are
placed alternately with the horizontal virtual-VDD rails, such that a
standard cell can directly connect to.

Fig. 2. Physical layout of true-VDD mesh and virtual-VDD mesh.

B. Switch Allocation
The number of switches in use is determined by the worst IR

drop which can be tolerated between the true VDD and virtual VDD .
Then, with a pre-defined placement pattern (mostly checkerboard),
the switches are evenly placed over the IC except the hard macros,
where no switch can be inserted. If the encountered hard macro is
an SRAM core or any hard IP using the same power domain as
the standard cells, extra switches are placed along the boundaries
of the hard macro to strengthen its power supply. If the encountered
hard macro is an analog IP, which has its own power domain, the
switch-placement pattern around the boundaries remains the same.
Figure 3 shows an exemplary switch allocation with hard macros.

Fig. 3. Switch allocation with hard macros.

C. MTCMOS Header Switches and Switch Routing
The coarse-grain library [19] provides two types of header

switches: the single-input switches and double-input switches as
showed in Figure 4(a) and 4(b), respectively, where all the inverters
in Figure 4 are directly supplied by true VDD . If the single-input
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switches are used, the switches are serially connected as Figure 5(a),
where the NSIn signal of the first routed switch is connected to
system’s wake-up-request signal and the NSOut of the last routed
switch is connected to the system’s wake-up-acknowledge signal.
Since the pins of wake-up-request and wake-up-acknowledge signals
usually locate next to each other, the routed path of single-input
switches looks like a Hamiltonian cycle.

true VDD

vritual VDD

true VDD

virtual VDD

(a) single input header switch (b) double input header switch

NSIn1

NSIn2

daughter header transistor

mother header transistor

NSIn NSOut NSOut1

NSOut2

Fig. 4. Types of MTCMOS header switches.

If the double-input switches are used, the switches are con-
nected as Figure 5(b), where the wake-up-request and wake-up-
acknowledge signals are connected to the NSIn2 and NSOut1
signals of the first routed switch, respectively. Also, the NSOut2
signal of last routed switch is connected to the NSIn1 signal of
itself. Therefore, the routed path of double-input switches looks like
a Hamiltonian path. The routed path can end at any switch in the
design. Note that, using such a connection between switches, the
daughter pMOS transistor (the one with smaller driving capability)
of a switch will be turned on first by NSIn2 during the sleep-
to-active mode transition. After the daughter pMOS transistors
of all switches are turned on, the mother pMOS transistors start
to turn on from the last routed switch. As a result, the peak
power consumption during the sleep-to-active mode transition can
be reduced since charging virtual-VDD mesh with daughter pMOS
transistors is slower than mother pMOS transistors. After the virtual-
VDD is charged, the mother pMOS transistors will be turned on to
strengthen the current supply during the active mode. Thus, using
double-input switches is recommended by [19].

NSIn2 NSOut2

NSOut1 NSIn1
switch

• • •

NSIn

NSOut
switch

wake_up_req.

wake_up_ack.

(b)

• • •

• • •

(a)

NSIn

NSOut
switch

NSIn

NSOut
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

wake_up_req.

wake_up_ack.

first routed last routed

first routed last routed

Fig. 5. Switch routing for (a) single-input and (b) double-input switches.

However, if some switches cannot be successfully included in the
Hamiltonian path, those switches can only be connected by using a
branch as shown in Figure 6 (same situation to single-input switches
as well). For those switches on a branch, its NSOut1 cannot be sent
back to the wake-up-acknowledge signal, meaning that the system
cannot know whether the wake-up-request signal is successfully sent
to those switches, which may create extra testing problem.

...

...

branch

trunk path

Fig. 6. Trunk path and branch for switch routing.

III. TESTING STUCK-OPEN SWITCH FOR LOGIC CIRCUIT

In this section, we will introduce the proposed SAT-based ATPG
framework for generating the hot-spot-attack delay-fault (HSAD)

tests, whose objective is to generate a worst-case delay when a
power switch is stuck-open. Thus, a HSAD test should propagate
a signal transition inside the target region of the switch through
the longest possible path and, at the same time, create as many
0-to-1 transitions within the target region as possible. In other
words, the detection of a stuck-open switch is made through the
detection of the worst-case delay when applying the HSAD tests
at speed. In our ATPG framework, we assume that the double-
capture scheme is used during the at-speed testing. In addition, this
ATPG framework is applied after the physical layout of the target
MTCMOS design can be obtained. In our MTCMOS design flow,
we use SoC Encounter [20] to generate the physical design.

A. Overview of HSAD Test Generation
Figure 7 shows the overview of the proposed ATPG framework,

which requires the following input files:
• .v file: the Verilog file of the target MTCMOS design. This

file is an input of the timing analysis tool, PrimeTime [21].
• .db file: the database file describing the timing information.

This file is an input of the timing analysis tool as well.
• .bench file: the netlist file of the target MTCMOS design.

This netlist format is only used by our own ATPG and can be
directly transferred from the .v file.

• .def file: the file describing the physical-design information of
the MTCMOS design.

Fig. 7. Overall flow of the proposed HSAD ATPG framework.

At the beginning of this ATPG framework, we feed the .bench
file and the .def file to a DEF parser. This parser will first output
a .target file, which lists the cells (with the naming used in the
.bench file) within the target region of each power switch. Also,
this parser will output a .pt file, which is written in the PrimeTime
script format and will ask PrimeTime to report the first n longest
paths through each cell within each target region. In our experiment,
we set n to 10. Next, based on the .pt file, PrimeTime will output
the corresponding paths and its timing to the .path file. Last, our
HSAD ATPG will generate the HSAD tests based on the netlist
(.bench file), the cells in each target region (.target file), and the
information of long paths (.path file).

B. Target Region of a Power Switch
Conceptually, the target region of a given switch is defined as

the area of the virtual-VDD mesh where most of its current supply
is contributed by the given switch. In our framework, we determine
whether a location on the virtual-VDD mesh belongs to the target
region of a switch by the physical mesh distance traversing from
the location to the given switch. If its physical mesh distance to
the given switch is not larger than the distance to any other switch,
then the location belongs to the target region of the switch. Figure 8
illustrates how to identify the target region of a switch on an
exemplary virtual-VDD mesh. In Figure 8, the ”borderlines” between
two target regions are highlighted by a ”×”, where its mesh distance
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to either switch is the same. As a result, if a switch is stuck-open,
then the current supply of the cells within its target region may be
affected more than that of the other cells.

Fig. 8. Finding the target region of a switch.

C. Detailed Steps of HSAD ATPG
For the target region of a switch, the objective of a HSAD test is

to create a maximal number of 0-to-1 transitions within the target
region while generating a robust test on the longest possible path.
Note that we use only the header power switches in this paper and
hence only the 0-to-1 transitions are considered. If footer switches
are used, then we need to maximize the number of 1-to-0 transitions.
Figure 9 first shows the five steps (A to E) of generating a HSAD
test for a target region.

Fig. 9. Steps of generating a HSAD test.

1) Step-A: We first sort the paths passing through the target
region (reported in .path file) by its delay. Then we start from
the longest path and apply an efficient circuit-SAT solver [22] to
determine whether a robust test can be generated for the longest
path. If SATed, the path is selected as the target path and will be
repeatedly used in later steps. If not SATed, we try the next longest
path until we find one with a robust test. The same SAT solver will
be applied later when we try to maximize the number of 1-to-0
transitions in the target region. The conditions for setting a robust
test can be found in [23].

2) Step-B: For each cell within the target region, we will apply
the SAT solver to check whether a 0-to-1 transition on the cell can
be successfully generated along with a robust test of the selected
path in Step-A. If SATed, the cell becomes a valid candidate cell
for maximizing the 0-to-1 transitions within the target region.

3) Step-C: From all the candidate cells identified in Step-B, we
pick each two of them and apply the SAT solver to check whether a
0-to-1 transition can be generated on both candidate cells simultane-
ously along with a robust test for the selected path. If SATed, these
two cells are considered as potentially compatible. We record all the
potentially compatible pairs by a two-dimensional array as shown

in Figure 10(a). Figure 10(b) shows the corresponding potentially-
compatible graph built according to the array, where the two cells
connected by an edge are potentially compatible.

Fig. 10. (a) Array recoding the potentially-compatible information; (b)
The corresponding potentially-compatible graph of (a).

4) Step-D: In this step, we apply a greedy-based algorithm to
iteratively adding a 0-to-1 transition into the target region. The SAT
problem first starts with the conditions of generating a robust test for
the selected long path. No candidate cell is selected initially. Then
we iteratively choose the unvisited candidate cell with the largest
degree on the potentially-compatible graph. If tie, we randomly pick
one. Next, we add the 0-to-1 transition of the selected cell into the
original conditions of the SAT problem, and apply the SAT solver
to the SAT problem. If STAed, we select the candidate cell, keep
all conditions in the SAT problem, and remove all candidate cells
not directly connected to the selected cell from the graph (along
with their edges). Those removed cells can never be SATed along
with the selected cell since they are not potentially compatible. If
not SATed, we exclude the cell, withdraw the new added condition
from the SAT problem, and remove the cell from the graph.

Figure 11 shows an example of Step-D based on the potentially-
compatible graph in Figure 10(b). In the first iteration, we choose
cell A (with the largest degree, 5) and is SATed. Since cell A
is connected to all other cells, no cell is removed. In the second
iteration, several cells have the largest degree of 4 and we randomly
pick cell B. Assuming cell B is SATed, then we need to remove cell
F since it is not connected to cell B, which changes the degree of
the cells connecting to cell F. In the third iteration, we choose cell C
(with the largest degree 3). Assuming that cell C cannot be SATed,
we need to remove cell C and again update the degree of other
cells. By repeating the above process, we can obtain the final result
as shown in Figure 11.

Fig. 11. Degree of each cell for an 5-iteration example of Step-D.

5) Step-E: After we generate the robust test and maximize the
0-to-1 transitions within the target region, there may still exist some
don’t-care bits in the two-cycle test pattern. The objective of Step-E
is to maximize the transitions occurring on PPIs and PIs between the
two cycles by assigning the don’t-care bits. With more transitions at
PPIs and PIs, the number of 0-to-1 transitions in the whole chip can
also be increased more likely, which may lead to a larger IR drop
and a longer delay. In order to achieve this objective efficiently, an
iterative approach is applied in Step-E. In each iteration, we take
one of the following actions, which are listed in the order of their
priority, if applicable.
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• 1st priority: Assign an opposite value to a don’t-care PPI or
PI at the first cycle if its value at the second cycle is already
determined.

• 2nd priority: Assign an opposite value to a don’t-care PI at the
second cycle if its value at the first cycle is already determined.

• 3rd priority: Try to SAT the opposite value to a don’t-care
PPI at the second cycle if its value at the first cycle is already
determined.

• 4th priority: Randomly assign a value to a don’t-care PPI at
the first cycle or a don’t-care PI at both cycle.

D. Experimental Results
In this subsection, we implement ISCAS benchmark circuits

with a coarse-grain MTCMOS technology provided by an IC
foundry [19], and then apply different test patterns to the circuits
with or without a stuck-open defect at a power switch. For s1196,
s5378, and s9234, their power consumption is low and only one
power switch is enough to supply the current. However, in order
to approximate the impact of injecting a stuck-open defect to a
switch, we need multiple power switches in a design. Thus, we
decided to over-design each of s1196, s5378, and s9234 by using 4
power switches. All power switches are double-input switches (as
introduced in Section II-C). The physical layout of each MTCMOS
design, including switch allocation and switch routing, is generated
by using SoC Encounter [20].

Table I lists the experimental result of s9234. In this experiment,
we first use our proposed HSAD ATPG to generate one HSAD
test for each switch (denoted as SW1 to SW4). Then we extract
the SPICE file from the layout of s9234 with StarRCXT [24] and
measure the delay of different test patterns by using HSPICE. Row 2
of Table I reports the delay of each HSAD test based on the defect-
free circuit. Row 3 reports the delay of each HSAD test based on
the circuit with a stuck-open defect injected at the target switch of
the HSAD test. Note that the defect is injected by adding a 10GΩ
resistance between the source of the target pMOS transistor and the
true VDD mesh. Row 4 lists the difference between Row 3 and
Row 2. Next, for each power switch, we generate a robust test for
the same long path sensitized in the corresponding HSAD test and
randomly fill the don’t-care bits (the way conventional path-delay
ATPG does). Then we conduct the same experiment for these path-
delay tests as for the HSAD tests. The corresponding results are
reported in Row 5 to Row 7.

pattern formethods circuits
SW1 SW2 SW3 SW4

avg

our without defect(a) 1.345ns 1.43ns 1.4ns 1.42ns -
HSAD with defect(b) 1.395ns 1.48ns 1.44ns 1.48ns -
ATPG b - a 0.05ns 0.05ns 0.04ns 0.06ns 0.05ns

conventional without defect(a) 1.23ns 1.355ns 1.34ns 1.36ns -
path-path with defect(b) 1.25ns 1.375ns 1.365ns 1.38ns -
ATAPG b - a 0.02ns 0.02ns 0.025ns 0.02ns 0.021ns

TABLE I

Delay of test patterns based on s9234 with and without injecting the

stuck-open defect to the corresponding power switch.

By comparing Row 3 with Row 6, we can find that a HSAD
test can always generate a longer delay than the conventional
path-delay test on the same defective circuit. Also, the average
difference between its delays with and without the stuck-open switch
is 0.05ns for a HSAD test while this difference is only 0.021ns for
a conventional path-delay test. This result shows that a HSAD is
indeed more sensitive to the existence of a stuck-open defect at the
target switch and hence is more effective on detecting a stuck-open
power switch.

In Table II and Table III, we conduct the similar experiments for
s5378 and s1196. The same trend as in Table I can be observed in
Table II and Table III as well. Note that using HSPICE to simulate a
test pattern on the complete circuit of s9234 takes around 24 hours.

To run similar SPICE simulation on a larger ISCAS circuit (such as
s35932, s38417, or s38584) may take weeks or even months. Thus,
we have already generated the HSAD tests for s35932, s38417,
and s38584 but we do not have the SPICE result for these three
circuits. Table IV reports more detailed information about the HSAD
tests for 6 ISCAS benchmark circuits. Column 2 to Column 7 list
the number of power switches, the average delay of the structural
longest path passing through a target region, the average delay of
the path sensitized by a HSAD test, the average number of cells in
a region, the average number of 0-to-1 transitions within the target
region generated by a HSAD test, the average number of total 0-to-1
transitions in the desing generated by a HSAD test, respectively.

pattern formethods circuits
SW1 SW2 SW3 SW4

avg

our without defect(a) 1.16ns 1.16ns 1.165ns 1.09ns -
HSAD with defect(b) 1.2ns 1.19ns 1.195ns 1.12ns -
ATPG b - a 004ns 0.03ns 0.03ns 0.03ns 0.0325ns

conventional without defect(a) 1.125ns 1.14ns 1.13ns 1.05ns -
path-delay with defect(b) 1.145ns 1.16ns 1.16ns 1.075ns -

ATPG b - a 0.02ns 0.02ns 0.03ns 0.025ns 0.02375ns

TABLE II

Delay of test patterns based on s5378 with and without injecting the

stuck-open defect to the corresponding power switch.

pattern formethods circuits
SW1 SW2 SW3 SW4

avg

our without defect(a) 0.96ns 0.94ns 0.85ns 0.875ns -
HSAD with defect(b) 0.975ns 0.98ns 0.89ns 0.91ns -
ATPG b - a 0.015ns 0.04ns 0.04ns 0.035ns 0.0325ns

conventional without defect(a) 0.96ns 0.94ns 0.82ns 0.86ns -
path-delay with defect(b) 0.97ns 0.96ns 0.845ns 0.88ns -

ATPG b - a 0.01ns 0.02ns 0.025ns 0.02ns 0.01875ns

TABLE III

Delay of test patterns based on s1196 with and without injecting the

stuck-open defect to the corresponding power switch.

average result for each target region avg # of
circuits

# of
structural selected # of # of 0-to-1 totalswitch
max path path cells trans. 0-to-1 trans.

s38417 12 1.69ns 1.57ns 606.7 164.1 2154.7
s35932 20 1.35ns 1.35ns 294.6 102 3964.4
s38584 12 2.01ns 1.83ns 650.4 132.1 1849.2
s9234 4 1.5ns 1.44ns 317.3 85 434.7
s5378 4 1.1ns 1.07ns 283 94 376.3
s1196 4 1.05ns 0.98ns 66.8 16.8 90.8

TABLE IV

Statistics of HSAD tests for different benchmark circuits.

Table V reports the runtime of each step of the HSAD ATPG
for the 6 ISCAS circuits. In Table V, s38417 requires the longest
runtime (around 3.3 hours) and 96.5% of its runtime is spent on
Step-C, which needs to build the potentially-compatible graph and
requires a O(n2) time complexity (n is the number of candidate
cells in the target region). Once the potentially-compatible graph is
constructed, then maximizing the number of 0-to-1 transitions in the
target region (Step-D) can be done efficiently with our greedy-based
iterative algorithm as shown in Section III-C.4. Table VI compares
the number of 0-to-1 transitions within the target region generated
by our HSAD ATPG with that generated by an optimum solution,
which enumerates all the possible combinations of candidate cells
for the SAT problem by a branch-and-bound search. As the result
shows, this number of 0-to-1 transitions generated by our HSAD
ATPG is very close to the optimum solution for most target regions,
while our runtime can be more than several-hundred times faster for
s9234 and s5378.
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PrimeTime totalcircuits
+ DEF parser

Step-A Step-B Step-C Step-D Step-E
runtime

s38584 0.4 4.4 27.1 6714.5 24.7 301.4 7072.5
s38417 0.3 3.6 39.2 11489 31.5 339.4 11903
s35932 0.5 4.1 7.4 341.3 5.1 437.2 795.6
s9234 0.2 0.4 1.4 133.5 1.1 2.9 139.5
s5378 0.2 0.1 0.6 78.3 1 2.1 82.3
s1196 0.2 0.1 0.1 1 0.1 0.1 1.6

TABLE V

Runtime (in seconds) for each step of the proposed HSAD ATPG.

pattern forcircuits methods
SW1 SW2 SW3 SW4

avg runtime(s)

HSAD test(a) 11 18 16 22 16.75 1.4
s1196 optimal(b) 20 20 16 23 19.75 61.4

a / b 55.0% 90.0% 100.0% 95.7% 84.8% -

HSAD test(a) 74 96 104 102 94 82
s5378 optimal(b) 75 99 106 108 97 20289.3

a / b 98.7% 97.0% 98.1% 94.4% 96.9% -

HSAD test(a) 69 65 75 86 73.75 138
s9234 optimal(b) 71 74 79 88 78 46772.4

a / b 97.2% 87.8% 94.9% 97.7% 94.6% -

TABLE VI

Comparison between the numbers of 0-to-1 transitions generated by

our HSAD tests and an optimal solution.

IV. TESTING MTCMOS SWITCHES FOR SRAMS

Testing stuck-open MTCMOS power switches for SRAMs is
different from that for logic circuits. For most SRAM macros
provided by current IC foundries, MTCMOS power switches are
usually not embedded inside the SRAM macros. When integrating
such a SRAM macro to a MTCMOS design, the MTCMOS power
switches can only be placed outside the SRAM macro, not like the
logic circuits, on which the MTCMOS power switches are evenly
distributed within the logic cells. Thus, in order to guarantee enough
power supply of an SRAM macro, designers usually place as many
power switches as possible along the boundaries of the SRAM
macro, which may provide much more power than the SRAM macro
really requires. As a result, one stuck-open switch may not affect
the functionality of the SRAM macro. Only multiple stuck-open
switches at the same time may fail the SRAM macro. Multiple
stuck-open switches may occur when the switch routing network
(as shown in Figure 5) fails to send the wake-up-request or wake-
up-acknowledge signal to a series of connected switches, such as
an open defect on the wire of a switch-network’s branch as shown
in Figure 6.

In this section, we use an in-house 256Kb SRAM design as an
example to discuss the impact of multiple stuck-open switches and
the corresponding test algorithms. Figure 12 illustrates the overall
architecture of the SRAM design, which is implemented in an UMC
process technology, occupies 283x575µm2 chip area, and operates
at 300MHz. This SRAM array contains 512 word-lines, each word-
line contains 16 words, and each word contains 32 bits. Note that the
layout topology of this SRAM array utilizes the distributed folding
scheme, where the ith bit of the jth word is adjacent to the ith bit of
the (j+1)th word, not the (i+1)th bit of the original jth word. Thus,
when performing a read or write operation to a word, the operating
cells, bit-line pairs, and sense amplifiers are actually distributed over
the whole design, not like logics circuits, where we can create an
intensive signal transitions with in a target region.

In fact, the most power consuming area of the SRAM macro
is the pre-charge circuit, which locates on the lower region of the
SRAM macro as shown in Figure 12. As a result, the impact of
stuck-open switches on the bottom of the SRAM macro is stronger
than that on the top of the SRAM macro. Figure 13 shows the
SPICE-simulation result (at TT corner, 25◦C) of a bit-line pair when
all the power switches on top of the macro are stuck-open and
we repeatedly write opposite data background to the same word

Fig. 12. Overview of the 256Kb SRAM macro used in our experiment.

for four consecutive cycles. On the other hand, Figure 14 shows
the corresponding simulation result when all the power switches on
bottom of the macro are stuck-open.

Fig. 13. Voltage of a bit-line pair for 4 consecutive write operations
when all switches on the top of the macro are stuck-open.

Fig. 14. Voltage of a bit-line pair for 4 consecutive write operations
when all switches on the bottom of the macro are stuck-open.

As the result shows, after the four consecutive write operations,
the bit-line pair in Figure 13 can still be pre-charged to almost the
same voltage level, while the pre-charged voltage at the bit-line pair
in Figure 14 is continually decreased. If we keep performing write
operations on the same bit-line pair in 14, a write fail may occur
due to its low pre-charged voltage. This result first demonstrates that
the lower region of the SRAM macro indeed requires more current
supply. Also it shows that, when designing the test algorithm for
detecting the stuck-open faults, we need to repeatedly perform a
write operation at the same bit-line pair to capture the stuck-open
defects at power switches. Otherwise the pre-charge circuit for the
bit-line pair will have enough time to recover the voltage.

In this paper, we suggest the following test algorithm to create
the maximal power consumption and detect the stuck-open switches.
The proposed test algorithm includes the following two march
elements:
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• 1st element: Write each word with alternating opposite data
background and follows a bit-line-fixed address-complement
traversing.

• 2nd element: Read each word in the reverse address traversing
as in the 1st element.

Figure 15 illustrates the bit-line-fixed address-complement
traversing for our 512x16x32b SRAM. The address of this SRAM
macro contains 13 bits. The first 9 bits select the 512 word-lines
and the last 4 bits select the 16 words at a word-line. The bit-line-
fixed address-complement traversing will first change the first 9 bits
while fixing the last four bits, such that the same bit-line pairs are
consecutively operated. Also, the traversing order of the first 9 bits
is an general increasing order of the 9-bit address alternating with
a complement 9-bit address (as shown in Figure 15).

Fig. 15. The bit-line-fixed address-complement traversing.

In the following experiment, we will compare the proposed
test algorithm with two other algorithms with one write element
and one read element (denoted as Algor2 and Algor3). Algor2
uses the alternating opposite data background for write operations
(same as our algorithm) but follows the general incremental address
traversing. Algor3 uses the identical data background for write
operations and the general incremental address traversing. Table VII
shows the average and peak power by each algorithm for read
operations and write operations, respectively, assuming that all the
power switches at the top are stuck-open. As the result shows, the
proposed algorithm can always generate a higher power than Algor2
and hence is more likely to create the worst-case IR drop condition
for detecting the stuck-open switches. This result also demonstrate
the effectiveness of applying the bit-line-fixed address-complement
traversing. In addition, the power consumption by Algor2 is larger
than the Algor3 as well, showing that the alternating opposite data
background can effectively help to create a worst-case IR drop.

ours Algor2 Algor3
avg write power 12.33mW 12.22mW 12.18mW
avg read power 15.50mW 15.31mW 15.23mW

peak write power 22.70mW 22.40mW 22.20mW
peak read power 20.80mW 20.60mW 20.50mW

TABLE VII

Power consumption resulting from different memory test algorithms.

Table VIII further shows the average word-line turn-on delay
resulting from each algorithm when all top switches are stuck-open.
As the result shows, our proposed algorithm can generate a slower
average word-line turn-on delay than the other two algorithms.
This slow word-line turn-on delay mainly results from its address-
complement traversing, which can create maximal transitions on the
address decoders. This result again demonstrates the advantage of
using the bit-line-fixed address-complement traversing.

V. CONCLUSION

This paper presented an SAT-based ATPG framework to generate
HSAD tests, whose propagation delay is sensitive to the func-
tionality of the power switches and hence can help to detect the

ours Algor2 Algor3
WL turn-on time 0.2679ns 0.2673ns 0.2671ns

TABLE VIII

Average word-line turn-on delay of different memory test algorithms.

stuck-open power switches for logic circuits. Next, we proposed a
memory test algorithm with a specialized address-traversing order,
which can effectively exercise a worst-case performance and help
to detect the multiple stuck-on power switches for SRAM macros.
The experimental results based on a current MTCMOS technology
demonstrated the advantage of the proposed ATPG framework and
memory test algorithm over the conventional testing methods.
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