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The Annals of Statistis 
1994, Vol. 22, No. 1, 211-237 

DATA-DRIVEN EFFICIENT ESTIMATORS FOR A PARTIALLY 
LINEAR MODEL 

BY HUNG CHEN1 AND JYH-JEN HORNG SHIAU2 

State University of New York, Stony Brook and National Chiao-Thng 
University 

Chen and Shiau showed that a two-stage spline smoothing method and 
the partial regression method lead to efficient estimators for the paramet- 
ric component of a partially linear model when the smoothing parameter is 
a deterministic sequence tending to zero at an appropriate rate. This paper 
is concerned with the large-sample behavior of these estimators when the 
smoothing parameter is chosen by the generalized cross validation (GCV) 
method or Mallows' CL. Under mild conditions, the estimated parametric 
component is asymptotically normal with the usual parametric rate of con- 
vergence for both spline estimation methods. As a by-product, it is shown 
that the 'optimal rate" for the smoothing parameter, with respect to ex- 
pected average squared error, is the same for the two estimation methods 
as it is for ordinary smoothing splines. 

1. Introduction. In this paper, we study the asymptotic behavior of the 
two efficient estimators for the parametric component of a partially linear 
model discussed in Chen and Shiau (1991) when the smoothing parameter is 
chosen either by the generalized cross validation (GCV) method proposed by 
Craven and Wahba (1979) or by the Mallows CL criterion [Mallows (1973)]. 
As in Chen and Shiau (1991), we consider a semiparametric regression model 

(1) Yin = X'23 +g(tin) + ein, i = 1, ...n, 

where both the Xin = (Xin,... ,Xidn)T (a d-vector) and tin E [0, 1] are observed 
design variables, ,3 = (01,... ,/d)T is a vector of unknown regression coeffi- 
cients, g is a smooth function to be estimated and the {ein} are independent 
and identically distributed errors when mean zero and variance a2. 

Several estimation methods for model (1) have been proposed in the lit- 
erature. See Chen and Shiau (1991) and the references cited therein. Chen 
and Shiau (1991) discussed the asymptotic behavior of the following three 
estimators. 

(i) The partial spline estimator [proposed by Engle, Granger, Rice and Weiss 
(1986), Wahba (1984, 1986) and Shiau, Wahba and Johnson (1986), among 
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212 H. CHEN AND J.-J. H. SHIAU 

others] is the solution to the following variational problem: 

1 n1 
(2) mn - Z' - in-X -/3 -g(tin)]2 + L m(t)]2 dt, 

,3ERd, gEw2mn A]0 

where W.' is the Sobolev space {f f has mr-1 absolutely continuous derivatives 
and fm) E L2[0, 1]} and A is the smoothing parameter controlling the tradeoff 
between fidelity to data and roughness of the solution. It is known that the 
partial spline estimators for ,3 and g = (g(t1n), .. . ,g(tnn))T are 

(3) ,8vi = (XT(I - S,)X)-lXT(I - S )y and jx = SA(y-X/3), 

where X = (xirn) is the n x d design matrix for the parametric component of (1), 
Y = (Yin, . .. ,Ynn)T and SAi is the smoother matrix for ordinary spline smoothing 
[i.e., when 3 = 0 in (2)]. 

(ii) The partial regression estimator was proposed independently by Denby 
(1986) and Speckman (1988). Motivated by the partial regression scheme in 
linear regression, the partial regression estimator is obtained by first smooth- 
ing X and y, respectively, by the smoother matrix SA, and then regressing the 
residuals of y on the residuals of X. Specifically, we have the partial regression 
estimator defined by 

(4) ) = (XT(I_S2)2X) XT(I-S y)2y and glA =SA(y-Xf31A) 

(iii) The two-stage spline smoothing estimator was recently proposed by 
Chen and Shiau (1991). For simplicity, we shall discuss a simplified version 
of the estimator when the same smoothing parameter is used in both stages 
of smoothing, namely, 

/30A = (XTi(I - S,)3X)-lXT (I _ S-)2y 

= Sx(y - X,A") - (I - SA)SAX/3oA. 

The basic idea behind this estimator is to modify the partial spline method 
so that roughness of the parametric component is penalized as well as that of 
the nonparametric component. Thus we first smooth X to obtain the residuals 
(I - S,)XW for the purpose of extracting the smooth part from the parametric 
component, and then we apply the partial spline technique to smooth y over 
(I - SA,)X. This two-stage smoothing gives (5). 

In general, the smoother matrix SA in (3), (4) and (5) can be replaced by 
any commonly used smoother matrix. Of course, estimators obtained by dif- 
ferent smoothers may behave differently. See Chen and Shiau (1991) for some 
remarks. In this paper, we only study the case that SA is the smoothing spline 
smoother. 

To use these three methods to estimate /3 and g in practice, it is necessary 
to specify a value of the smoothing parameter A. In the context of nonpara- 
metric regression, it is well known that the choice of A is very crucial to the 
solution. A popular data-driven method of choosing A is the generalized cross 
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DATA-DRIVEN ESTIMATORS 213 

validation (GCV) method (to be described in Section 2). Numerically, the GCV 
method has been proven to be a good method. Speckman (1981) and Li (1986) 
gave some nice theoretical results on the GCV method. However, the use of the 
GCV method for determining the value of A in (3), (4) or (5) has not yet been 
thoroughly examined. To our knowledge the only relevant reference is Speck- 
man (1988), who gave a weak GCV theorem as in Craven and Wahba (1979) 
for the partial regression estimator (4) in the context of kernel smoothing. 

There have been some studies on the asymptotic behavior of the preced- 
ing three estimators, when A is a deterministic quantity depending on n, in 
the setting that Xirn = hr(tin) + Zirn, where the hr's are smooth functions and 
{(Ziins,. ,Zidn)}1ii<n are independent and identically distributed error vectors 
with zero mean and positive definite covariance matrix. For the partial spline 
estimator with spline smoothing, Rice (1986) pointed out that /3A -,/3 can 
achieve the usual parametric rate of convergence as in parametric regression, 
namely, O(n-1/2), only at the expense of undersmoothing the nonparametric 
component g. Thus Rice (1986) concluded that the use of the GCV method for 
choosing A is questionable in this case. 

On the other hand, Speckman (1988), for the partial regression estimator 
with kernel smoothing, and Chen and Shiau (1991), for the two-stage spline 
smoothing estimator as well as the partial regression estimator with spline 
smoothing, showed that the negative result reported in Rice (1986) disappears. 
More specifically, by choosing an appropriate rate for A, the convergence rate of 
,30A -/3 or -31A,-j3 reaches the parametric rate O(n"2) while gOx or gl\ can still 
estimate g= (g(tin),... ,g(tnn))T with the same optimal convergence rate as 
that of the ordinary nonparametric regression estimator, which is achievable 
by the GCV estimator of A. Basically, Chen and Shiau (1991) demonstrated 
that the goal of obtaining an estimate for the regression surface g( ) with an 
"optimal" nonparametric convergence rate does not conflict with the goal of 
obtaining an estimate for the parametric component ,3 with the parametric 
convergence rate. Since "optimal" estimates of the regression surface can be 
obtained by the method of GCV for the nonparametric regression context, 
we expect that the parametric convergence rate can be achieved for some 
estimators of 3, such as (4) and (5), for the semiparametric model (1). The 
following conjecture is hence reasonably made by Speckman (1988) for kernel 
smoothing and Chen and Shiau (1991) for spline smoothing. 

CONJECTURE. The GCV method can be used to choose the value of A in (4) 
or (5) such that /31a or /30o can still estimate /3 with n112 rate. 

The main objective of this paper is to prove this conjecture when SA is the 
smoother matrix for ordinary spline smoothing. We also prove that the same 
result holds if A is chosen by the criterion of Mallows' CL. We remark that 
although the problem of determining smoothing parameters for nonparametric 
regression based on data only is studied extensively in the literature [see Li 
(1986) and references therein], those results are not applicable in general to 
the problem posed in this article. A further remark on this is given in Section 2. 
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214 H. CHEN AND J.4. H. SHIAU 

The main results are summarized in Theorems 1 and 2 (Section 2), in which 
the asymptotic distributions of 0(30 - j3 and 1,3\ - ,3 are derived when the 
smoothing parameter is determined by either the (restricted) GCV method 
or (restricted) Mallows' CL. Descriptions of these two methods are given in 
Section 2. Most of the proofs are given in the remaining sections. 

As a by-product of proving Theorems 1 and 2, it is shown in Propositions 
l(b) and 3(b) that the "optimal rate" for the smoothing parameter, with respect 
to expected average squared error, is the same for the two estimation methods 
as it is for ordinary smoothing splines. 

As suggested by a referee, we also have looked into the situation studied by 
Heckman (1986). When hr - constant, Heckman (1986) established asymp- 
totic normality for the partial spline estimator of ,3 and showed that its bias is 
asymptotically negligible. According to the preceding discussion, it is expected 
that the GCV method can be used to choose the value of A in (3) such that 
,13 can still estimate 3 with n-'/2 rate under the setting of Heckman (1986). 
This conjecture is also confirmed for a more general case where the hr's are 
polynomial of degree less than m, and the result is presented as Theorem 3 
in Section 2. 

2. Data-driven methods and main results. In this section we describe 
the (restricted) GCV method and (restricted) Mallows' CL for determining the 
value of A in (4) and (5) and present the main results of this paper. We first 
introduce some notation. Write 

X/30z + gOA = [SA + (I - SA)2X(XT(I _ SA)3X) -1XT(I _ S)2]y Aoy 

Xl31, + glA = [SA + (I - S)X(XT(I - SA)2X)-1XT (I - SA)2]y = AlAy, 

where AoA and A1A are so-called hat matrices or influence matrices. Let AOG 
be the minimizer of the generalized cross validation function (GCV function) 

2 
n-1 (I-AoA\)y v0 (A) = ntr1AO)2' ( )n-1 ||r(I - AOA )Y| 

over A E [A1, A2] where A1 = n-61 log' n with 61 = 2m/5, and A2 = n-62 for any 62 
satisfying 0 < 62 < 2m/(4m+ 1). Also II(I-AoA)y112 = yT(I -Ao)T(I -Ao)y, the 
residual sum of squares. Similarly, let Aoc denote the minimizer of Mallows' CL 

COL(A)=nl (I-AO,)y 
2 
+2n-lo,2trAoA 

over A e [A1, A2], where a2 is assumed known. For the partial regression 
method, A1G, V1(A), AlC and CL(A) are defined accordingly for A1ly. 

It is known that there exists a common orthonormal basis for all SA, (with 
A being the running index), for example, a Demmler-Reinsch basis [Demmler 
and Reinsch (1975)]. In other words, all S i can be diagonalized simultane- 
ously by this basis. Further details of this basis are given in Section 3. Unfor- 
tunately, it is not clear whether there exists such a common orthonormal basis 
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DATA-DRIVEN ESTIMATORS 215 

for all Ao, or A,,A in general. Although both the GCV method and Mallows' CL 
have been studied in the context of nonparametric regression when S), is the 
smoother matrix for smoothing splines, these results are not applicable to our 
problem since the arguments used to prove these results depend strongly on 
the existence of a common orthonormal basis for all SA. 

Throughout the rest of the paper, we assume that {xi } is a random sample 
from x, where x = (X1,... ,Xd)T, Xr = hr(t)+zr, for 1 < r < d, t E [0, 1] and the hr'S 
are smooth functions. Set go = EdZl3rhr +g. We also assume that the following 
conditions hold. 

(Al) Ezr=O,Var((zl,...,Zd))=E=(urs)andEz4 <00,forl<r<d where 
E is a d x d positive definite matrix. 

(A2) f1(g1m)(t))2 dt = y > 0 and m > 2. 
(A3) The points tin are generated by (2i - 1)/2n = tfin p(t)dt for some den- 

sity function p(t) on [0, 1]. 
(A4) The errors en,.. ,enn are i.i.d. having a distribution independent of 

n and t, and Eel < oo, for i= 1, 2,..., n. 
(AS) g,hr,go E F = {f: f E W22m[O, 1], f(k)(o) = f()(l) = 0, m < k < 2m - 1} 

for 1 < r < d. 
Under (A3), we can find the magnitude of trS' for 1 = 1, 2,. .. over [A1, A2] 

based on Lemma 5.1 of Speckman (1981). This result is summarized in Lemma 
2(c). Under (AS), functions in F are the so-called very smooth functions defined 
in Wahba (1977). When A2 also holds, it follows from Speckman [(1981), (3.2) 
and Lemma 3.1] that an exact bound can be obtained for gT(I - SA)2go, where 
go = (g0(t1), . . ,go(tnn))T. This bound is given in Lemma 2(b) in Section 3. 

We now discuss the assumption (A5), which states that go and hr must sat- 
isfy boundary conditions on some high derivatives. (AS) is considered because 
it and (A2) give an explicit asymptotic expression for the expectation of the av- 
eraged squared error loss. Then this expression can be used to determine the 
asymptotic behavior of A determined by either the GCV method or Mallows' 
CL. Using the bias reduction approach developed by Eubank and Speckman 
(1991), go and hr can be modified (by construction) to satisfy the boundary 
conditions specified in (AS). It is then conjectured that a result similar to that 
of this paper without (AS) will still hold as long as an explicit asymptotic ex- 
pression for the expectation of the averaged squared error loss exists after the 
boundary adjustment. However, no proof is available now. 

The asymptotic distribution of ,BO and 31~ are summarized in Theorems 
1 and 2, respectively, when the value of A is determined by either the GCV 
method or Mallows' CL. 

THEOREM 1. Under (A1}(A5), -,/ni(l30 - j3) converges in distribution to 
N(O, 2-1) for A = AOG or AOC. 

THEOREM 2. Under (A1)-(A5), vni(031, - 3) converges in distribution to 
N(O, l for A = AlG or A1c. 
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216 H. CHEN AND J.-J. H. SHIAU 

Now we describe the (restricted) GCV method and (restricted) Mallows' 
CL for determining the value of A in (3) under the assumption that hr's are 
polynomial of degree less than m [i.e., h(m)(t) 0 ]. The results are summarized 
in Theorem 3. First write 

X13A + = [Sv + (I- S\)X(XT (I - SA,)X) 1XT(I- = AAY 

Let AG and AC be the minimizer of the corresponding GCV function and Mal- 
lows' CL, respectively, over A E [A1, A2]. 

THEOREM 3. Under (A1}(A5) and h(m)(t) 0, for 1 < r < d, Vii(11-3) 
converges in distribution to N(O, o2>Y1), for A = AG or AC. 

Let Lon(A) denote the averaged squared error loss over design points, that 
is, n- lAoAy - X,3 - gll2, and AOR denote the value of A that minimizes the 
risk Ron(A) = ELon(A) over [A1, A2]. Note that here the expectation is taken 
with respect to e only, that is, conditioned on (x, t). We will prove Theorem 
1 via the following three steps. Since the GCV method or Mallows' CL at- 
tempts to provide a data-based estimate of AOR, we first try to locate AOR. Let 
A0 = [A,,n-S3], where 61 > 2m/(4m + 1) > 63 > 62 > 1. Note that A0 is con- 4. 
tained in [A1, A2]. We show in Proposition 1 that AOR E AO. Next, we show in 
Proposition 2 that the choice of A based on either the GCV method or Mal- 
lows' CL does fall in Ao in probability. Finally, we show that v/i(130, - 1) is 
asymptotically normal. 

Set hr = (hr(tin) ... ,hr(tnn))T, for 1 < r < d, and 

Cl =lr ["p 1/2m (v) dv] j(1+ V2n) -ldv. 

The proofs of the following two propositions are given in Section 4. 

PROPOSITION 1. Under (A1)(A5) and A E [A1, A2], when n tends to infinity, 
we have (a) ROn(A) % A2 + n-lA-1/2m and (b) AOR ; n-2m/(4m+l) 

Here the symbol a(n) P b(n) means that a(n)/b(n) is bounded away from 
zero and infinity. Note that AOR E Ao is an immediate result of (b). 

PROPOSITION 2. Under (A1)(A5) and A E [Al,A2], limnP(A E Ao) = 1, for 
A = AOG or Aoc. 

To prove Theorem 1, we use the following technical lemma to pave the 
way. Set Ao(A) = n-'XT(I - SA)3X, A1(A) = n-XY(I- S)2X, Z = (Zirn)nxd and 
H = (hr(tin))nxd. 

LEMMA 1. Assume that (A1(A5) hold and that g, hr E F, for 1 < r < d. 
Then the following hold uniformly over all A E [A1, A2]: 
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DATA-DRIVEN ESTIMATORS 217 

(a) Ao(A) = 2(I + op(l)); 
(b) A1(A) = EiI + op(l)); 

and the following hold uniformly over all A e Ao: 

(c) n-l/2XT(I - SA)2S,\X = o(1); 
(d) n-1/2XT(I - SA)2g = 
(e) n-'/2HT(I - S)2e = op (1); 
(f) n- 12ZTS' e = op(1),forl= 1,2; 
(g) n'1/2ZT(I - SI )g = op(1). 

The proof of Lemma 1 is given at the end of Section 3. Note that the notation 
op(l) used in this paper denotes either the usual convention or a d x d (or d x 1) 
matrix such that the magnitude of each element is op(l). 

Now the proof of Theorem 1 becomes fairly simple. 

PROOF OF THEOREM 1. Rewrite 

Ao(A)n "2('0o - ,a) = n-2Ze + Rem(A), 

where 

Rem(A) = n-12{X3(I - SA)2(SAXI3 + g) + HI(I - SA)2e + ZT[(I - \)2 - I]e}. 

It follows from Lemma 1(c)-(f) that supAEAO IRem(A)I = op(l). Although any 
realization of A is in [A1, A2], which is a wider interval than AO0 by noting that, 
for any c > 0, 

P Rem(A) > c) <P( V AO0) +P (IRem()I > c and A E Ao) 

< P(I V Ao) + P (sup IRem(A) I > c) 
AE0 

we can conclude that Rem(A) = op(l) by Proposition 2. 
By Lemma l(a), supxE[A Ai2] \2A(A) - E = op(l). Since 

IAOPO- EI < sup Ao(A)- E=oP(1), 
AE[A1, A2] 

we have Ao(A) -+ E in probability. It is shown in Chen and Shiau (1991) 
that n' /2ZTe -+ N(O, L2% ) in distribution. We then conclude V/(,30Q - 3) 
N(0, a2E-1) by the above argument and Slutsky's theorem. 0 

We now turn to the partial regression estimator (4). Observe that 

A(X) 1/2 11 i3)-n/2ZTe +n1/2XT(I -S)2g-+n/2HT 
(I- 

+ n-1/2ZT[(I _ SA)2 - I]e. 
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218 H. CHEN AND J.-J. H. SHIAU 

Similarly, the proof of Theorem 2 can be performed via the following two 
propositions and Lemma 1(b)-(f). 

Let the loss function Ljn(A) = n-' IIA1y - X,3 - gil2, and let A1R denote the 
value of the smoothing parameter that minimizes the risk R1n(A) = EL1n(A) 
over A E [A1, A2]. 

PROPOSITION 3. Under (A1)(A5) and A E [A1, A2], when n tends to infinity, 
we have (a) R1n(A) e A2 + nl'A-1/2m and (b) A?R t n-2m/(4m+l) 

PROPOSITION 4. Under (A1)-(A5) and A e [A1, A2], limn P(A E Ao) = 1 for 
A = AlG or Alr. 

We now turn to the partial spline estimator (3) when h(m)(t) _ O. 

PROOF OF THEOREM 3. Set A2(A) = n-lXT(I - S,)X. Rewrite 

A2(,-,)nl/d - ,3) = n-/2ZTe + Rem('), 

where 

Rem(A) = n-1/2 {ZT(I - S\)g + HT(I - S4)(e + g) - ZTS\e} . 

Note that HT(I - SA)(e + g) 0 O because the hr's are polynomials of degree less 
than m and SA is the smoother matrix for ordinary spline smoothing. Using 
the same proof to show Lemma l(a), we have supAE[A1, \21 IA2(A) - E = op(l). 
It follows from Lemma l(f) and (g) that supAEAo IRem(A)l = op(l). We then 
conclude V/in(i%S -, 3) - N(O, a2E-1) by the above discussion and the argument 
used in proving Theorem 1. 0 

3. Technical lemmas. In this section we state two more technical lem- 
mas and summarize some properties of smoothing splines that are needed in 
the sequel. Lemma 1 is proved as an immediate result of these lemmas. 

It is well known that smoothing splines are in the space of natural polyno- 
mial splines of order 2m on [0, 1] with knot set {tin},.=I According to Demmler 
and Reinsch (1975), a basis for natural splines is {0jn(t)}j,<n with the follow- 
ing biorthogonality property: 

(m (t (m t dt = Akn S1k. 
n Oi (>tin)Okn (tin) = 0jk Jo kn 

i=1 

Here {Akn} is a nondecreasing sequence of nonnegative numbers, and the 
eigenvalues of SA are (1 + AAkn)-1 for 1 < k < n. Hence, SA is a nonnegative 
definite matrix and has the eigenvalue decomposition rTD,r, where DA is 
a diagonal n x n matrix with k-th diagonal value (1 + AknA)-1 and r is an 
orthogonal n x n matrix with the ij-th element n-1/25 in(tjn). Therefore, (I - 
SA)ISk = S' (I - SAYS for any positive integers I and k. 
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DATA-DRIVEN ESTIMATORS 219 

Let 

B2= n-1gT(I _ SA)2g, B2rp =nlhT(I SA)hr 

and B23, = n-1 gT(I - SX)2go. 

Note that B2 is the averaged squared bias of the ordinary smoothing spline 
estimate of g. A similar interpretation is applicable to B2rp and B2 2 3p. 

The following lemma is due to Speckman [(1981), Lemma 3.1, (3.2) and 
Theorem 2.4]. 

LEMMA 2. Suppose that (A3) holds. When A E [A1, A2] and m > 2, 
(a) B32p = o(A2) if go E F, (b) B2 = 'yA2(1 + o(1)) if go E F and (A2) holds, (aB2- 3,, 

and (c) trSI = Ek(l + AknA)-' = C,Al-/2m(1 + o(1)) for positive integer 1. 

Thus Lemma 2(a) also implies that B2 = o(A2) and B2r = O(A2 ), ifg, hr E F. 
Lemma 3 summarizes the convergence rates for some terms to be used later 
in the proofs of Lemma 1 and Propositions 1-4. Let Xirn = hr(tin) + Zirn and 
Zr = (Zirn,... Znrn )T. 

LEMMA 3. Assume that (A1)-(A4) hold and that hrf, fi, ff2 E F, for 1 <r 
< d. Let a, aO and a, be constants satisfying 1 < a < 1/ao < 5 and a < a1. 
Then, for any finite positive integer 1, the following statements hold uniformly 
overall A E [A1, A2] and 1 < r,s < d: 

(a) zTS1Z. = CjarsA-1/2m + op (A-1/4mao) 
(b) eTS1 e =a2c,A-l/2m(1+o (1)); 
(c) n-l/2fT(I - Sx)le - Op(Al/al) -op(l), where f = (f(tln), f(tnn))T; 
(d) n - 1/2fT (I - SA)Zr - Op (Al/al) = op (1); 
(e) n-lfT'(I - SA)lf2 = O(A2), where fi = (fi(tln), . . fi(tnn)) 

i = 1,2 and 1 > 2; 
(f) n -xT (I - SA)2zs = Urs + Op (1); 
(g) n-lx T(I - SA)'X8 = urs + op (i), for 1 > 2; 
(h) n-1/2x T(I - SA,)2SAxs = op(l) + O(1/2 2 

(i) Z4TSl e = Op (A-1/4mao) 
(j) n-1zT(I - S,)le = Op(n-'/'); 
(k) xT(I-S,)3x _-xrT(I-SA)2z8 

-(c1 - 2c2 + C3)rrSA- 1/2m + op (A-1/4mao) + Op(n1/2A1/a 

+T~(I _ S\)3h8; + hrT(->3S 
(1) xT(I - SA)3Xs - XT(I _ 4Xs 

= (cl - 3C2 + 3c3 - C4)crsA-l/2m + Op(A -1/4mao) + Op(nl/2A1/al) 

+ hT (I - SA)3SAhs. 

Lemma 3 immediately gives the results of Lemma 1 as shown below. The 
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nontrivial proof of Lemma 3 is deferred to Section 6. 

PROOF OF LEMMA 1. First note that A-1/4mao = o(n-1/2), for all A E [Al, A2] 
since 1/ao < 5. It is easy to see that (a) and (b) hold by Lemma 3(g). Note that 
A2 = o(n-1/2), for all A E Ao. Then it is easy to see that (c) holds by Lemma 
3(h); (d) holds by Lemma 3(d) and 3(e); (e) holds by Lemma 3(c); (f) holds by 
Lemma 3(i); (g) holds by Lemma 3(d). 0 

4. Proof for two-stage spline smoothing estimate. We prove Proposi- 
tions 1 and 2 for the two-stage spline smoothing estimates in this section. The 
following technical lemma summarizes the convergence rates for some terms 
to be used in the proofs. The proof of the lemma is deferred to Section 7. 

LEMMA 4. Assume that (A1)-4A4) hold and that g, hr E F, for 1 < r < d. We 
further assume that the constants a, ao and a, specified in Lemma 3 satisfy the 
further constraint that 4m/(4m - 1) > a, > a and aO > 1. Then the following 
statements hold uniformly over all A e [A1, A2]: 

(a) n-1 trAOA = cln-lA-l/2m(1 + o (1)); 
(b) n-1 trA2 = C2n-IA-1/2m(+ (1) 
(c) n - 1goT(I - AOx) 2go = yA 2(1 + op (1)); 

(d) n-l/3TZT(I -Ao,)2Z13 

- [n1 (Z rhr) (I-SX) (Zfrhr) 

+ (c2 - 2c3 +c4 )T n-1A-1/2m (1+op (1)); 

(e) I n IgoT (I - AO,\)2e I = op (ROn (A\));J 
(f) in-l(Zj) T(I -Ao\)2e l=op(Rn(A)); 

(g) In-leT(2AoA -A2 )e (2 trAoA -trA, A )i = op(Ro (A))v 

PROOF OF PROPOSITION 1. Write Ao\y-X,Z3-g = (AoA\-I)(Xf3 + g) +AAOe. 
Hence 

ROn(A) = n1 (Xf3 + g)T(I -A0o)2 (X3 + g) +n- 1o2 trA 2 

Note that X,3 + g =Z3 + go. Then 

ROn(A)>{[cC20 + (C2 - 2c3 + C4),3T ,]n-lAl-1/2m +-yA 2 

(6)T 

by) Lemm.+ n ( rhr (Ia_ 4b)4 (drhr} ( + op (a l))-)( 

by Lemma 4(b)-(d). 
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Note that nY-(ErI3rhr)T(I - S)\)4(Er3rhr) > 0 and its order is 0(A2), by 
Lemma 3(e) and that the eigenvalues of SA are between 0 and 1. Also, 
(C2 - 2C3 + C4)16TEI3 > 0, by the fact that C2 - 2C3 + C4 > 0 and E is posi- 
tive definite. Hence, Proposition l(a) holds by (6), and Proposition l(b) follows 
easily from Proposition l(a). o 

PROOF OF PROPOSITION 2. Recall that COL(A)= n1 II(I-Ao)y112+2n-1'2trAoA, 
which can be written as 

COL(A) = n-leTe +ROn(A) + 2n-l(Z3 + go)T(I -Ao,\)2e 
(7) +n'1{a2(2trAoA) - trA2) )eT(2AoA -AO)e} 

= n -leTe +Ron(A) + op(Ron(A)), 

by Lemma 4(e)-(g). 
Recall that the GCV function VO(A) = n- II(I - Ao)y112[n- tr(I -AO)]-2. 

Write Ao,A = SA + Bo,, where Bo = n-1(I - SA)2XA- (A)XT(I - SA)2. It follows 
from Lemmas l(a) and 3(g) that 

trBo,\ = tr (A -1 (A)n1-XT (I - SA) 4X) = tr(Id xd + op(i)) = 0p(1). 

Also Lemma 2(c) gives that trS), = O(A-1/2m). We then have 

[n-1tr(I -Ao 2)] = 1+ 2n1 trAoA + o(n tr 
Ao,). 

Observe that 

n-ll(I -AoA)y) 112 =ROn(A) + 2n-'(Z,3 + go)T(I -Ao0\)2e + n-leTe 
-n-1 [eT(2Ao, -A,)e -_ 2(2trAo, - trAo,)] 
- 2a2n-1 tr Ao,. 

The fourth term on the right-hand side is equal to op(ROn(A)), by Lemma 
4(g). The second term is also of the order op(ROn(A)), by Lemma 4(e) and (f). 
We thus get 

Vo(A) = [n-leTe + ROn(A) + op(ROn(A)) - 2A2n-1 trAo \] 

(8) x [1 + 2n-1 trAoA + o(n'1 trAoA)] 

= n(-8leTe + ROn (A) + op (ROn (A)) + 2 (n tr AOA) (n-leTe - a2) 
= n-leTe +ROn(A) +op(ROn(A)), 

by Lemma 4(a), Proposition l(a) and the law of large numbers. From (7) and 
(8), we have 

COL (A) - CoL (AOR) = Ron (A) -Ron (AOR) + op (ROn (A)) 

and 

Vo (A) - Vo (AoR) = ROn (A) -ROn (AOR) + op (ROn (A)) 
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respectively. When ROn(A)/ROn(AOR) -A 00, it follows easily that COL(A) > 

COL(AOR) and VO(A) > Vo(AOR) in probability. Since A is the minimizer of COL(A) 
or Vo(A), this implies that Ron(A)/Ron(AoR) -- 1 in probability. Let {6n} be 
any sequence that tends to infinity. Note that Ron(AoR6n)/Ron(AoR) -- oo and 
Ron(AoR/6n)/Ron(AoR) -- o? by Proposition l(a). Hence, Ron(A)/Ron(AOR) -? 00 
for any A > AOR6n or A < AOR/6n. Since Ron(A)/Ron(AoR) cannot go to infinity, 
we have that 

lim P(AOR/bn < 
" 
A '< AoRSn) = 1. 

n 

Since {En} is any sequence that tends to infinity, A cannot be too far away 
from AOR in probability. Thus limn P(A E Ao) = 1. 0 

5. Proof for the partial regression estimate. First, we state a techni- 
cal lemma that summarizes the convergence rates for some terms to be used 
in the proofs of Propositions 3 and 4. We defer the proof of this lemma to 
Section 7. 

LEMMA 5. Assume that (A1)-(A4) hold and that g, hr E F, for 1 < r < d. We 
further assume that the constants a, aO and a, specified in Lemma 3 satisfy the 
further constraint that 4m/(4m - 1) > a1 > a and aO > 2. Then the following 
statements hold uniformly over all A E [A1, A2]: 

(a) n-19gT(I -Ax )T(I - A1,)go = yA2(1 + op(l)); 

n 13TZT (I - Al) T(I- A ,)ZO 

(b) =n ;(Eprhr) (I_-SA )2 E,Prhr +Op(A-1/2m) (1 + o(1)); 

(c) In-l(X,3 + g)T(I _Al))T(I -AAl)el =op(Rn(A))- 

PROOF OF PROPOSITION 3. Simple algebra leads to 

R14(A) = nl(Xfi3+g)T(I-A1x )T(I-A1l)(Xj33+ g)+ n1ov trAT,A1,. 

Set Al, = SA + BlA\, where BlA = n-'(I - SA)XA7'(A)XT(I - SA\)2. By Lemmas 
l(b), 3(g) and 2(c), we have 

tr BTfB1X = trAL'(A) [n-'XT(I - SA\)2X]AL'(A) [n-lXT(I - S,\)4X] 
= Op (1) 

and 

(10) tr STBlA trAj'(A){n 
XT[(I-SA)3-(I_-SA)4]X} =-p(j) e B _\=tA'A n-X[I 
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Hence, 

(11) ~~~n-1 tr ATA n-lA-l/2m(1+o() 

Then since X,3 + g = Zl3 + go, we have 

R1n(A) = [C2a2n-lA-l/2m + A2 

(12) LT 

+ n 1( rhr) (ISA)2 (Z rhr)] (1+Op(1)), 

by Lemmas 5(a), 5(b) and (11). 
Note that n-l(ErOfrhr)T (I - SA)2 (Erlrhr) > 0 and its order is O(A2) by 

Lemma 3(e). Hence, (a) holds; (b) follows easily from (a). O 

PROOF OF PROPOSITION 4. We first observe that trBlA = Op(l) by Lemmas 
l(b) and 3(g). Then, by Lemma 5(c), it remains to show that 

(13) n-1jU2 trAlTAA1A - eT(Al +ATA -ATIAAl)eI =o(R1n(A)), 
(14) n-lju2(2 trAlA - trATAA1A) - eT(Al), +ATA -ATAAl4eI =o(R1n(A)) 

hold uniformly over all A E [A1, A2], so that 

CuL(A) = n-leTe +Rln(A) + o,(Rln(A)), 

V1L,(A) = n-leTe + Rln (A) + op (Rln (A)) - 

Then, by applying the same argument employed in Proposition 2, we have 
Proposition 4. 

It follows from Lemmas l(b), 3(c), 3(j) and 3(g) that 

n-leTBlAe = [n-leT(I - SA) (Z + H)]A' -(A) [n-l(Z + H)T(I - SA)2e] 
= op (Rln (A))) 

n eTB,\SAe = [n-leT(I -S)2(Z+ H)]Aj'(A) 
(16) x {n-l(Z+H)T[(I SA) - (I- S)2]e} 

= 0 (Rln (A)\) 

n-leTBT_BlAe = [n-leT(I - S\)2 (Z + H)]A1'(A) 
(17) X~~~~ [n-lXT(I -5,\)2X]A1 1(A) 

x [n-l(Z + H)T(I - S,)2e] 

= op (Rin (A)) 

It follows from Lemmas 3(b) and 2(c) that 

(18) n-c[e T(2S3 a _(S2)e b (,2 tr (2S15 -_S2)] ) (Rln(A)) 
We conclude (13) and (14) by (9), (10) and (15) (18).0 
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6. Proof of Lemma 3. We begin with a technical lemma which is an 
extension of Lemma 4.4 in Speckman (1985) to the case when the random 
variables are not independent. Therefore, the Gaussian assumption in Speck- 
man (1985) or Li (1986) is removed. 

LEMMA 6. Let W1, ... , Wn be random variables with zero mean and finite 
variance. Suppose that there exist nonnegative numbers {Uk} such that 

2 v 

E [ WjW < Z Uk, for all u < v. 
Lk=,4 k=,u 

Then, for any c > 0, 

sup ZcWk?c}?c2c~g 4n )2 1I Uk. Pt SUp |ECkWkI >C} <C 0002(O 4) u. 

-<Cl< 
... 

<Cnf<Co k=1 k=1 

PROOF. By the argument used in Lemma 4.4 of Speckman (1985), we have 

n i 

sup E CkWk =Co max E Wk. 
0<?Cl ?...?<Cnl?c0 k=1 -< - k=1 

Then, by the first two theorems stated in Serfling [(1970), page 1228], 

E jmax x Wk < (log24n)2Euk. [ L k=1 J4 k=1 

Hence, this lemma holds by Chebyshev's inequality. O 

REMARK 1. When EWkWl = 0, for k i 1, Lemma 6 holds with uk = Var(Wk). 

REMARK 2. Lemma 6 also holds when 0 < cn < ... < cl < cO. 

Define 
n n 

'mkrn = n1/2 Zirn dkn (tin) X hkrn = n 1/2 hr (tin ) >knhr (tin) , 
i=l i=l 
n n 

ckn =n 1/2 >g(tin )q$kn (tin) Ekn=n 1/2 Eein_Okn(tin) 
i=l i=l 

for 1 < k < n and 1 < r < d. Lemma 6 will be applied to {fkrn4ksn}1<k<n and 
{Jkzrn6ekn1}<k<n9 for 1 < r, s < d, later on in the proof of Lemma 3. Thus we need 
to show that these two sequences of random variables satisfy the assumption 
of Lemma 6. 
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LEMMA 7. For any finite positive integer 1 and 1 < r, s < d, both 

{(4rn4sn - 0rs)(1 + AknA) } and {4krnEkn(1 + AknA) } 
l<k<n l<k<n 

satisfy the assumption of Lemma 6 with Uk = c*(l + AknA)-21, for some con- 
stant c*. 

PROOF. Recall that S), = rTDA\r. Set D, = (dik)nxn, where dik = 1, if 
IL < i = k < v, and dik = 0, otherwise. In other words, Dp, is an n x n diagonal 
matrix with the diagonal entry equal to 1 from the p-th row to the v-th row 
and zero otherwise. Then 

Z (+Akm6) = ZT(rTDHv D, D,Ir) le, 
(19) 

k, 

4krn4ksn - 0rs T 
ZT(rTDv DA Divr)lZS - ars tr(rTD,VDAD4Vr)l. 

(1+Akn A)l 

By (Al), (A4) and a conditioning argument, we have 

rv 12 

E z ( Akn =)lJ =2EZT(FTDjv DA D,ivl')21Zr, 

= a 2arr tr(rTD,pv DA, D,,Vr)21 

= Or2cTrr j(1 + Aknf A2)] 
Lk=L J 

Letting Uk = 020rr(l + AknA)-21, we have shown that the assump.tion of Lemma 
6 holds for ,krnEkn(l + AknA)}l1<k<n. 

Next, by (19) we have 

1 2 
E jS S n 

-n)rs] 
= Var(zrT(rTDj,1DA D,,vr)lzs), 

since E(Z T(rTD,W Dx DilvrFlz8) = ars tr(rTDiv DA DMvr)'. We first show that, for 
any symmetric matrix A = (ajj)nxn, 

(20) Var(zTAz8) < co tr A2 

for 1 < r < s < d, where co is a constant depending on Ez2z2 and E only. For 
notational simplicity, we only demonstrate the case of r = 1 and s = 2. First, 
we note that EzT Az2 - a12 tr A and 

(ZTAz2)2 = 5555 aijaklzZilnZj2nZk1nZl2n 
i j k I 
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Since {(Ziln, Zi2n)}1<i<n are mutually independent with mean (0, 0), we have 

(Ez2z, i=j=k =l, 
1 2 0zk = 12, i =j, k = 1, i k, 

EZilnZj2nZklnZl2n = 1292s z-, J 
0110ll22, i = k,j = 19 i ij, 

10, otherwise. 

Hence 

Var(ZT Az2) = (EZ2Z2 - p12) E ai + alla22 Z ai < c Z at, 
i j i,j 

where c = max(Ez2lz2 - al2 1 a1U22). Since A is symmetric and Eija?. tr A2, 
(20) holds. 

Let A = (rTTDpv DA DtWF')1. By (19) and (20), we have 

1 2 
E r ( Aksn -A)rs] -Var(z{TAzS) ? co tr(FTD vDA >Dv )2 

h 

=CO (l + AknA) 2 
,k=v 

Thus {(mkrn6ksn - ars)(l + AknA)-1}1<k<n satisfies the assumption of Lemma 6 by 
identifying Uk = c?(1 + AknAY21 ? 

PROOF OF PART (a). First, we show the case of I = 1, that is, to show that 

(21) ZT'Sxzs = ars tr S?, + op(A l/4mao) 

holds uniformly for all A e [A1, A2] and its proof argument will be used through- 
out the proof of Lemma 3. Since 62 < 61, there exists a > 1 such that a62 < 61 
Define the index set A = {6: 6 = ai62, for some positive integer i and S < 61}. 
Then A is a finite partition of [61, 62]. Correspondingly, {n-6, 6 E A} is a 
finite partition of [A1, A2]. For any r = n-a with ab E A, Ez TSTZ8 = ars tr S, 
and Var (zTSTZS) < cO tr S2 = O(r-1/2m) by (20) and Lemma 2(c). Thus by the 
Chebyshev inequality, we have 

(22) z4TS,z -_ r, tr ST = Op(r-1/4m 
Write 

(z SAz, - ars tr SA) - (zTSz8 - ars tr S,) 

- 

(6krn4sn 
- 

0rs3) (23) k = 1 + AknA 1 + Akn-rJ 

,r- A(n 1 ' rnksn - (rs 
A = 1 1 + Aknr 
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Note that (1 + AknA)-1 are nonincreasing in k and bounded above by 1, and 
that {(mkrn4ksn - ars)(l + AknT)-1}1<k<n satisfy the assumption of Lemma 6 with 
Uk = c*(1 + Aknr)-2. Then, for any c > 0 and 6 E A, we have 

1n krn6s8n - 07rs > 

nPa6<<nup k su 1 + An A 1 + A kk 1+ 

0<_ 1/(l+,\nn A)< - - - < 1/(l+A\ln A)< 1 k=1 1 + Akn, A 1 + Akn'T ) 
n 

<c2(10g2 4n)2 ZUk, 

k=1 

by applying Lemma 6 to (23). Since 

E Uk = c*(1 + AknT) 2 = C*C2r 1/2m(1 + o(l)) 
k 

by Lemma 2(c), these arguments lead to 

(24) (Z'SAzs - Crs tr SA) - (ZTS,Zs - _rs tr S,) = OP ( , 1/4m logn) 

uniformly for all A E [n,-a, n-6]. Then, by (22), for n-a6 < A < n-6, 

(ZrSAZs-ors tr SA) = OP (T1/4m) + Op (r-1/4m logn) = op(A-1/4mao) 

where ao is any fixed constant satisfying 1/ao > a > 1. Since the cardinality 
of A is finite, (21) holds. 

Now it remains to study the case when 1 > 2. Note that 

EZ4Tsl Zs = (ors tr Si = CiorsT 1/2m (1 + o(1)) and 

Var(zr 8) < cO tr S21 1 

by (20) and Lemma 2(c). Hence z4TS' z - ars tr S' = OP(CT-1/4m) by the Cheby- 
shev inequality. Some algebra shows that 

(Z SzS - Orrs tr Sk) - (Z S Z's - ars tr S ) 

k [(1 + AknlA)- (1 + Aknr)l ((krn'ksn- rs) 

.T _ - 1 ] 6krn6ksn- 0rs 

A 
k=1 L 1 + Xkn,)i (1 + Aknl)i+'J (1 + Akn7)'-" 

Note that (1 + AknA)- are nonincreasing in k and bounded above by 1. Hence, 
(a) holds by applying Lemma 6 to each term on the right-hand side of the 
above expression and by the argument used in showing (21). o 
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PROOF OF PART (b). (b) follows from (a) by identifying Zr and z8 in (a) with 
e in (b). O 

PROOF OF PART (c). For any finite positive integer 1, observe that En l/2fT 
(I-S,)e=O and 

Var[n/2fT (I - ST)'e] = n-l2fT(I - S,)2f n-la2fT(I - S )2f 0(r 2) 

since the eigenvalues of ST are between 0 and 1. Hence, for any given r E 
[A1, A2], 

(25) n /2fT (I - S)'e = Op(r). 

Forr=n-6 with 6E A, write 

fT[(I SA) - (I - S7)']e 

(26) AT [E (i 1+ +AkA) ( I + AknrT)] 

1 AknrnT n 
1 + AknA 1 + Aknr 

wherefkn = n 1/2 Ei=l Atin)0kn(tin). Note that {[Aknr/(1 + Aknfr)]fknEkn} does not 
depend on A, E(fknEknXf1n6In) = 0, for k i 1, that {(1+AknA)Ni(1+Akn'r)J} for 1 < 
i,j < 1, are nonincreasing in k, and that 

Akn,r n Aknr 2 
Var _kn fEkn) =n- 1U2 Z1 A fi)2 1 + A,, / k=l1 \+ AknT f 

= n-lY2fj (I-S7)2f= 0(r2). 

It follows from Remark 1 following Lemma 6 that we can apply Lemma 6 to 
each term on the right-hand side of (26). Thus we conclude that 

(27) n-1/2 [fT(I - Sx)le - f (I - ST)1e] = Op((r - A) logn) 

holds uniformly for all A E [n-a6, n-6]. By (25) and (27), for any a, > a, 

n-l/2fT(I - S,\)'e = Op (Al/a,) 

holds uniformly for all A E [A1, A2] and finite positive integer 1. Hence, (c) 
holds. 0 

PROOF OF PART (d). (d) can be shown similarly by identifying e in (c) with 
Zr in (d). o 

PROOF OF PART (e). Note that 

n f7i(I - SA)'f2| < (n1lfT(I - SA)'fl)1/2(n1f271(I- ) 
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by the Cauchy-Schwarz inequality. Since that the eigenvalues of SA are be- 
tween 0 and 1, (e) holds by Lemma 2(a). 0l 

PROOF OF PART (f). Write XT(I-S)\)2 Z = ZTZ+HT(I-S,\)2Z+ZT(S2 -2SA\)Z. 
Then, by (Al) (in Section 2) and the law of large numbers, n-lZTZ = > + op,(l). 
Hence, (f) follows from (a) and (d). El 

PROOF OF PART (g). Note that 

n xrT(i- SA)XS = n'zT(I- + nT hIT(I -S) 
+ n 

- 
-1T (I-SA )tZr + n lhrT (I - SA,)'h. 

Recall that n-lZTZ = E + op(l). Hence, it follows easily from (a), (d) and (e) 
that (g) holds. Ol 

PROOF OF PART (h). Write 

- 

T(I_SA )2S,\Xs 
= -2S, + S3)z8 + hT(I- 

+ hrT [(I-S,)2_-(I-SA\)3] Zs + hsT[(I-SA)2 -(I_SA)3]Zr. 

Since IhrT(I - SA,)2SAhsI < nB2rpB2sp = O(nA2), (h) holds by (a) and (d). El 

PROOF OF PART (i). Observe that EZTS' e = 0 and 

Var (ZT S'e) = q2 Var (zST2l'Zr) 7-1/2m 

by (20) and Lemma 2(c). Hence z TS' e - OP(T-1/4m), for any given sequence 
Tr = n-1 with ab E A. Write 

(28) Zr A- A (1 + AknA)V (1 + SknA)v+1] (1+ \knr)-v 

Note that (1 + S\nA)-i are nonincreasing in k and bounded above by 1. By 
Lemma 7, {mkrnEkn(l + AknT)-i} satisfies the assumption of Lemma 6. By ap- 
plying Lemma 6 to each term on the right-hand side of (28), we conclude that 

(29) z TS'e = Op((l - A-1 r) T)1/4m logn) = op (A-1/4mao) 

holds uniformly over A E [n-a6, n-6]. Hence, (i) holds. El 

PROOF OF PART (J). Write 

-1/2T(I _ S, n/2ze + n"2zT(-2S2 + S2)e. 

Then by the central limit theorem and (i), (j) holds. El 
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PROOF OF PARTS (k) AND (1). It follows from (a) and (c) that 

XT (I-SA )3xS _ -XT(I-SA )2Zs 

_ zT(I - )2S,z - hrT(I - SA)2z 

+ hT(I_SA)3Zs + hT(IjSA)3zr + hT(I_S)3hs 

=-(c - 2c2 +C3 )rsA -1/2m + Op (A-1/4mao ) + Op(n l/2Al/ai) 

+ h T(I-SA)3hs, 

4T(i - sA)3x8 - Xr(i - s 
T(II-,> _3sx (I-)S,Z )h. xS,\3(_ 
= z4 (I-SA)3SAz8 + hT[(I-SA)3 3-(ISA)4] Zr 

+ hT [(I - S) (I_ - 4 + T(I _ S\)3ShS 

= (cl - 3c2 + 3C3 - C4 )a rsA 1/2m + Op (A -1/4mao ) + Op (n 1/2Al/a) 

+ h4T(I-SA\)3SAhs8. 

Hence, we conclude (k) and (1). 0l 

7. Proofs of Lemmas 4 and 5. 

PROOF OF LEMMA 4. Recall ROn(A) A2 + n-1A-1/2m . From now on, we 
require that the three constants a, ao and a1 in Lemma 3 satisfy 4m/(4m- 1) > 
a1 > a and ao > I so that, for A e [A1, A2], 

(30) nl-lA-1/4mao = o(A2 + -lA-l/2m) = o(ROn(A)) 

and 

(31) n- 1/2Al/a, = 0(A\2 + n-1A - 1/2m) = O(ROn (A)) 

Equations (30) and (31) can be verified by simple algebra. Recall that Ao, = 
S), + Bo,\ where Bo, = n'-(I - SA\)2XA - (A)XiT(I - S,)2 and AoA = nXiXT(I - 
SA)3X. 

[(a) and (b)] By Lemma 3(g), we have 

(32) trBO, = tr {A - 1(A) [n\XT(I-SA)4X]} =op (1) 

(33) trBO = tr{AO-1(A) [n-XT(IS)4X]}2 =Op() 
(34) trSA\BOA = trA- 1(A) {nlXT[(I-SA)5 - (I\-S)4]X} =op(i). 

This, together with Lemma 2(c), proves (a) and (b). 
(c) It follows from Lemma 2(b) that 

(35) ng9(I- S)2go =-yA 2(1 + o(1)) 
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Also, by Lemma (a) and Lemma 3(d) and (e), we have 

n'go Bogo = [n'go(I -S4)2H + n-g (I- S)2Z] 

x {A 1(A) [n-1XT(I - S\)4X]AO1(A)} 

x [rrlHT(I - S,A)2go + n-lZT(I _ SA)2go] 

= [O(A2) +op(n-1/2)][7-1 +op(j)] [O(A2) +op(n-1/2)] = o(A2) 

This, together with the Cauchy-Schwarz inequality and (35), leads to (c). 

(d) Write 

nlzT(I - AO,)2Z = n-1 {ZT(S2 - 2S\)Z + ZT[(I - BoA) - (BoA -BOA]Z 

+ ZTSABoAZ + ZTBOASAZ}. 

By Lemma 3(a), we have the first term 

(36) nl(Zf3)T(S2-2S\)(Z,3)=(c2-2c,)13TE43n- l)Jl/2m(1 +o ()) 

It follows from Lemma 3(a), (d) and (f), Lemma l(a), (30) and (31) that the 
third term 

13ZTSA A3 = 3 [n 'ZTSA(I - SA)2X]A- 1(A) [n -XT(I -S)2Z]IB 

= (c1 - 2C2 + C3 )f3T Efn31A-A1/2m (1 + oP (1)). 

The fourth term has the same rate. 
Observe that 

nlZT(I - Bo)Z [n Z TZA 1()] [Ao(A) -nlXT(I S )2Z] 

+ { [lZT(2SA -S2)Z] - [nlZT(I S)2H]} 

xAO-'(A)[n-1XT(I - S, 

n-IZT (Box - Boi)Z = Err lZT(I - Sv)2X]Ao '(A) [Ao(A) - rrlXT (I - s>)4x] 
x A-' (A) [n- XT(I - s)2Z]. 

Then by Lemma 3(d) and (f), we have 

r-lHT(I - S>)2z - op(A2 + n-lA-l/2m) and 1 IlXT(I -S T2Z = S +op(i). 

Also, by ()in Section 2) and the law of large numbers, we see that nlZTZ = 
T + op(l). Hence, it follows from Lemma 1(a) that 
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Hence, by Lemma l(a), (36) and Lemma 3(k) and (1), we conclude that 

n- (Z,f3)T [(I -Bo,\) - (Bo, - Bo,)] (Z,e3) 
= n-1 [(Hj3)T(I - + o(A-/4'1o) + Op(fl-/2A1/al) 

+ (4C2- 4c3 + c4)fTE, -Al/2m] (1 + op (1)). 

This, together with (36) and (37), proves (d). 

(e) Note that n-g1T(I - S)jhr = o(A2), for 1 > 2, and 

(39) n lXT(I S\)2e = 0p(n-l/2Al/a1) + Op(n-1/2) = O (n-1/2 

by Lemma 3(c) and Ci). Then by (31), (39), Lemma l(a) and Lemma 3 (d), (e) 
and (g), 

n-1gTB2 e 
= [ng90(I - S\)2X]Ao-1(A) [n-lXT(I - S>)4X]Ao'(A) 

x [n-lXT(I SA)2e] 

(n - +/2 Al/a +A2) [n-1/2 Al/a, + (n-1/2)] 

= op(ROn(A)). 

Similarly, we have 

n9g0'(i -SA)BoAe = [n'g (I- S\)3X]Ao (A) [n-lXT(I - SA)2e] 
= op (ROn (A)). 

By Lemma 3(c) and (31), n-1gT(I - SA)2e = OP(Ron(A)). Putting these results 
together, we have (e). 

(f) Write (I-AoA)2 = S2 -(I -Bo,) S-Sx(I-BoA) + (I-Bo,) - (Bo, -B2A). By 
the central limit theorem, n-lZTe = Op(n-1/2). Then it follows from Lemma 
l(a) and Lemma 3 (c), (k), (f) and (i) that 

n-lzT (I - Bo,\)e = [Ao(A) - n-1ZT(j _ S\) 2X]A 
- 
l(A)(n - ZTe) 

--[n-lZT(I SA,)2X]A- 1 (A) 
x [n-lHT(I - SA)2e - n-lZT(2S\ _ S2)e] 

= O(Ro (A)). 

By Lemma 3(1), we have Ao(A) - n-1XT(I - SA)4X = Op(Ron(A)). It then follows 
by (39) and Lemma 3(f) that 

n-lZT(Box - B 2)e = [n-lZT(I - S)2X]Ao (A) 

x[Ao(A) - n-lXT(I - S,)4X]A-'(A) [n-lXT(I - S )2e] 
= o(ROn (A)). 
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Next, 

n- ZT(i - BoA )SAe = n-lZTSAe - [n-lZT(I - S )2X]A- (A) 
=~~~~~~~~~~~ (40) x \lT(-s)2 - (I _ S,\)3]el 

= (Ron (A)) 

since n'ZTS7Se = op(Ron(A)), by Lemma 3(i) and the fact that 

n-lXT[(I - S -)2 _ (I - SA,)3]e = n'lHT[(I - S,-)2 _ (I - S,)3]e 

(41) -Sn-ZT(S-2S2 +S3)e 

= o(ROn (A)), 

by Lemma 3(c) and (i). Similarly, n71ZTSA(I - BOA)e = o(Ron(A)). Finally, 

nZTSSl e =op (ROn(A)) 

by Lemma 3(i). Combining all the terms, we have (f). 

(g) Write A2 - 2AO = S2 - 2S + (BoASA + SABo,) +B - 2Bo. First, we 
note that 

(42) n-l(eTS' e _ U2 tr S ) = o (n-A1 A-l/4mao) = O (R ()), 

by the proofs of Lemma 3(a) and (b) and (30). Next, by Lemma l(a), (39) and 
(41) and Lemma 3(g), 

(43) n-leTBoAe = [n-leT(I - S )2Xl4-1 (A) [nr'XT(I - SA,)2e] 
;t n-1/2A1/aj + 0=Jn-1/2 2= p(ROn(A))t 

n eTBoASAe =n [leT (I - SA) 2X]A0 (A) [n 'X (I SA) 2SAe 

n-leTB2 e = [n-1eT(I - SA,)2X]A- 1(A) [n -XTi(I - S) 4X] 
xA-' l(A) [n-1XT(j _ S,\)2e] = op (ROn (A)). 

Part (g) holds by (32)-(34), (43)-(45) and (42). Cl 

PROOF OF LEMMA 5. Recall that Al, = S), + BlA, where 

B n-=1n(I-SA)XA 1(A)XT(I-SA)2 and A1(A) =n XT (I S)2X. 

(a) By Lemma 3(d), (e) and (g), 

n-goTBTABl,AgO = [n-lgT(I - S\)2XA1 (A) [n-lX(I - Sc<)2X]A-l(A) T [ngA( A/lk JA I~iA 

x [n-XT(I - S\)2go] 
= Op((A2 + n-1/2A1/aj)2) 
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It can be easily verified that Op(n-lA2/al) = op(A2). This, together with the 
Cauchy-Schwarz inequality and (35), proves (a). 

(b) Write 

I,TZT(I -A,,)T(I -A A)Z13 = JTZT(S2 - 2SA)Zfl + 2fTZTSTBlAZ/3 

+ OTZT [ (I - B1 B1T(I - B1 )]Z 

By (36), Lemma 3(a) and (f) and Lemma 1 (b), we have the second term, 

n 1f3TZTSTBZI3 = 3T [nlZTSA (I - SA)X]A-1 (A) [n lXT(I - 

(46) = (cl - C2 )/3T ,{3n-Al1 1/2m + op(n-f-A-1/4mao) 

+ Op (n -1/2 A1/al) . 

Observe that 

n-lZT(I - BlA)Z = [n-lZTZAl1(A)] [A1 (A) - n-lXT(I - S0)2Z] 
+ (n-lZTSXZ)A l (A) [n-lXT (I SA)2Z] 

- [nlZT(I - SA)H]A1 (A) [nlXT (I - )2 

n lZTBT (I -B1l)Z = [n lZT(I- SA)X]Aj1(A) 

x { [nlXT(I - S,\)Z - nlXT(I _ SA)2X] 

+ [n lXT(I - S()2X]A (A) 

x [Al (A) - n-lX( S)2Z]} 

It follows from Lemma 3(a) and (d) that 

xT(I - SA)2x8- x_7T(i - SA)2zs = XrT(I- 
_ S 

= hrT(I - SA)2hs + Op(nl1/2A1/l) 

= hrT (I-SA)2hs + op (nA2 + A- 1/2m 

xT(I-SA)zs -xT(I-S\)2xS = (c11C2)UrsAl/2m -hT(I-S)2hs 

+Op(A-1/4mao) + Op(nl1/2 Al/al) 

= (C1 - C2)orsA h/2m -2hT(Ih- 

+p n2 1 /2m . +oP(nA2 +A 

Note that In'lhT(I - SA)2hsI = O(A2) by Lemma 3(e). Hence 

,B7 T[A 1(A) -n - XT (I _S,\) 2Z], 
= n-[o (nA2 + A-l/2m) + (H3)T(I _ SA)2H,3] (1 + op (1)), 

(48) 3T [n 4XT(I - S)Z -n-XT(I- S-)2X]) 

= n- [(c1 - C2)/3T>2f3A,-1/2m _ (H13)T(I - SA)2H,3] (1 + o (1)). 
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By Lemma l(b), (38), (47), (48) and Lemma 3(a), (d), (f) and (g), we conclude 
that 

n-1 (Z)3)T[(I - Bl,\) -BlT(I - Bl,)](Z)3) 
= n-1 [(Hf3) T (I - S>,)2(H,3) + C2'3TE'A_1/2m] ( 1 + op ( 1) ) 

Part (b) holds by (36), (46) and (49). 

(c) Write (I-Al,x)T(I -Al,) = (I-SA)2 + BTAB1 -(I-S,)B1 -BBTA(I- S,). 
By Lemma l(b), (48) and Lemma 3(c}(e), (g) and (j), we have 

n-1 OTz3T, Ble 

= [n-gT(I - SA)2X]A7'(A) [n-lXT(I - S -)2X]A1 (A) [n lXT(I - SA)2e] 

(n-1/21/+, 2 [-/2 1/al + -1/2 

=op (R ln (A)) s 

n-1OT(i - S,A)Bl,Ae 

= n-1gOTBTz (I - S,\)e 
= [n-g (I - SA) X]A1 (A)[n-lXT (I- S)2e] 
= Op (R ln (A)). 

By Lemma 3(c), n-1g?T(I - S,)2e = op(Rln(A)). Hence, 

(50) n-g1T(Ij-AlA)T(I-AjA)e = o(Rj(A)). 

Write 

(I -Al,)T(I Al) = (I - BlA)T(I-B ) +B s 

-(I - Bl,\)Ts,\ - S'\(I - B1) 
ZT(I-BlA)T(I-BlA)e = ZT(I-BlA)e_ZTBT (I-BlA)e. 

Recall that n-lZTe = Op(n-1/2). Then 

n-lZT(I - BlA\)e = [A1(A) - n-lZT(I - SA)X]A71 (n-lZTe) 
- [n-lZT(I - SA\)X]A7 (A) 
x [n-lHT(I - S)2e - n-lZT(2S \ - S2)e] 

=~~~~~~~~~~~~~ = 0(R1n(A))j 

by Lemma l(a), (47) and Lemma 3(c), (f) and (i). Using the same argument to 
derive (47), we have 

(51) A1(A) - n-lXT (I - Sx)2X = Op(Rln(A)) 
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By (39), Lemma l(b), Lemma 3(f) and (g) and (51), we have 

n 1ZTBTA (I-BlA)e = [n-lZT(I_SA )2X]Ail(A) 
x [Al(A) - n-lXT(I - SA)2X]Aj1 (A)[n-lXT(I S)2e] 

= O(Rln(A)). 

Hence, 

(52) n-lzT(I - BlA)T(I - BlA)e = o(Rin(A)) 

Then by Lemma 3(c) and (i), we have 

n-lZT(I - Bl,)TS,Ae n-lZTS,\e - [n-'ZT(I - SA)2X]A-1 (A) 

(53) x [n-lXT(I - SA )SA,e] 
= o(Rin (A)). 

Thus by (52), (53) and Lemma 3(i) we have 

(54) ZT(I - Al,)T(I - Alxe) = op (Rin (A)) 

Part(c) holds by (50) and (54). El 
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