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This paper investigates an artificial neural network (ANN) model for typhoon waves used to modify poor
calculations of the numerical model in special cases. Two key factors, local winds and simulated waves
produced by the numerical model, were used as input parameters of the proposed ANN model. The waves
were simulated by the numerical model from a wave action equation indicating the physical processes of
energy transfer and wave propagation. Simulated wave input is a very important parameter for the
proposed ANN model, allowing for the accurate calculation of water waves in the sea. The applicable
Mike21_SW model was chosen to provide an accurate calculation. Through model verification, the pro-
posed ANN model has a particularly accurate calculation at the peak of each typhoon and at its occurrence
time. The computed waves of each typhoon were examined to be consistent with the observed waves.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Information on swell and wind waves is very important for mar-
ine activities and for safe navigation. Therefore, some engineers
and scientists have devoted their time to the study of the accurate
calculation of water waves in the sea. Initially simple empirical
prediction models, such as SMB (Sverdrup–Munk–Bretschneider)
and Joint North Sea Wave Atmosphere Program (JONSWAP), were
proposed to provide a quick but defective estimation of ocean
waves [1,2]. The drawback attributes to that waves depend not
only on the present wind field but also on earlier wind fields,
bathymetric effect, pre-existing waves from other wind systems,
and in general on the entire wave-generation process over the last
to 12–24 h. With the help of fast computer calculations and the
knowledge of physical processes responsible for wave behavior,
numerical simulation studies were developed as first and second
generation wave models. First-generation models that have been
modified to allow the Phillips equilibrium coefficient to vary
dynamically [3] and second-generation models [4] have been
shown to produce good predictions and hindcasts of wave condi-
tions for a wide range of metrological situations. However, these
wave models were found to be limited to extreme situations.

At the same time, new numerical improvements in computa-
tions of Boltzmann-type integrals provided a powerful tool to over-
come the numerical difficulties of the second generation wave
ll rights reserved.
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models. These improvements were used in the third generation
models developed by the WAMDI (the wave model development
and implementation) group [5]. The basic version of this type of
wave model was developed for deep water waves by Hasselmann
et al. [6] and was termed WAM. An application, especially for near-
shore wave and current conditions, was developed as the WAM
deep water model. This model was described by Booij et al. [7]
and Ris et al. [8] and was named the SWAN-model. The final report
on these efforts was published by Komen et al. [9]. Hsu et al. [10]
used finite element method (FEM) in SWAN to simulate water
waves in the nearshore zone. There were two particularly impor-
tant features of the third generation model. The first was the
parameterization of the exact non-linear transfer source function,
which contained the same number of degrees of freedom as the
spectrum itself. The second was the energy balance closed by spec-
ifying the unknown dissipation source function.

To illustrate a general feature of the global wave hindcast,
extensive verification of the third generation wave model WAM
was reported by Romeiser [11]. WAM wave heights were com-
pared with GEOSAT radar altimeter data for the entire year of
1988 for the southern hemisphere and the tropical region. These
data were found to be underestimated by up to approximately
30% from May through September. Because of the complicated
oceanography of the region, the accuracy of the wind input fields
plays a critical role in the performance of the wave model. This
technique is called assimilation analysis. In assessing the spectral
wind wave modelling, Liu et al. [12] compared four numerical
models and concluded that the models reflected similar general
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trends and patterns, although the differences between the calcu-
lated results and observations were of the equivalent orders of
magnitude. It was also pointed out that imperfect specification of
the wind field is a limiting factor for producing accurate wave model
results, but it is often hard to separate wind and wave model errors.
Therefore, there is still a requirement for new wave forecasting
techniques rather than pure wave modelling.

Taiwan is an island that is 385 km long in the north–south direc-
tion and 143 km wide in the east–west direction. Approximately
two-thirds of the island is covered with lush forested mountains
which are approximately 2000–4000 m above sea level. Indeed,
these high mountains in Taiwan play an important role in changing
the wind distribution of a typhoon around Taiwan and weakening
wind speeds. The resulting waves decay because of the weakened
winds. The interaction between the typhoon winds and the land
is so complex that so far, it is difficult to accurately calculate the
wind speeds inside the typhoon located around the land from the
existing parametric wind models. Thus, the corresponding waves
become functionally unpredicted. As ocean wave models are very
sensitive to errors in the wind field, a new and extensive set of data,
such as satellite measurements of wind and wave fields, provide
model results with the best fit to the observations [13–15].

Artificial neural networks (ANN) should be regarded as a further
extension of fitting to large observations as opposed to model-based
attempts to estimate and predict wave behavior. However, an ANN
does not provide insight into wave propagation processes that are
provided by full-scale numerical models. The advantages of an
ANN include computational efficiency and potentially greater pre-
dictive power, especially for non-linear problems, without the need
for detailed geographic information. Thus, ANN has been used for
numerous applications in different science and engineering fields.

Deo and Sridhar Naidu [16] used a neural network to make a
real-time wave forecast based on leading observations of waves
at a point. Deo et al. [17] proposed a feed-forward neural network
to obtain wave heights and wave periods from the input of gener-
ated wind speeds. Deo and Jagdale [18] applied the neural network
technique to accurately predict breaking height and water depth.
Ziemianski [19] presented a hybrid method for wave propagation
in which neural networks were applied to all nodes on the transmit-
ting artificial boundary. Makarynskyy [20] presented two neural
networks to improve short-term wave forecasts based on observa-
tions of wave heights and periods at two sites. Makarynskyy et al.
[21] proposed two different neural networks to forecast wave
heights and periods at Portugal. Chang and Chien [22] applied the
multi-trend functions rather than the traditional transfer functions
in neural networks used to fit the relationship between the inputs
and the output and established an ANN wave model for typhoon
waves. Chang and Chien [23] developed a neural-fuzzy model for
simulating typhoon waves considering land effects. Kathrin et al.
[24] applied a neural network associated with a cluster analysis
to parameterize the exact non-linear interaction between source
terms for wind wave spectra.

Chang and Chien [22,23] attempted to improve the accuracy of
simulated typhoon waves by using neural network and neural-
fuzzy network driven by the input of typhoon parameters such as
central position, wind speed and moving velocity. However, one
of predicted peaks of six typhoons in the verification for the neu-
ral-fuzzy network exceeded 1.4 m, while the difference from the
observation and its corresponding relative error to the peak height
was 0.35. This result indicates that the neural-fuzzy network from
only inputs of typhoon parameters may provide divergent predic-
tions for the peak typhoon waves when the typhoon goes along a
path quite differently from those used in the training stage. Wave
modelling provides an advantage from the results obtained by fol-
lowing the basic physical principle of wave propagation processes.
An ANN directly relates the outputs to some resulting inputs by fast
and efficient computation. Considering the advantages of both
methods, the paper presents an ANN model for typhoon waves from
several inputs, including relevant wind speeds and waves obtained
by wave modelling. Section 2 briefly introduces the commonly used
MIKE21_SW wave model. In Section 3, the input variables in the
proposed ANN, including the model structure, are described. Data
sources and model calibration and verification are demonstrated
in Section 4. The conclusions are discussed in Section 5.
2. Wave models

The MIKE21_SW model [25], developed by DHI Water & Envi-
ronment, is a type of WAN model that simulates the growth, decay
and transformation of wind generated waves and swell in offshore
and coastal areas. The fully spectral model governed by wave action
equations was considered along with possible sources, such as wave
dissipation due to white-capping; depth-induced wave breaking;
bottom friction; wave growth by wind action; and energy transfer
due to non-linear interactions between spectral components.
These spectral components contribute to the modification of the
spectrum during wind generation or the decay of wave motion.
The MIKE21_SW model is widely used throughout the world for
the assessment of wave climates in offshore and coastal areas in
forecast and hindcast modes. Wind fields play a very dominant role
in generating waves and thus it is important to get accurate esti-
mates of this parameter. According to previous studies, the National
Center for Environmental Prediction (NCEP) provides acceptable
wind fields from successive reanalysis of global data assimilation
and produces a database every 5 years or so that scientists can
use to accurately calculate monsoon waves [26]. The resolution of
NCEP is 1.875� � 1.875�, or approximately 200 km, which is too
low to accurately simulate typhoon waves in a typhoon which
likely forms a circular or elliptic shape with a common radius of
200–500 km due to the fast variation of typhoon winds.

The MIKE21 model considers a wind field consisting of rota-
tional and translational components. At a distance, r, from the cen-
ter of a typhoon, the rotational wind speed, Vr, is given as

Vr ¼
Vmaxðr=rmÞ7 expð7ð1� r=rmÞÞ for r < rm

Vmax expðð0:0025rm þ 0:05Þð1� r=rmÞÞ for r P rm

(

ð1Þ

where rm is the radius to the maximum winds, Vmax, in km, which are
obtained from the website of the RSMC-Tokyo Center in Japan.
Eq. (1) is similar to the Rankine vortex wind model (RVM) of Holland
[27]. The value of rm can be estimated by Graham and Nunn [28]

rm ¼ 28:52 tan hð0:0873ð/� 28ÞÞ þ 12:22= expðDP=33:86Þ
þ 0:2Vf þ 37:22 ð2Þ

where / is the latitude and DP is the atmospherical pressure
depression between the ambient pressure, which can be assumed
to be 1013.3 mb, at the periphery of the storm and the central pres-
sure. The moving speed of a typhoon, Vf, leads to a translational
component of the total wind speed, Vt, as in the equation

Vt ¼ 0:5 Vf cos u ð3Þ

where u is the angle between the radial arm and the line of maxi-
mum winds. The line of maximum winds occurs at an angle of 115�
that is measured clockwise from a line extending from the center of
the typhoon in the direction of the typhoon’s movement, as shown
in Fig. 1. The wind direction at a particular location is parallel to the
tangent, except for a deflection angle turned in the direction of the
wind towards the center of the typhoon. The deflection is caused by
the friction between the water and air and is given as



Fig. 1. The isotach pattern of a typhoon.
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h ¼
10� for 0 < r 6 rm

10� þ 15�ðr � rmÞ=ð0:2rmÞ for rm < r 6 1:2rm

25� for 1:2rm < r

8><
>: ð4Þ

The resultant wind velocity inside the typhoon is VRVM = Vr + Vt,
using vector addition.

When the typhoon reaches Taiwan, the typhoon wind will be-
come weak due to the land effect. So far, land effects on typhoon
winds are still unpredictable so that no modification of Eq. (1)
can be made when the typhoon is near Taiwan. The ANN model
is chosen to remedy potential incorrect wave calculations owing
to the land effect on the imperfect wind field. The proposed ANN
model will be introduced in the next subsection.

Topographical information used in the MIKE21_SW model was
derived from the ETOPO2v2 Global Gridded 2-min Database
published by the National Geophysical Data Center (NGDC) [29].
ETOPO2v2 was created at NGDC from digital databases of seafloor
and land elevations on a 2-min latitude/longitude grid. The compu-
tational domain, shown in Fig. 2, ranges from 111�E to 135�E and
from 13�N to 31�N. Mainland china, Taiwan and parts of the
Philippines are included in the computational domain. In addition,
2147 finite elements with 1173 nodes are gridded using the
cell-centered finite volume method by automatically applying
the optimal grid technique provided by the MIKE21_SW model.
An unstructured mesh is used in the geographical domain (i.e., fine
grid sizes are used around Taiwan and coarse grid sizes are used
away from Taiwan). The time integration is performed using a frac-
tional step approach where an explicit multi-sequence method is
applied for the propagation of wave action.

A fully directional spectrum is used to compute wave–wave
interactions and to represent the significant waves in the
MIKE21_SW model for real irregular waves. The frequency domain
of the wave spectrum was classified into 25 bands with a mini-
mum frequency of 0.055 Hz and an increase rate of 1.1, indicating
wave periods varying from 1.85 to 18.18 s. The computational time
step is set by 15 min for the computational stability. All forcing
sources except for tidal variation were considered in the
MIKE21_SW model.
3. Backpropagation Neural Network

3.1. Model structure

A Backpropagation Neural Network (BPNN) was applied to
modify the simulated waves from the MIKE21_SW model for fast
and accurate calculations. A BPNN typically has three layers,
namely an input layer, a hidden layer and an output layer. The
number of input nodes is the same as the number of input param-
eters, and these input nodes receive data that are then passed onto
the hidden layer nodes. These nodes individually sum up the re-
ceived values after multiplying each input value by a weight. The
nodes then attach a bias to this sum and pass on the result through
a non-linear transfer function. The resulting transformed output
from each output node forms the output vectors. The algorithm
of a BPNN can be formulated by

ONO�1 ¼ f ðWNh�Ni
INi�1 þ bNh�1Þ ð5Þ

where WNh�Ni
and bNh�1 are the matrices of the weights and of the

biases between the input neurons, INi�1, and the hidden layer neu-
rons, respectively, f() is the transfer function, connecting the hidden
layer neurons to output neurons, ONO�1, and the subscripts Ni, Nh,
and No are the number of neurons of the input, hidden and output
layers, respectively. The hyperbolic tangent sigmoid transfer func-
tion, f(x) = tan h (x) is chosen as the transfer function. For sigmoid
units, the output varies continuously but not linearly as the input
changes. Thus, sigmoid units bear a greater resemblance to real
neurons than do linear or threshold units.

For common engineering problems, the number of hidden lay-
ers is suggested to be one, which is not complicated and is highly
non-linear [30–33]. Thus, one hidden layer is used in the proposed
ANN model. The number of neurons in the hidden layer is recom-
mended by Huang and Foo [34] as

Nh ¼ 2Ni þ 1 ð6Þ

The objective of a BPNN is to minimize the global error between
the transformed output and the observed data so that the properly
trained BPNN tends to generate reasonable outputs when inputs



Fig. 2. Computational grids and topographical map.
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are provided. The squared difference between the desired re-
sponse, Hm, and the network response, ONO�1, states that the train-
ing error, E, and can be written as

E ¼ 1
N

XN

i¼1

ðOP�1ðtiÞ � HmðtiÞÞ2 ð7Þ

When the errors of each iteration in both the learning stage
and the verification stage decrease simultaneously, the model
continues to learn. Conversely, whenever the error is magnified,
the model stops learning. When the simulation error reaches
the assigned minimum, the optimal weight and the bias matrices
are set. Like the quasi-Newton methods, the Levenberg–Marqu-
ardt algorithm was designed to approach a second-order training
speed without having to compute the Hessian matrix. This algo-
rithm appears to be the fastest method for training moderate-
sized feed-forward neural networks (up to several hundred
weights [35]). Thus the ‘trainbr’ network training function in
the Matlab software that updates the weight and bias values
according to a Levenberg–Marquardt optimization is used in the
present model. This function minimizes a combination of squared
errors and weights, and then determines the correct combination
so as to produce a network that generalizes well. The process is
called Bayesian regularization and modifies the linear combina-
tion so that at the end of training, the resulting network has good
generalization qualities. Training stops when one of the condi-
tions, default values of training parameters in the Matlab soft-
ware, is observed.

Whether the energy of wind waves rises or decreases depends
largely on the energy input from the winds. Thus, the key to calcu-
lating the typhoon waves is to accurately evaluate the local wind
speeds in a typhoon. The local wind speed can be measured at an
observation station. Therefore, local wind speeds during the time
period of a typhoon from the start to the disappearance of the
typhoon as determined by NCEP and RVM, respectively, were cho-
sen as input parameters, denoted by VNCEP and VRVM, respectively.
The performance of the MIKE21_SW model driven by the NCEP
wind field was developed for a typhoon far from the point of inter-
est and was driven by RVM for a typhoon near that location. Com-
puted wind waves at the point of interest indicated the integrated
performance of wave propagation and transformation based on
physical processes. Thus, the significant waves calculated by the
MIKE21_SW model, denoted by HNCEP and HRVM, respectively, with
energy source input by NCEP and RVM wind fields, respectively,
were also chosen as input parameters. Four input parameters were
used in the input layer. Following Eq. (6), nine neurons in the hid-
den layer were examined and found to be valid during the model
calibration and verification. Wave height was one of the output
neurons. The whole neural network structure of the present study
is shown in Fig. 3.

3.2. Wave data

The wave data were collected by the Harbor and Marine Tech-
nology Center (HMTC), Ministry of Transportation and Communi-
cations, Taiwan, at 23�5800000N, 121�3703000E located at a distance
of 380 m from the end of the eastern breakwater of Hualien harbor.
The instrument used to measure waves was the Acoustic Wave and
Current Profiler (AWCP) developed by the NORTEK instrumenta-
tion company in Norway. The mean water depth at this location
is approximately �34 m. The location of wave measurement at
Hualien harbor by HMTC is shown in Fig. 4. The typhoon data were
collected from the RSMC-Tokyo Center in Japan. There were 51
typhoons between 2000 and 2006 that occurred in the western Pa-
cific Ocean and passed through or by Taiwan according to reports
from the Central Weather Bureau (CWB) of Taiwan. Among these,
wave data were collected during only 33 of the typhoons due to
missing data for some of typhoons during the observation period.
Thus, 33 sets of simultaneously available wind and wave data were
used as input data for the present ANN model.

The data on the typhoon’s position and scale were obtained
from RSMC-Tokyo Center and Coordinated Universal Time (UTC
+8 for Taiwan) was used. The typhoon data were sampled every
6 h. A cubic spline interpolation was used to transform 6 h of



Fig. 3. Sketch of the construction of the proposed neural network.

Fig. 4. The location of wave measurements taken at Hualien harbor by HMTC.

Fig. 5. The paths of 25 typhoons that passed through or by Taiwan during
2000–2006 and were used for model calibration.
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typhoon data into 1 h of data in order to make the data comparable
to the 1-h wave data.

3.3. Indices of simulation performance

Typically, an applicable BPNN model should be validated in
both the training stage and the verification stage. Commonly, the
simulation performance of a model is evaluated by the root mean
squared error (RMSE) and through the use of the correlation coef-
ficients (R). The root mean squared error is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
n

ððHs;obsÞn � ðHs;numÞnÞ
2

s
ð8Þ
where Hs,obs and Hs,num represent the observed and calculated wave
heights, respectively, and n is the total number of data measure-
ments. The correlation coefficient of each typhoon signifies the
degree of correlation between Hs,obs and Hs,num. The maximum wave
height and its occurrence time are very important in practical engi-
neering. Two alternative indices of simulation performance are gi-
ven by the difference between the peak observed wave height
and the corresponding calculated value, DHs,p, and by the time lag
between the corresponding times, Dtp, as follows:

DHs;p ¼ MAXðHs;numÞ �MAXðHs;obsÞ ð9Þ

Dtp ¼ tp;num � tp;obs ð10Þ

In this equation, tp,obs and tp,num are the times of the observed and
calculated peak wave heights, respectively, and Dtp is the time
difference.
4. Model validity

4.1. Model calibration

According to the scales and paths of the typhoons, 25 typhoons
among 33 selected typhoons were depicted in Fig. 5 and were cho-
sen for the training stage while the other eight typhoons, shown in
Fig. 6, were used for model verification. All low atmospheric pres-
sure and tropical cyclones were not considered so the proposed
models cannot be used to model waves caused by monsoons. Figs.
5 and 6 indicate the paths of these typhoons that commonly start
very far from Taiwan in the south-east and move towards the west
or to north-west. The peak wave height of each typhoon used for
the training model is shown in Fig. 7 and indicates that the largest
wave was 10.85 m in height, and the smallest had a height of
1.61 m. The mean peak wave height was 4.30 m.

The total number of hourly wave data of 25 typhoons selected
for the training stage is 5479. Four kinds of input data associated
with output data of observed wave heights are used to obtain opti-
mal weights and bias of the BANN model. The training process
stops at the condition of maximum l of Levenberg–Marquardt
optimization occurring ahead other five conditions with their de-
fault values in the ‘trainbr’ neural network toolbox of the Matlab
software.

The scatter plot of estimated and observed wave heights is
shown in Fig. 8. The correlation coefficient and RMSE between esti-
mated and observed wave heights is 0.898 and 0.419 m for whole



Fig. 7. The distribution of peak wave heights of data used for model training.

Fig. 8. Scatter plot of estimated and observed wave heights of 25 selected typhoons
in model training.

Fig. 6. The paths of eight typhoons used for model verification during 2000–2006.
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data. High correlation coefficient and low RMSE shows excellent
validity of model calibration.
4.2. Model verification

The four criteria were listed in Table 1 for eight cases of model
verification. Here, four typhoons, Yagi (2000), Mindulle (2004),
Matsa (2005), Shanshan (2006), were selected to indicate the per-
formance of the time series of the calculated and observed wave
heights shown in Figs. 9–12, respectively. In these figures, the solid
lines denote the calculated wave heights simulated by the pro-
posed ANN model and the dashed lines represent those by the MI-
KE21_SW model.

After Typhoon Yagi (2000) was formed on 21 October at a posi-
tion of (145.9�E, 20.1�N), very far to the eastern of Taiwan, it
moved to the west until it reached the northeastern waters of Tai-
wan at noon on 25 October. Throughout the duration of the ty-
phoon, the maximum wind speed was 33 m/s. After 25 October,
Typhoon Yagi weakened and made a U-turn to the north-east
and moved slowly for 2 days. Typhoon Yagi dissipated after 27
October. The path of Typhoon Yagi is shown in Fig. 6. Fig. 9 plots
the observed and computed heights of the waves. When Typhoon
Yagi arrived in Taiwan, Hualien harbor was located under the left
half of the typhoon. The wave heights computed by both models
for the period in which wind waves grew exceeded the observed
heights by approximately 0.5 m. However, when Typhoon Yagi ap-
proached Taiwan and moved slowly, the computed wave height by
the MIKE21_SW model was higher than the observed height by
1.09 m due to the accumulated wind energy input. Both computed
and observed heights showed the wave decay for the typhoon’s
departure. The simulated wave heights by the proposed ANN mod-
el were similar to the observed heights by RMSE = 0.38 m, or
approximately half of that of the MIKE21_SW model. The proposed
ANN model simulates a peak by a difference of 0.08 m with the ac-
tual peak observed at a 5 h delay.

Typhoon Mindulle (2004) was formed on 23 June south-east of
Taiwan and moved to the west for 5 days. In 30 June, Typhoon Min-
dulle made a right-angled turn in the waters to the north of the
Philippines, at approximately (122.0�E, 19.6�N), then passed over
Taiwan and then proceeded northwards after 2 July. The maximum
wind speed during Typhoon Mindulle reached 45 m/s. As Typhoon
Mindulle approached Taiwan, the Hualien harbor was in the right
side of the storm. Fig. 10 shows the observed and computed wave
heights. The MIKE21_SW model accurately simulated the rapid in-
crease in wave height until 29 June, and then produced a poor pre-
diction between 30 June and 2 July. The large difference of 3.5 m
results from the invalid wind field without considering the land ef-
fect. The wind speed was actually very much reduced very much
over the high mountains along central Taiwan. When Typhoon
Mindulle left Taiwan, the computed decaying wave heights agreed
fairly well with the observed wave heights. Thus, the computed
peak height agreed well with the observed peak wave height,
which had a value of 5.50 m and differed by only 0.23 m from
the computed peak. However, the time of computed peak occurred
36 h before the observed peak. The present ANN model provides a
reliable measurement of the peak height, with an error of 0.39 m
and shows no delay in the occurrence time of the data. The RMSE
value of 0.62 m between the heights computed by the proposed
ANN model and the observed heights for the whole period were
less than RMSE = 0.96 m of the MIKE21_SW model.

According to Fig. 6, Typhoon Matsa (2005) moved to Taiwan
from the south-east and then moved towards China. The path of
Typhoon Matsa appeared to be a straight line. Typhoon Matsa trav-
eled from 31 July to 9 August. Typhoon Matsa strengthened during
the period from 3 August to 5 August and had a maximum wind
speed of 40 m/s. Hualien harbor was located on the left side of
Typhoon Matsa throughout the duration of this storm. Fig. 11
shows the computed and observed wave heights for Typhoon
Matsa. As the waves grow, the wave heights computed by the



Table 1
Four performance indices of the results computed for eight typhoons in the verification stage.

Year 2006 2005 2004 2003 2000

Name of typhoon Shanshan Talim Matsa Aere Mindulle Imbudo Soudelor Yagi

Hs,p (m) 4.24 7.53 3.18 3.68 5.50 3.71 3.71 2.55

R SW 0.31 0.91 0.92 0.78 0.74 0.90 0.86 0.83
ANN 0.72 0.94 0.91 0.74 0.85 0.91 0.91 0.81

RMSE (m) SW 0.83 0.68 0.45 0.58 0.96 0.80 0.40 0.73
ANN 0.56 0.56 0.30 0.53 0.62 0.51 0.41 0.38

DHs,p (m) SW �1.28 �2.09 0.59 0.15 �0.23 2.09 �0.80 1.09
ANN �0.33 �0.76 �0.16 �0.11 �0.39 0.73 �0.82 �0.08

Dtp (hr) SW �143 10 �13 3 �36 0 �9 10
ANN 0 �3 6 7 0 0 �3 5

Observation  [m]
MIKE21_SW(NCEP) [m]
MIKE21_SW+ANN  [m]

00:00
2000-10-22

00:00
10-23

00:00
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H
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m
)

2000_Yagi

Fig. 9. The measured and simulated wave heights for Typhoon Yagi (2000).
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MIKE21_SW model agree fairly well with the observed heights
ahead the peak. The peaks simulated by the MIKE21_SW model
were ahead by 13 h and showed a deviation from the observed
peak of approximately 0.59 m. When Typhoon Matsa passed by
Taiwan after 4 August, a decline in the waves was observed and
the heights were approximately 1 m smaller than those computed
by the MIKE21_SW model. During this period, wind speeds ob-
tained by the RVM model exceeded the actual wind speeds that
were weakened by the shelter of the islands. Although the pro-
posed ANN model poorly simulated the occurrence time of the
peak due to a 6 h delay, the calculated peak was close to the ob-
served peak.

Fig. 6 indicates that Typhoon Shanshan (2006) traveled in a
noticeably different path for 11 days. Typhoon Shanshan started
on 9 September at a position (138.7�E, 13.3�N) far to the southeast
of Taiwan and moved towards the northwest with gradual increase
in wind speed until 12 September. After this time, Typhoon
Shanshan moved west for 2 days and made a right-angle turn to
move along the eastern waters of Taiwan. On 16 September,
Typhoon Shanshan stayed in offshore waters northeast of Taiwan
for a while, became weak and moved to Japan. Typhoon Shanshan
had a maximum wind speed of 43 m/s on 15 September. Hualien
harbor was located in the left half of Typhoon Shanshan through-
out the duration of the storm. Fig. 12 shows the computed and ob-
served wave heights for Typhoon Shanshan. Before 15 September,
the wave heights located within Typhoon Shanshan varied signifi-
cantly and moved with a different wind speed and a large change
in direction. The MIKE21_SW model had a small peak on 10
September which exceeded the observed peak by 1 m. The ob-
served peak was 4.24 m and occurred at 8 pm on 15 September.
The MIKE21_SW model did not produce simulations during the
peak so the difference between the computed and observed
heights at that time was 2.1 m. When Typhoon Shanshan began
moving towards Japan, the waves decayed sharply for 13 h and
deviated from the observed peak by approximately 0.59 m. The
low correlation coefficient (R = 0.31) and the large RMSE of
0.83 m illustrates that the MIKE21_SW model produced poor
calculations for all of the wave heights, including the physical
quantity and performance trends. The proposed ANN model mod-
ifies the poor simulation of the MIKE21_SW model to reduce the
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Fig. 10. The measured and simulated wave heights for Typhoon Mindulle (2004).
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Fig. 11. The measured and simulated wave heights for Typhoon Matsa (2005).
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number of incorrect peaks modeled and to enlarge the simulation
at the true peak. Thus, the occurrence time of the calculated peak
by the proposed ANN model coincides with that of the observed
peak.

Van Vledder and Holthuisen [36] demonstrated that the WAM
model still cannot accurately simulate waves in rapidly turning
winds. Typhoons Yagi (2000), Mindulle (2004) and Shanshan
(2006) made a U-turn or a right-angled turn during whole move-
ment so that the MIKE21_SW model cannot give good predictions
for these cases. However, the proposed ANN model properly im-
proves the worse wave simulation by the MIKE21_SW model for
these typhoons.

In all cases, when the typhoon is far from Taiwan, it has little
effect on the waves at Hualien. The wave heights, such as the
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Fig. 12. The measured and simulated wave heights for Typhoon Shanshan (2006).
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monsoon waves simulated by the MIKE21_SW model driven by the
NCEP wind field, were close to the measured data so that the pro-
posed ANN model had a slight promotion on such monsoon waves.
The correlation coefficient exceeded 0.7 for both methods, indicat-
ing a good agreement with the measured data for the entire time
series. The RMSE between estimated wave heights of each typhoon
by the proposed ANN model and measured ones was ranged from
0.30 to 0.62 m, with a mean of 0.41 m that was smaller than that
by the MIKE21_SW model, which had a mean of 0.68 m.

For the eight peak waves, Table 1 shows that the DHs,p from the
proposed ANN model ranged from �0.82 to 0.73 m, and that the
absolute values had a mean of 0.38 m. The other DHs,p, produced
from the MIKE21_SW model, ranged from �2.09 to 2.09 m. Those
absolute values had a mean of 1.04 m. The former mean DHs,p is
smaller than the latter value, which demonstrates that the peak
wave heights simulated from the proposed ANN model were supe-
rior to those produced by the MIKE21_SW model.

For the corresponding occurrence time of peak waves, Dtp pro-
duced from the proposed ANN model were within �3–7 h to the
actual peak waves. The mean of the absolute values of Dtp was
3 h. The other Dtp produced by the MIKE21_SW model was within
�143–10 h to the actual peak waves. Neglecting the largest time
difference, the mean of the absolute values of the seven Dtp was
11.7 h. The former mean Dtp was also less than the latter value,
indicating that the occurrence times of peak waves by the pro-
posed ANN model was much more accurate than those produced
by the MIKE21_SW model.

5. Conclusions

An average of three or four typhoons in 1 year pass through or
by Taiwan according to data statistics on the paths of typhoons
from 1897 to 2009 produced by the Central Weather Bureau
(CWB) in Taiwan. Thus, information on swell and wind waves
resulting from strong typhoons is very important for the safety of
the people and marine structures, such as fishery and seawalls,
in marine areas. Following the physical processes of wind waves
from different energy sources, numerical models have been devel-
oped to accurately calculate water waves in the sea. The applicable
Mike21_SW model was chosen to simulate typhoon waves in the
open sea in order to produce accurate calculations. Due to land ef-
fects on typhoon waves around Taiwan, the ANN model provides a
means of the calculations of typhoon waves currently produced
when a typhoon is near Taiwan. The proposed ANN model is driven
by local winds and waves simulated by the Mike21_SW model that
considers the mechanism of wind waves and the physical process
of wave propagation. Following the physical processes and key fac-
tors of wind waves, the proposed ANN model was found to provide
good simulations of typhoon waves and modifications on some of
the poor calculations produced by the Mike21_SW model. From
the model verification, the proposed ANN model was found to pro-
duce accurate calculations of the peak of each typhoon with an
average error of 0.38 m, while the occurrence time was delayed
by an average of 3 h. The proposed ANN model has a higher corre-
lation coefficient and a smaller RMSE than the Mike21_SW model
and shows the whole computed waves of each typhoon are well
consistent with observed waves.
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