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We consider an infinite-capacity M/M/c retrial queue with second optional service (SOS) channel. An arriving
customer finds a free server would enter the service (namely, the first essential service, denoted by FES)
immediately; otherwise, the customer enters into an orbit and starts generating requests for service in an
exponentially distributed time interval until he finds a free server and begins receiving service. After the
completion of FES, only some of them receive SOS. The retrial system is modelled by a quasi-birth-and-death
process and some system performance measures are derived. The useful formulae for computing the rate matrix
and stationary probabilities are derived by means of a matrix-analytic approach. A cost model is derived to
determine the optimal values of the number of servers and the two different service rates simultaneously at the
minimal total expected cost per unit time. Illustrative numerical examples demonstrate the optimisation approach
as well as the effect of various parameters on system performance measures.

Keywords: cost; first essential channel; quasi-Newton method; second optional channel; matrix-geometric
method

1. Introduction

This article considers an M/M/c retrial queue in which

primary customers arrive to a Poisson process with

parameter �. An arriving primary customer finding one

or more servers available (free) obtains service imme-

diately. On the other hand, if the primary customer

finds all servers busy, he joins the orbit and tries to get

the service later on. There are c channels (servers) that

provide the first essential service (FES) as well as the

second optional service (SOS) to arriving customers.

The FES is needed by all arriving customers.

The service times of the FES and the SOS have an

exponential distribution with means 1/�1 and 1/�2,

respectively. As soon as the FES of a customer is

completed, a customer may leave the system with

probability (1� �) or may opt for the SOS with

probability � (0� �� 1), at the completion of which

the customer departs from the system and the next

customer, if any, from the queue is taken up for his

FES (Figure 1). Each channel can serve only one

customer at a time and it also provides only one

essential service or SOS at a time. Furthermore, each

customer staying in the orbit makes repeated attempts,

in random intervals having length exponentially

distributed with parameter �, independently of the

other customers. Upon requesting service from the
orbit, a customer who finds all c servers busy always
rejoins the orbit; this manner continues until he is
eventually served. We assume that there exists an
upper bound N on the number of customers in the
orbit that are allowed to conduct retrials (Neuts and
Rao 1990; Artalejo and Pozo 2002). This implies that
the probability of a repeated attempt during (t, tþdt),
given that j customers in the orbit at time t, is �jdtþ
o(dt), where �j ¼ minf j,Ng�. Moreover, we assume
that the process of primary arrivals, service times and
inter-retrial times are mutually independent.

An arbitrary customer in the orbit generates a
stream of repeated requests that is independent of the
rest of the customers in the orbit. This situation arises
in telephony, where an arriving call is not allowed to
await the termination of a busy signal. Such queueing
systems play important roles in the analysis of many
telephone switching systems, telecommunication net-
works and computer systems. The following are just a
few examples of problems that can be modelled as
retrial queues with SOS.

(1) Telephone systems: A subscriber who obtains
a busy signal will repeat the request until the
connection is made. Therefore, the flow of calls
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circulating in a telephone network consists of
the flow of primary calls and the flow of

repeated calls. The former reflects the real

wishes of the telephone subscribers and the
latter is the retrial request of previous attempts.

When a subscriber makes a successful phone

call (connect to switchboard), the call duration
will consist of an FES that this subscriber who

is phoning asks for the person that he is looking

for and then it is determined whether such an
interlocutor is present or not (based on Artalejo

and Choudhury (2004)). Moreover, in the

booking ticket service, a subscriber who
demands a booking ticket service by telephone

can address his request (FES) and receive the

proper fundamental service (SOS) if the stock
of tickets is still not empty. This telephone

system (usually with multi-servers) can be

regarded as a practical application of our
model.

(2) Communication network: An Internet network

with multi-servers is very common in daily life.
A customer who finds all servers busy will try

to connect again after a space. The servers

provide browse service (FES) for each entering
user and supply SOS such as online shopping,

network information or object download ser-

vices (SOS) for some of them.
(3) Daily life queues: We often observe that a

person finding a long waiting line chooses to

balk and return later. This situation can be

regarded as the retrial phenomenon due to
balking behaviour where the retrial is moti-

vated by impatience. In a cafeteria, everyone

needs to fill a bowl with rice and take some
well-cooked foods (FES), but some of them

prefer to order more freshly made edibles

(SOS). Furthermore, for example, a driver
who arrives at a gas station and sees a long

waiting line leaves to handle other daily task or
job and returns to gas station as back home. All
cars arriving at a gas station may need gas
refuelling services (FES), but only some of
them may require a car wash services (SOS)
after refuelling.

Reviews of retrial queue literature can be found in
Yang and Templeton (1987), Falin and Templeton
(1997) and Artalejo (1999a, b). A number of applica-
tions of retrial queues in science and engineering can be
found in Kulkarni and Liang (1997). Apart from its
practical interest due to its more accurate representa-
tion of several congestion phenomena, the multi-server
retrial queue raises interesting mathematical and
computational questions. The investigation of the
multi-server retrial queues is essentially more difficult
than single-server models. Explicit formulae for the
stationary distribution of a M/M/c retrial queue are
known only when the number of servers c is at most
two. Most multi-server retrial queues can be modelled
by a level-dependent quasi-birth-and-death (QBD)
process. The main feature of its infinitesimal generator
is the spatial heterogeneity caused by transitions due to
repeated attempts. This lack of homogeneity causes
the analytical complexity of retrial models. Many
interesting studies have been devoted to an approxi-
mate approach to the stationary probabilities for
system states (Falin 1983; Neuts and Rao 1990;
Bright and Taylor 1995; Stepanov 1999; Artalejo and
Lopez-Herrero 2000; Artalejo and Pozo 2002; Breuer,
Dudin, and Klimenok 2002; Chakravarthy and Dudin
2002). Recently, Gomez-Corral (2006) gave a detailed
bibliographical guide to the analysis of retrial queues
through matrix analytic techniques.

The truncation models seem to be the most
convenient method for obtaining reliable numerical
solutions for the M/M/c retrial queue. For example,
Falin (1983) assumed that the retrial rate becomes
infinite when the number of customers in orbit exceeds

Retrial queue 

FES exp (m1) SOS exp (m2)

All servers 

busy?Poisson (l)

No

Yes

θ

1−q

exp (σ)

Service completion 

Figure 1. The general structure of M/M/c retrial queue with second optional service.
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a level M. It means that, from the level M up, the
system performs as an ordinary M/M/1 queue with
arrival rate � and service rate cm so that the condition
�5 c� is necessary and sufficient for the ergodicity.
Neuts and Rao (1990) and Artalejo and Pozo (2002)
proposed several models in this direction and approxi-
mated efficiently the stationary distribution of the M/
M/c retrial queue. As related works, a number of
studies investigated the computation of the other
system characteristics, such as the distributions of
busy period, successful and blocked retrials, for the
multi-server retrial queue of type M/M/c. Readers can
refer to Artalejo, Chakravarthy, and Lopez-Herrero
(2007a), Artalejo, Economou, and Lopez-Herrero
(2007b), Amador and Artalejo (2007) and others.
Artalejo, Economou, and Lopez-Herrero (2007c) pre-
sented an algorithmic analysis of the maximum
number of customers in orbit (and in the system)
during a busy period for the M/M/c retrial queue.
The multi-server retrial queueing problems are exten-
sively studied as mentioned above. However, there is
no work on a multi-server retrial queue with a SOS
channel in the literature. In this article, we investigate
the multi-server retrial queue with a SOS channel via a
matrix-geometric approach.

Studies on various queueing models in the past are
characterised by a common feature; all customers
receive service in the first phase (so-called main service)
by the channel (server), and they do not further request
other SOS. However, in many real service systems, one
encounters numerous examples of the queueing situa-
tions where all arrivals require the main service and
only some of them may request the subsidiary service
provided by the channel. Analytic steady-state solu-
tions of an M/M/c retrial queue with second optional
channel have not been found. A pioneering work in
this queueing situation is proposed by Madan (2000),
who first introduced the concept of SOS (channel).
Madan (2000) studied an M/G/1 queue with SOS,
using the supplementary variable technique in which he
considered general service time distribution for FES
and exponential service time distribution for SOS. He
also cited some important applications of this model
in many real-life situations. Madan (2001) extended
Madan’s model (2000) to two-stage service channel
systems with generally distributed. Medhi (2002)
derived the transient solution and steady-state solution
for the ordinary M/G/1 queue with SOS using the same
technique. Medhi’s M/G/1 model was also investigated
by Al-Jararha and Madan (2003), in which they
developed the time-dependent probability generating
functions involved in Laplace transforms and further
obtained the corresponding steady-state results. The
reliability measures were examined by Wang (2004),
for the ordinary M/G/1 queue with SOS and

considering channel breakdowns. Ke (2008) investi-
gated a batch arrival M[x]/G/1 queueing system with J
optional services. He derived the steady-state results,
including system size distribution at a random epoch
and at a departure epoch, the distributions of idle and
busy periods and waiting time distribution in the
queue. Recently, Choudhury and Tadj (2009) general-
ised this type of model by introducing the concept of a
server breakdown and a delay-repair period. The
optimal control and management of such models
have also received considerable attention in the liter-
ature. For example, Choudhury and Madan (2005)
investigated such a type of model for a two-stage batch
arrival queue with Bernoulli vacation schedule and
Choudhury and Paul (2006) studied a similar type of
model for a batch arrival queueing system with two
phases of service. They derived the queue size distri-
bution at a random epoch as well as at a departure
epoch for an M[x]/G/1 queueing system with second
optional channel under N-policy. A simple procedure
was also provided to obtain optimal stationary policy
under a suitable linear cost structure. Tadj,
Choudhury, and Tadj (2006a, b) investigated some
bulk service queueing system under N-policy. As for
the retrial models with related works, Artalejo and
Choudhury (2004) examined the steady state behaviour
of an M/G/1 queue with repeated attempts in which
the server may provide an additional second phase of
service. Some practical applications were presented in
Artalejo and Choudhury’s works which also general-
ised both the classical M/G/1 retrial queue and the
M/G/1 queue with classical waiting line and SOS. An
M/G/1 retrial queueing system with two phases of
service subject to the server breakdown and repair
was investigated by Choudhury and Deka (2008), who
derived the queue size distribution at a random epoch
and departure epoch using supplementary variable
technique, various system performance measures were
also presented. Ke and Chang (2009) investigated a
batch-arrival M/G/1 retrial queue under Bernoulli
vacation schedules with two phases of service general
repeated attempts and starting failures.

Existing retrial queueing problems with optional
service, including the abovementioned, mainly focussed
on one single-server queue. Because of the more com-
plicated structure of the stochastic processes required
to describe the system behaviours, the multi-server
retrial queue is known to be analytically intractable.
This motivates us to investigate a multi-server retrial
queue of M/M/c type with second optional channel.

The article is organised as follows. In Section 2, the
QBD model of the multi-server M/M/c retrial queue
with SOS is set up. The rate matrix and stable
condition of the QBD model are derived using
matrix-geometric property. In Section 3, an efficient
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algorithm is developed to calculate the stationary
probabilities by matrix-geometric method. In
Section 4, some system performance measures are
derived. In Section 5, a cost model is developed to
determine the optimal number of servers and two
service rates, in order to minimise the total expected
cost per unit time. We use a direct search method and
quasi-Newton method to implement the optimisation
tasks. Some numerical examples are provided to
illustrate these two optimisation methods. In Section
6, conclusions are made with some remarks.

2. M/M/c retrial queue with SOS

Consider an M/M/c retrial queue with SOS. The
state of the system can be described as (i, j, k),

where i and k denote the number of servers busy in

the FES and SOS, respectively. j is the number of

customers in orbit (sources of repeated demands). The

system can be described by a continuous parameter

Markov chain on the state space {(i, j, k); 0� i� c,

0� j, 0 � k � c� i}. From Figure 2, the customers

entering the server get services immediately as

iþ k5 c (i.e. there are available servers). The new

arriving customer who finds all c servers busy

(iþ k¼ c) always rejoins the retrial group (orbit),

this operation continues until they are eventually

served. In the steady state, we define Pk
i, j � probability

that there are i and k servers busy in the FES and

SOS, respectively, and j customers in orbit, where

0 � iþ k � c, j� 0.

i 0 1 2 3 0 1 2 0 1 0

k 0 0 0 0 1 1 1 2 2 3

j 0

1

2

3

4

σ σ σ σ σ σ

2σ

3σ

4σ

2σ

3σ

4σ

2σ

3σ

4σ

2σ

3σ

4σ

2σ

3σ

4σ

2σ

3σ

4σ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

i 0 1 2 3 0 1 2 0 1 0

k 0 0 0 0 1 1 1 2 2 3

0j ≥

1θμ
12θμ1θμ

13θμ
12θμ

1θμ

23μ
22μ

22μ

2μ2μ2μ

Figure 2. Steady-transition-rate diagram for a multi-server retrial queue with second optional service (c¼ 3).
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2.1. Matrix representation

The infinitesimal generator Q of the Markov chain has

the form

Q¼

A0 B

C1 A1 B

C2 A2 B

. .
. . .

. . .
.

CN AN�1 B

CN AN B

CN AN B

. .
. . .

. . .
.

2
6666666666666664

3
7777777777777775

:

ð1Þ

The infinitesimal generator Q of that Markov chain

has the form shown in Figure 3 for c¼ 3. The entries B,

Aiði � 0Þ, and Ciði � 1Þ are square matrices of order

(cþ 1)(cþ 2)/2. Block-diagonal square matrices B and

Ci can be partitioned as:

B ¼

b0

b1

. .
.

bc�1

bc

2
6666664

3
7777775 and

Ci ¼

c0i

c1i

. .
.

cc�1i

cci

2
66666664

3
77777775
, i ¼ 1, 2, . . .

Figure 3. The infinitesimal generator Q (c¼ 3, q¼ 1� �).
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where sub-matrices bj and c ji are square matrices of

order ðcþ 1� j Þ with elements

bj ½cþ 1� j, cþ 1� j � ¼ �

0 e:w

�
and

c ji ½k, kþ 1� ¼ �i ¼ minfi,Ng�, 1 � k � c� j

0 e:w
:

(

Ai can be partitioned as

Ai ¼

Y0
i X0

Z1 Y1
i X1

Z2 Y2
i X2

. .
. . .

. . .
.

. .
. . .

. . .
.

Zc�1 Yc�1
i Xc�1

Zc Yc
i

2
6666666666666664

3
7777777777777775

,

i ¼ 0, 1, 2, . . .

where Xj is a ðcþ 1� j Þ � ðc� j Þ matrix with Xj ½kþ

1, k� ¼ k��1, 1 � k � c� j, Zj is a ðc� j Þ � ðcþ 1� j Þ

matrix with Zj ½k, k� ¼ j�2, 1 � k � c� j and Yj
i is a

square matrix of order ðcþ 1� j Þ with elements

Yj
i ½k,kþ 1� ¼ �, 1� k� c� j

Yj
i ½kþ 1,k� ¼ kð1� �Þ�1, 1� k� c� j

Yj
i ½1, 1� ¼ �½�þ j�2þ �i�

Yj
i ½k,k� ¼ � �þ ðk� 1Þ�1þ j�2þ �i½ �, 2� k� c� j

Yj
i ½cþ 1� j, cþ 1� j � ¼ � �þ j�2þ ðc� j Þ�1½ �

:

8>>>>>>>><
>>>>>>>>:

For instance, for c¼ 3, the sub-matrices of B are

b0 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �

2
66664

3
77775, b1 ¼

0 0 0

0 0 0

0 0 �

2
64

3
75,

b2 ¼
0 0

0 �

" #
, b3 ¼ �:

The sub-matrices of C1 are

c01 ¼

0 � 0 0

0 0 � 0

0 0 0 �

0 0 0 0

2
6664

3
7775, c11 ¼

0 � 0

0 0 �

0 0 0

2
64

3
75,

c21 ¼
0 �

0 0

� �
, c31 ¼ 0:

For A1, the first super diagonal sub-matrices are

X0 ¼

0

��1

0

0

0

0

2��1

0

0

0

0

3��1

2
666664

3
777775, X1 ¼

0

��1

0

0

0

2��1

2
664

3
775,

X2 ¼
0

��1

" #
:

The diagonal sub-matrices are

Y0
1¼

�ð�þ�Þ �

ð1� �Þ�1 �ð�þ�1þ�Þ �

2ð1� �Þ�1 �ð�þ2�1þ�Þ �

3ð1� �Þ�1 �ð�þ3�1Þ

2
6664

3
7775,

Y1
1¼

�ð�þ�2þ�Þ �

ð1� �Þ�1 �ð�þ�1þ�2þ�Þ �

2ð1� �Þ�1 �ð�þ2�1þ�2Þ

2
64

3
75,

Y2
1¼
�ð�þ2�2þ�Þ �

ð1� �Þ�1 �ð�þ�1þ2�2Þ

� �
,

Y3
1¼�ð�þ3�2Þ:

The first sub diagonal sub-matrices are

Z1 ¼

�2

0

0

0

�2

0

0

0

�2

0

0

0

2
64

3
75, Z2 ¼

2�2

0

0

2�2

0

0

� �
,

Z3 ¼ 3�2 0
� �

:

2.2. Rate matrix R

Let � ¼ ½�0,�1,�2, . . .� with �i ¼ ½P
0
0,i,P

0
1,i, . . . ,P0

c,i,

P1
0,i,P

1
1,i, . . . ,P1

c�1,i, . . . ,Pc�1
0,i ,P

c�1
1,i ,P

c
0,i�, i ¼ 0, 1, 2, . . .

be the unique solution to �Q ¼ 0 and �e ¼ 1, where

e is a column vector with all elements equal to 1. It is

noted that the vector � ¼ ½�0,�1,�2,�3, . . .� has the

following properties:

�Nþk ¼ �NR
k, for k � 1: ð2Þ

The matrix R is the unique non-negative solution with

spectral radius less than one of the equations:

Bþ RAN þ R2CN ¼ 0: ð3Þ

From Neuts (1981) and Latouche and Ramaswami

(1999), we know R is given by lim
n!1

Rn, where the

sequence {Rn} is defined by

R0 ¼ 0, and Rnþ1 ¼ �BA
�1
N � R2

nCNA
�1
N , for n � 0:

ð4Þ
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The sequence {Rn} is monotone so that R could be
evaluated from (4) by successive substitutions.

2.3. Stability condition

It is known (Theorem 3.1.1 of Neuts 1981) that the
steady-state probability vector exists if and only if

xBe5 xCNe, ð5Þ

where x is the invariant probability of the matrix
F ¼ CN þ AN þ B. x satisfies xF¼ 0 and xe¼ 1 where
e is a column vector with dimension ðcþ 1Þðcþ 2Þ=2
and all elements equal to one. Substituting B and CN

into Equation (5) and doing some routine manipula-
tion leads to

N�ð1� PFÞ4 �PF, ð6Þ

where PF denotes the probability that all servers are
busy (i.e. iþ k¼ c), i.e. the system will be stable if the
expected successful retrial rate is greater than the
expected arrival rate of ‘orbit’.

3. Steady-state solution

Under the stability condition, the stationary probabil-
ity vector � of Q exists. In this section, we deal with
the steady-state equations by representing it in matrix
form. This steady-state probability vector � ¼
½�0,�1,�2,�3, . . .� is given by

�0A0 þ�1C1 ¼ 0, ð7aÞ

�i�1Bþ�iAi þ�iþ1Ciþ1 ¼ 0, 1 � i � N� 1, ð7bÞ

�N�1Bþ�NAN þ�NRCN ¼ 0, ð7cÞ

�NR
i�1�NBþ�NR

i�NAN þ�NR
iþ1�NCN ¼ 0,

Nþ 1 � i, ð7dÞ

X1
i¼0

�ie ¼ 1: ð8Þ

After doing some routine manipulations to
Equation (7a)–(7c), we have

�0 ¼ �1C1ð�A0Þ
�1
¼ �1�1,

�i�1 ¼ �iCi �ð�i�1Bþ Ai�1Þ½ �
�1
¼ �i�i, 2 � i � N,

ð9Þ

and

�N�NBþ�NAN þ�NRCN ¼ 0: ð10Þ

Consequently, �i (0 � i � N� 1) in Equation (9) can
be written as product form in terms of �N and the rest

steady-state vector ½�N,�Nþ1,�Nþ2, . . . � can be deter-
mined recursively as �i ¼ �N Ri�N, for i�N. Once the
steady-state probability �N is obtained, the steady-
state solutions ½�0,�1,�2, . . . ,�N�1,�N,�Nþ1, . . .�

are determined. The steady-state probability �N can
be solved by Equation (10) with the following normal-
isation equation:

X1
i¼0

�ie ¼ �0 þ�1 þ � � � þ�N�1 þ�N þ�Nþ1½

þ�Nþ2 þ � � ��e

¼

�
�N �

1

i¼N
�i þ�N �

2

i¼N
�i þ � � � þ�N �

N

i¼N
�i

þ�N þ�NRþ�NR
2 þ � � �

�
e

¼ �N

XN
k¼1

�
k

i¼N
�i þ ðI� RÞ�1

" #
e ¼ 1: ð11Þ

Solving Equations (10) and (11) in accordance with
Cramer’s rule, we obtain �N. Then, the prior state
probabilities ½�0,�1,�2, . . . ,�N�1� are computed
from (9) and ½�Nþ1,�Nþ2,�Nþ3, . . .� are gained by
the formula �i ¼ �NR

i�N, i�Nþ 1. We summarise
the solution procedure of steady-state probabilities as
below:

Algorithm: Recursive solver

Step 1: Set �1 ¼ C1ð�A0Þ
�1

Step 2: For i from 2 to N, set �i ¼ Ci½�ð�i�1Bþ
Ai�1Þ�

�1.

Step 3: For k from 1 to N, set �k ¼ �k
i¼N �i.

Step 4: Solve �N�NBþ�NAN þ�NRCN ¼ 0,
�N½

PN
k¼1 �k þ ðI� RÞ�1�e ¼ 1 and obtain steady-state

probability �N.

Step 5: Construct steady-state probability �i as
follows:

(1) if 0� i�N, assign �i ¼ �N�iþ1,
(2) if Nþ 1� i, assign �iþ1 ¼ �iR,

4. System performance measures

The system performance measures, such as the
expected number of customers in the FES channel
(denoted by E [FES]), the expected number of custo-
mers in the SOS channel (denoted by E [SOS]) and the
expected number of customers in orbit (denoted by
E [Orbit]), can be evaluated from the steady-state
probabilities �i ¼ ½P

0
0,i,P

0
1,i, . . . ,P0

c,i,P
1
0,i,P

1
1,i, . . . ,

P1
c�1,i, . . . ,Pc�1

0,i ,P
c�1
1,i ,P

c
0,i�. The expressions for
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E [FES], E [SOS] and E [Orbit] are given by

E ½FES� ¼
X1
i¼0

�iv ¼
XN�1
i¼0

�ivþ�Nvþ�NRv

þ�NR
2vþ � � �

¼
XN�1
i¼0

�N�iþ1vþ�Nvþ�NRvþ�NR
2vþ � � �

¼ �N

XN
i¼1

�i þ ðI� RÞ�1

" #
v, ð12Þ

E ½SOS� ¼
X1
i¼0

�iJ ¼
XN�1
i¼0

�iJþ�NJþ�NRJ

þ�NR
2Jþ � � �

¼
XN�1
i¼0

�N�iþ1Jþ�NðI� RÞ�1J

¼ �N

XN
i¼1

�i þ ðI� RÞ�1

" #
J, ð13Þ

E ½Orbit� ¼
X1
i¼1

i�ie ¼
XN�1
i¼1

i�N�iþ1eþN�Ne

þ ðNþ 1Þ�NReþ ðNþ 2Þ�NR
2eþ � � �

¼
XN
i¼2

ði� 1Þ�N�ieþ�N½NðI� RÞ�1

þ RðI� RÞ�2�e

¼ �N

XN
i¼2

ði� 1Þ�i þNðI� RÞ�1 þ RðI� RÞ�2

" #
e,

ð14Þ

where

v ¼ ½0, 1, . . . , c|fflfflfflfflfflffl{zfflfflfflfflfflffl}
#¼cþ1

, 0, 1, . . . , c� 1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
#¼c

, . . . , 0, 1|{z}
#¼2

, 0�

and

J ¼ ½0, 0, . . . , 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
#¼cþ1

, 1, 1, . . . , 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
#¼c

, . . . , c� 1, c� 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
#¼2

, c�

are column vectors with dimension (cþ 1)(cþ 2)/2.
For an M/M/c retrial queue with SOS channel, the

numerical results of E [Orbit] are obtained by consid-

ering the following three cases with different values

of c:

Case 1: N¼ 30, �¼ 5, �2¼ 10, �¼ 0.5, �¼ 5, vary �1

from 10 to 20.

Case 2: N¼ 30, �¼ 5, �1¼ 10, �¼ 0.5, �¼ 5, vary �2

from 10 to 20.

Case 3: N¼ 30, �1¼ 20, �2¼ 15, �¼ 0.5, �¼ 5, vary

� from 5 to 10.

The results of E [Orbit] are depicted in Figure 4 for

Case 1–3, respectively. From Figure 4, it should be

noted that E [Orbit] is insensitive to the change of �1,

�2 and � when the number of servers is greater than

one.
There are several general descriptors of retrial

queues, some of which are listed as follows:

(1) The overall rate of retrials:

�	1 ¼
XN
j¼1

j�
Xc
k¼0

Xc�k
i¼0

Pk
i, j þ

X1
j¼Nþ1

N�
Xc
k¼0

Xc�k
i¼0

Pk
i, j

¼
XN
j¼1

j��jeþ
X1

j¼Nþ1

N��NR
j�Ne

¼
XN
j¼1

j��jeþN��NRðI� RÞ�1e

¼ �
XN
j¼1

j�j þN�NRðI� RÞ�1

" #
e

¼ ��N

XN�1
j¼1

j�jþ1 þNðI� RÞ�1

" #
e: ð15Þ

(2) The rate of retrials that are successful:

�	2 ¼
XN
j¼1

j�
Xc
k¼0

Xc�k�1
i¼0

Pk
i, j þ

X1
j¼Nþ1

N�
Xc
k¼0

Xc�k�1
i¼0

Pk
i, j: ð16Þ

(3) The fraction of successful retrials:

F ¼
�	2
�	1
: ð17Þ

(4) The marginal distribution of the number of

busy servers:

X1
j¼0

Pk
i, j, 0 � iþ k � c: ð18Þ

(5) Busy period: The busy period T of a retrial

queue is defined as the period that starts at the

epoch when an arriving customer finds an

empty system (all servers are idle and no

customer in the orbit) and ends at the departure

epoch at which the system is empty again.

The mean busy period

EðT Þ ¼
1

�

1

P0
0,0

� 1

 !
¼

1

�

1

�N�1½1�
� 1

� 	
, ð19Þ

where �N�1½1� denotes the first element of �N�1.
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(6) Vain retrials: A vain retrial is an unsuccessful
retrial when all servers are busy.

The steady-state conditional probability of vain
retrial Pv is defined as (Krishna and Raja 2006;
Krishna, Rukmani, and Thangaraj 2009)

PV ¼

P1
j¼1

P
iþk¼c P

k
i, jP1

j¼1

Pc
k¼0

Pc�k
i¼0 P

k
i, j

¼

P1
j¼1

P
iþk¼c P

k
i, j

1��0e
: ð20Þ

To understand how the system performance measures
listed above vary with N, we also perform a numerical
investigation to the measures based on changing the
value of N. The numerical illustration is graphically
presented in Figure 5.

From Figure 5, it is clear that increasing the retrial
rate beyond a certain point does not result in a
commensurate improvement in the system perfor-
mance, i.e. when the number of customers in orbit is
sufficiently large, a majority of the retrial requests fail
to find a free server and do not result in a change of
state. Therefore, the number of customers who can
generate retrial requests could be restricted (truncated)
to an appropriately chosen number N (Neuts and Rao
1990).

5. Optimisation analysis

We construct a total expected cost function per unit
time, in which the number of servers (c) is a discrete
decision variable, and the service rates �¼ (�1,�2) are
continuous decision variables. Let us define the
following cost elements:

Ch cost per unit time per customer present in
orbit,

C1 cost per unit time when one server is busy,
C2 cost per unit time of providing a service

rate �1,
C3 cost per unit time of providing a service

rate �2,
C4 fixed cost to purchase one server.

Based on the definition of the cost parameters,
the total expected cost function per unit time is
given by

Fðc,�1,�2Þ ¼ ChE ½Orbit� þ C1 E ½FES�ð

þE ½SOS�Þ þ C2�1 þ C3�2 þ C4c: ð21Þ

The main objective is to determine the optimal number
of servers c*, and the optimal value of the service rate
�	 ¼ ð�	1,�

	
2Þ, simultaneously which minimise the

cost function. The analytic study of the optimisation
behaviour of the expected cost function would
have been an arduous task to undertake

Figure 4. The expected number of customers in orbit vs. �,
�1 and �2.
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since the decision variable appears in an expression

which is a highly complex and non-linear in terms of

ðc,�1,�2Þ.
We first use direct search method to find the

optimal value of the number of servers, say c*, when �1

and �2 are fixed. Next, we fix c* and use the quasi-

Newton method to search/adjust the optimal value of

ð�1,�2Þ, say ð�
	
1,�

	
2Þ.

5.1. Direct search method

For practical application, an upper bound U is

imposed on c. We can successively substitute c¼

1, 2, . . . ,U into the cost function. The optimum value

c* could be determined by satisfying the following

inequality

Fðc	 � 1j�1,�2Þ4Fðc	j�1,�2Þ

5Fðc	 þ 1j�1,�2Þ: ð22Þ

It is noted that Fðc	j�1,�2Þ is a (local) minimum.

To demonstrate that the cost function is really

convex in c and the solution gives a minimum,

some numerical examples are performed based on

the preceding formulation. For convenience, the

number N¼ 30 is chosen and the following cost

elements are adopted:

Ch ¼ $25=customer=unit time,

C1 ¼ $120=server=unit time, C2 ¼ $15=unit time,

C3 ¼ $30=unit time, C4 ¼ $180=server:

Under other parameters that are given, we observe

from Table 1 that the optimal number of servers c* and

its corresponding minimum cost increase as � or �
increases and decrease as � increases.

5.2. Quasi-Newton method

After we obtain c*, a quasi-Newton method is

employed to search (�1,�2) until the minimum value

of Fðc	,�1,�2Þ is achieved, say Fðc	,�	1,�
	
2Þ. To find

the joint optimal value ð�	1,�
	
2Þ for a given c*, we

should show the convexity of Fðc	,�1,�2Þ. However,

this work is difficult to implement. We note that the

derivative of the cost function F with respect to

�¼ (�1,�2) indicates the direction in which cost

function increases. It means that the optimal value

ð�	1,�
	
2Þ can be found along this opposite direction of

the gradient (Chong and Zak 2001).

Figure 5. The system performance measures vs. the truncated parameter N.
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An effective procedure that makes it possible to
calculate the optimal value ð�	1,�

	
2Þ is presented as

follows:

Algorithm: Quasi-Newton method

Step 1: Set the initial trial solution for ~�ð0Þ ¼
ð�ð0Þ1 ,�ð0Þ2 Þ and compute Fðc,�ð0Þ1 ,�ð0Þ2 Þ.

Step 2: For i¼ 0, 1, 2, . . . , compute the cost gradient
~rFð~�Þ ¼ ½@F=@�1, @F=@�2�

T and the cost Hessian

matrix Hð~�Þ ¼
@2F=@�2

1 @2F=@�1@�2

@2F=@�2@�1 @2F=@�2
2

� �
at point

~�ðiÞ ¼ ð�ðiÞ1 ,�
ðiÞ
2 Þ.

Step 3: While j@F=@�1j4 " or j@F=@�2j4 " (" denotes
the tolerance, a sufficient small number), set the new
trial solution ~�ðiþ1Þ ¼ ~�ðiÞ �½Hð~�ðiÞÞ��1 ~rFð~�ðiÞÞ and
return to Step 2 until the gradient is sufficiently small.

For this purpose, we present two examples to
illustrate the optimisation procedure shown in Table 2.
From Table 2, we can see that the minimum expected
cost per unit time of 1003.92 is achieved at ð�	1,�

	
2Þ ¼

(23.4453, 8.02222) by using five iterations, which is
c*¼ 1 based on Case (i) with initial value
ð�1,�2Þ ¼ (20, 10). Based on Case (ii), c* is 4 and the

minimum expected cost per day of 1674.11 is achieved
at ð�	1,�

	
2Þ ¼ (16.8630, 10.7441) by using 5 iterations.

We now perform a sensitivity investigation to the
optimal value ðc	,�	1,�

	
2Þ based on the changes in

specific values of the system parameters. The numerical
results are shown in Table 3 for various values of �, �
and � by considering the initial value ð�1,�2Þ of
(20, 10). From Table 3, we find that (1) c* increases as
�(�) increases and is insensitive to the change of � and
(2) �	1 increases as � increases and decreases as � (or �)
increases. We also observe that (1) �	2 has the same
pattern with �	1 and (2) the minimum expected cost
value increases as � (or �) increases and decreases as �
increases.

6. Conclusions

A multi-server retrial queue with SOS was investigated
using the matrix geometric method. The sufficient and
necessary conditions for the stability of the system
were discussed. The stationary probability vectors and
the system performance measures were obtained in
matrix forms. A cost model was constructed to
calculate the optimal values of the number of servers

Table 1. The cost function associated with number of servers and values of �.

(�1,�1, �, �, �) c¼ 1 c¼ 2 c¼ 3 c¼ 4 c¼ 5 c¼ 6

(20, 10, 5, 0.2, 5) 840.75 1003.57 1182.15 1362.01 1542.00 1722.00
(20, 10, 10, 0.2, 5) 1026.54 1056.44 1225.94 1404.29 1584.04 1764.00
(20, 10, 15, 0.2, 5) N/Aa 1133.07 1274.45 1447.72 1626.32 1806.05
(20, 10, 20, 0.2, 5) N/A 1277.00 1332.65 1493.81 1669.37 1848.30

(20, 10, 5, 0.2, 10) 834.019 1002.95 1182.086 1362.01 1542.00 1722.00
(20, 10, 10, 0.2, 10) 968.171 1051.67 1225.14 1404.17 1584.02 1764.00
(20, 10, 15, 0.2, 10) N/A 1115.42 1271.07 1446.99 1626.18 1806.03
(20, 10, 20, 0.2, 10) N/A 1222.10 1323.03 1491.42 1668.78 1848.16

(20, 10, 5, 0.2, 15) 831.776 1002.74 1182.07 1362.01 1542.00 1722.00
(20, 10, 10, 0.2, 15) 948.724 1050.06 1224.87 1404.12 1584.02 1764.00
(20, 10, 15, 0.2, 15) N/A 1109.48 1269.93 1446.75 1626.13 1806.02
(20, 10, 20, 0.2, 15) N/A 1203.68 1319.78 1490.61 1668.58 1848.12

(20, 10, 5, 0.8, 5) 930.322 1043.87 1218.86 1398.12 1578.02 1758.00
(20, 10, 10, 0.8, 5) N/A 1179.97 1306.96 1478.47 1656.55 1836.11
(20, 10, 15, 0.8, 5) N/A 4365.50 1431.25 1567.86 1737.90 1915.07
(20, 10, 20, 0.8, 5) N/A N/A 1778.63 1683.62 1827.33 1996.97

(20, 10, 5, 0.8, 10) 907.107 1041.82 1218.53 1398.07 1578.01 1758.00
(20, 10, 10, 0.8, 10) N/A 1158.61 1303.03 1477.52 1656.32 1836.06
(20, 10, 15, 0.8, 10) N/A 2668.80 1411.62 1562.80 1736.40 1914.64
(20, 10, 20, 0.8, 10) N/A N/A 1668.51 1665.55 1821.65 1995.03

(20, 10, 5, 0.8, 15) 899.369 1041.12 1218.42 1398.06 1578.01 1758.00
(20, 10, 10, 0.8, 15) N/A 1151.44 1301.70 1477.20 1656.25 1836.05
(20, 10, 15, 0.8, 15) N/A 2347.02 1405.00 1561.08 1735.88 1914.49
(20, 10, 20, 0.8, 15) N/A N/A 1632.44 1659.44 1819.73 1994.38

Note: aDenotes system is unstable (i.e., the stable condition does not hold).
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and the two service rates so that the total expected cost
is minimised. Efficient search approaches were pre-
sented to obtain the optimal number of channels and
the optimal service rates. We performed a sensitivity
analysis of the joint optimal values ðc	,�	1,�

	
2Þ with

respect to specific values of �, � and �. The results
would be useful and significant for modelling banking
service systems, computer job processing, automatic
machine quality control service channels and many
related other applications.
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Table 3. The optimal value ðc	,�	1,�
	
2Þ and the minimum expected cost value for various value of �, � and �, while c* is obtained

at initial value (�1,�2)¼ (20, 10).

(�, �, �) (5, 0.2, 10) (10, 0.2, 10) (20, 0.2, 10) (5, 0.8, 10) (10, 0.8, 10) (20, 0.8, 10)

c* 1 1 2 1 2 4
ð�	1,�

	
2Þ [11.8535,

4.26058]
[22.0254,
7.71166]

[22.7810,
7.77980]

[14.7456,
9.53810]

[15.1755,
9.76186]

[16.2154,
10.3483]

Fðc	,�1,�2Þ 628.502 947.158 1200.47 866.965 1129.98 1652.39
E[Orbit] 2.56395 4.79291 3.93227 3.54492 2.88299 1.80663
E [SB] 0.65653 0.71337 1.39208 0.75845 1.47847 2.77955

(10, 0.2, 15) (10, 0.5, 15) (10, 0.8, 15) (20, 0.2, 15) (20, 0.5, 15) (20, 0.8, 15)

c* 1 2 2 2 3 3
ð�	1,�

	
2Þ [21.4641,

7.60174]
[13.8213,
7.19819]

[14.9257,
9.61603]

[22.2164,
7.65119]

[18.2749,
9.41276]

[19.6974,
12.6312]

Fðc	,�1,�2Þ 925.598 1009.21 1118.22 1181.57 1417.74 1561.528
E[Orbit] 4.32420 2.23082 2.62489 3.52100 2.41688 2.93133
E [SB] 0.72899 1.41814 1.50193 1.42303 2.15678 2.28207

(10, 0.2, 5) (10, 0.2, 10) (10, 0.2, 15) (10, 0.8, 5) (10, 0.8, 10) (10, 0.8, 15)

c* 1 1 1 2 2 2
ð�	1,�

	
2Þ [23.4453,

8.02222]
[22.0254,
7.71166]

[21.4641,
7.60174]

[15.8259,
10.1461]

[15.1755,
9.76186]

[14.9257,
9.61603]

Fðc	,�1,�2Þ 1003.92 947.158 925.598 1161.21 1129.98 1118.22
E[Orbit] 2.31269 4.79291 4.32420 3.55994 2.88299 2.62489
E [SB] 2.67521 0.71337 0.72899 1.42036 1.47847 1.50193
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