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ABSTRACTr As computation speed increases, Monte Carlo simulation is becoming 
a viable tool for engineering design and analysis. However, restrictions are often 
imposed on multivariate cases in which the involved stochastic parameters are 
correlated. In multivariate Monte Carlo simulation, a joint probability distribution 
is required that can only be derived for some limited cases. This paper proposes a 
practical multivariate Monte Carlo simulation that preserves the marginal distri- 
butions of random variables and their correlation structure without requiring the 
complete joint distribution. For illustration, the procedure is applied to the relia- 
bility analysis of a bridge pier against scouring. 

INTRODUCTION 

As reliability related issues are becoming more critical in engineering 
design and analysis, proper assessment of stochastic behavior of an engi- 
neering system is essential. The true distribution for the system response 
subject to parameter uncertainty should be derived, if possible. However,  
due to the complexity of physical systems and mathematical functions, 
derivation of the exact solution for the random characteristics of the system 
response is difficult. In such cases, Monte Carlo simulation is a viable tool 
to provide numerical estimations of  the stochastic features of the system 
response. 

Monte Carlo simulation is like to repeatedly measuring the system re- 
sponse of interest under various system parameter sets generated from the 
known or assumed probabilistic laws. It offers a practical approach to re- 
liability analysis because the stochastic behavior of the system response can 
be probabilistically duplicated. 

Two major concerns in practical applications of Monte Carlo simulation 
are: (1) The requirement of tremendous computations for generating ran- 
dom variates; and (2) the presence of correlation among stochastic system 
parameters. In fact, the former concern is diminishing as the computing 
power increases. As for the second concern, it has been pointed out that 
neglecting correlation could have significant effect on  the result of  reliability 
analysis (Thoft-Christensen and Baker 1982). Therefore,  a proper assess- 
ment of joint probability density function (PDF) for the correlated param- 
eters is necessary in the generation of  multivariate random variables. Com- 
pared with a variety of univariate random variate generators, generating 
multivariate random variates is much more restricted to a few joint distri- 
butions such as multivariate normal, multivariate lognormal (Parrish 1990), 
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and multivariate gamma (Ronning 1977). If the random variables involved 
are correlated with a mixture of marginal distributions, the multivariate 
PDF is difficult to formulate. 

In most practical engineering problems involving multivariate random 
variables, one can determine the marginal distribution of each individual 
random variable and the first two moments including covariances or cor- 
relations. To generate correlated random variables (not necessarily all nor- 
mal), a methodology adopting a bivariate distribution model was suggested 
by Li and Hammond (1975). Based on Natal  bivariate distribution model, 
a set of semi-empirical formulas was derived by Der Kiureghian and Liu 
(1985) to reduce the necessary calculations. This set of formulas transforms 
the correlation coefficient of a pair of nonnormal random variables to its 
equivalent correlation coefficient in a bivariate standard normal space. Through 
this transformation, multivariate Monte Carlo simulation can be performed 
in a correlated standard normal space in which several efficient algorithms 
have been developed. 

This paper considers multivariate Monte Carlo simulation for correlated 
random variables with known marginal PDFs. Brief descriptions are given 
to some basic concepts of Monte Carlo simulation and the multivariate 
distribution model from which the semi-empirical formulas were originated. 
Random variates generated by the proposed Monte Carlo simulation are 
examined to check whether the distributional properties of the original 
stochastic variables are preserved. For demonstration, an example applying 
the proposed Monte Carlo simulation procedure is applied to a reliability 
analysis of bridge pier scouring. 

MONTE CARLO SIMULATION 

Simulation is a process of replicating the real world based on a set of 
assumptions and conceived models of reality (Ang and Tang 1984). Because 
the purpose of a simulation model is to duplicate reality, it is an effective 
tool for evaluating the effect of different designs on system performance. 
Monte Carlo procedure is a numerical simulation to reproduce random 
variables preserving the specified distributional properties. 

For a univariate problem, many algorithm have been developed to gen- 
erate univariate random numbers of various distributions (Dagpunar 1988). 
These univariate algorithms often serve as the building blocks for multi- 
variate Monte Carlo simulation problems. In a multivariate problem, the 
joint CDF for the random variables involved is required. If all random 
variables are statistically independent, multivariate generation can be ac- 
complished by the appropriate univariate algorithms. 

In most applications of multivariate Monte Carlo simulation, an assump- 
tion is often made of a multivariate normal distribution for the stochastic 
parameters involved. To generate multivariate standard normal random 
variates, several algorithms can be applied. One commonly used approach 
is the orthogonal transformation (Ang and Tang 1984). The algorithm de- 
composes the correlated normal random variables into uncorrelated ones, 
thus, each individual uncorrelated normal random variable can be dealt with 
separately. Then, several procedures such as the Box-Muller algorithm (Box 
and Muller 1958) can be applied to generate univariate normal random 
variates. Once the uncorrelated standard normal variates are produced, they 
are converted back to the correlated normal variates through the inverse 
orthogonal transform. 
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PROPOSED MULTIVARIATE MONTE CARLO 
SIMULATION PROCEDURE 

In many practical engineering analyses, random variables are often sta- 
tistically and physically dependent. Furthermore, distribution types for the 
random variables involved can be a mixture of different distributions. To 
properly replicate such systems, Monte Carlo simulation should be able to 
preserve the correlation relationship among the stochastic parameters and 
their distributions. 

However, derivation of the joint CDF which describes the complete mul- 
tivariate characteristics of random variables is generally difficult. This dif- 
ficulty, in both theory and practice, increases with the number of random 
variables and the type of corresponding distributions. As a practical alter- 
native, this section describes a procedure to generate multivariate random 
variates that preserves the marginal distributions and correlation structure 
of the random variables involved. In doing so, the difficulty of requiring a 
complete joint PDF in multivariate Monte Carlo simulation is circumvented. 

Transformation Formulas 
The proposed Monte Carlo simulation procedure employs a set of semi- 

empirical formulas developed by Der Kiureghian and Liu (1985). Instead 
of obtaining the joint distribution, these formulas transform the correlation 
coefficients of the original stochastic parameters to the equivalent corre- 
lation coefficients in standard normal space by using the following Nataf's 
bivariate distribution model: 

fcc f~ (Xi__~LiI(Xj__~Lj 1 
o,j = - -  y .  & ,  dy j  . . . . . . . . . . .  (1)  

-= \ ~ I \ % I 

in which Y; and Yj = the two correlated standard normal random variables 
having the equivalent marginal cumulative probabilities corresponding to a 
pair of stochastic parameters, X; and Xj, in the original space; p* = the 
correlation coefficient between Y~ and Yj; pq = the correlation coefficient 
between Xi and Xj; I~i and ~ri are, respectively, the mean and standard 
deviation of X;; +q = the bivariate normal PDF of zero means, unit standard 
deviations, and correlation coefficient p,~. 

To avoid the required computation for solving p/~ in (1) when the cor- 
relation coefficient pq and the marginal distributions of Xi and X i are given, 
Der Kiureghian and Liu (1985) developed a set of semi-empirical formulas 
a s  

=  ijp,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 2 )  

in which Tq = transformation factor depending on the marginal distributions 
and correlation of the two random variables considered. In the case that 
the pair of random variables under consideration are both normal, the 
transformation factor, Tq, has a value of one. Given the marginal distri- 
butions and correlation for a pair of stochastic parameters, the formulas of 
Der Kiureghian and Liu (1985) compute the corresponding transformation 
factor, Tq, to obtain the equivalent correlation p~ as if the two stochastic 
parameters were bivariate normal random variables. After all pairs of sto- 
chastic parameters are treated, the correlation matrix in the correlated nor- 
mal space, Rv, is obtained. 

As aforementioned, the transformation factor is a function of the cor- 
relation coefficient between a pair of stochastic variables and their marginal 
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Distr ibut ion of  Variable j 
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T3S ] 

N = N o r m a l  T I S  = T y p e - I  S m a l l e s t  V a l u e  
U = U n i f o r m  L = L o g - N o r m a l  
E -- S h i f t e d  E x p o n e n t i a l  G = G a m m a  
R = S h i f t e d  R a y l e i g h  T 2 L  = T y p e - 2  L a r g e s t  V a l u e  
T I L  = T y p e - 1  L a r g e s t  V a l u e  T 3 S  = T y p e - 3  S m a l l e s t  V a l u e  
Pu = C o r r e l a t i o n  c o e f f i c i e n t  ~ = C o e f f i c i e n t  o f  v a r i a t i o n  

FIG. 1. Schematic Description of Categories of Transformation Factor T 0 

distributions. Therefore, for each combination of two distributions, there 
is a corresponding formula. A total of 54 formulas for 10 different distri- 
butions were developed and they were divided into five categories as shown 
in Fig. 1. The complete forms of these formulas can be referred to Der 
Kiureghian and Liu (1985) or Liu and Der Kiureghian (1986). 

Two conditions are inherently considered in the bivariate distribution 
model of (1): 

1. The mapping relationship given below is a one-to-one correspondence 
satisfying 

Yi = *-l[Fi(Xi)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

in which qb = the standard normal CDF. This condition preserves the 
probability content in both original and normal spaces. 

2. The value of the correlation coefficient in the normal space lies be- 
tween - 1  and 1. 
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Proposed Procedures 
The proposed multivariate Monte Carlo simulation involves two basic 

steps: 

1. Step 1. Transformation to standard normal space. Through (2), the 
operational domain is transformed to a standard normal space in which the 
transformed stochastic parameters are treated as if they were multivariate 
standard normal random variables with the  correlation matrix Rr. As a 
result, multivariate normal random variates can be obtained by the orthog- 
onal transform technique described previously. 

2. Step 2. Inverse transformation. Once the standardized multivariate 
normal random variates are generated, then, according to (3), one can do 
the following inverse transformation 

X, = F~ -~ [qb(y,)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 

to compute the values of multivariate random variates in the original space. 
Fig. 2 is a flow chart outlining the proposed procedure. 

VERIFICATION OF PROPOSED SIMULATION PROCEDURE 

The major concern with the proposed Monte Carlo simulation procedure 
is its ability to preserve the correlation structure and marginal distributions 
of stochastic parameters in the original space. The original correlation matrix 
is checked against the one generated from the proposed Monte Carlo sim- 
ulation. Furthermore, consistency of the assigned distributions of stochastic 
parameters and the random variates generated from the proposed procedure 
is examined by Kolmogorov-Smirnov test. More specifically, this verification 
study examines respectively the means, standard deviations, and correlation 
coefficients of the generated random variates along with the significance 
probabilities in Kolmogorov-Smirnov test. The antithetic-variates technique 
was applied here to reduce the sampling variability of the relevant statistics 
and test index. 

Experiments 
In the verification experiments, three random variables with seven dif- 

ferent mixtures of distributions, listed in Table 1, were used. Referring to 
Table 2, although different in sample sizes and numbers of simulation runs, 
a total of 5,000 random variates was kept constant for each individual ran- 
dom variable in each of the seven cases shown in Table 1. The purpose of 
doing it is to examine the effect of sample size on the simulation results. 
Representative results are shown in Tables 3, 4, 5, and 6. Furthermore, 
different correlation structures were used to examine the performance of 
the proposed simulation procedure. In all cases, the population (true) values 
of the correlation coefficients, means, and standard deviations used in the 
verification are given in the second column of Tables 3-8.  

In each simulation run the performance criteria using percentage errors 
of relevant statistics are computed and they are: 

1. Percentage of biasness (eb): 

1 g 
eb = ~1 ~ ei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 
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Given correlat ion matr ix  R x and marginal  dis t r ibut ion F i. 

T rans fo rm correlat ion matr ix R x to R r in the equivalent  
correlated s t anda rd  normal  space by Eq.(2). 

Find eigenvector and  eigenvalue matr ices of R z 
by orthogonal  t ransformat ion  

Genera te  independen t  s tandard  normal  r andom variates  Z. 

T rans fo rm the independent  s t andard  normal  variates  Z 
to correlated s t andard  normal  variates Y by inverse 
or thogonal  t ransformation.  

T rans fo rm the correlated s tandard  normal  var ia tes  Y 
to correlated non-normal  random variates X 
by inverse t ransformat ion  using Eq.(3). 

FIG. 2. Flow Chart of Proposed Monte Carlo Simulation Procedure 

TABLE 1. Different Cases Considered in Verification Study 

Case Variable 1 Variable 2 Variable 3 
(1) (2) (3) (4) 

Normal 
Uniform 
Log-normal 
Gamma 
Normal 
Normal 
Log-normal 

Normal 
Uniform 
Log-normal 
Gamma 
Uniform 
Log-normal 
Gamma 

Uniform 
Log-normal 
Gamma 
Log-normal 
Gamma 
Gumbel (max) 
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TABLE 2. D~erent Sample Sizes and Simulation Runs Used in Verification Study 

Combination Sample size Number of simulation runs 
(1) (2) (3) 

1 50 100 
2 100 50 
3 200 25 
4 500 10 

TABLE 3. Verification of Proposed Simulation Procedure Based on 50 Samples 
along with 100 Simulation Runs for Correlation Coefficients 

Case True Error 
Variable pair value criteria 1 2 3 4 5 6 7 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (1 O) 

Variables 1 and 2 0.45 eb (%) 0.26 --.46 --5.69 0.05 --1.19 --3.09 0.37 
Variables l a n d 2  0.45 e m a b s ( %  ) 13.42 12.94 15.26 13.73 14.13 13.44 13.62 
Variables l a n d 2  0.45 erms(%) 16.18 15.89 19.41 16.95 17.55 17.09 16.86 
Variables 1 and 3 0.30 eb (%) 1.17 --3.81 --3.90 --7.67--0.40 --0.12 --0.04 
Variables 1 and 3 0.30 emabs (%) 26.18 25.50 26.03 29.49 22.51 22.20 29.05 
Variables 1 and3 0.30 er~. (%) 32.25 31.35 32.83 36.00 27.98 27.65 35.44 
Variables 2 and 3 0.42 eb (%) 3.01 --4.22 --3.13 --2.06 --1.95 --2.42 --4.08 
Variables 2 and 3 0.42 em,bs (%) 15.86 16.98 16.63 15.41 14.49 17.28 16.41 
Variables2and3 0.42 e,,~(%) 19.67 21.43 21.23 20.08 18.10 21.08 21.34 

where M = the number  of simulation runs and ei = the percentage error 
between the true and simulated values for a specified statistical parameter  
0 of interest. That is 

0 , -  0s/ 
ei = - -  (i = 1 , 2 , . . .  , M )  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6) 

0t 

with 0, and 0si being the true values and simulated values from the ith run, 
respectively. In the verification, the relevant statistics, 0, are the means,  
standard deviations, and correlation coefficients of the stochastic parameters 
involved. 

2. Mean-absolute percentage error (e,~abs): 

1 
[ei[ (7) emabs : ~1 i= 1 " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3. Root-mean-squared percentage error (er,~): 

erm =(l e i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Antithetic-Variates Technique 
Since the relevant statistics in verification are computed from the gen- 

erated random variates, certain degrees of sampling error and variability 
exist. To reduce variability in the estimated statistics, the antithetic-variates 
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TABLE 4. Verification of Proposed Simulation Procedure Based on 50 Samples 
along with 100 Simulation Runs for Correlation Coefficients for Marginal Statistical 
Properties and Distributions 

Variable 
(1) 

1 Mean 
1 Mean 
1 Mean 
1 STD 
1 STD 
1 STD 
1 K-S Pr 
1 K-S Pr 

2 Mean 
2 Mean 
2 Mean 
2 STD 
2 STD 
2 STD 
2 K-S Pr 
2 K-S Pr 

3 Mean 
3 Mean 
3 Mean 
3 STD 
3 STD 
3 STD 
3 K-S Pr 
3 K-S Pr 

True Error 
value criteria 

(2) (3) 

7.25 eb (%) 
7.25 em,bs (%) 
7.25 e,,,, (%) 
2.73 eb (%) 
2.73 e,~,b, (%) 
2.73 e,, ,  (%) 

[Average (%)] 
[Number of rejections] 

7.67 eb (%) 
7.67 e.,.b , (%) 
7.67 e,,,~ (%) 
2.60 eb (%) 
2.60 emabs (%) 
2.60 er~ (%) 

[Average (%)] 
[Number of rejections] 

6.92 eb (%) 
6.92 e,,,,b, (%) 
6.92 erm, (%) 
2.82 eb (%) 
2.82 e~,~, (%) 
2.82 e,,,~ (%) 

[Average (%)] 
[Number of rejections] 

Case 

1 2 3 4 5 6 7 
(4) (5) (6) (7) (8) (9) (1 O) 

0.12 0.15 0.47 -0 .10 0.23 0.05 0.23 
3.21 3.28 2.82 3.28 3.00 2.78 2.72 
3.93 4.21 3.51 4.05 3.86 3.48 3.53 

- 0.07 - 0.48 - 1.70 - 0.92 - 0.81 - 0.80 -0.73 
4.78 2.59 7.13 6.10 5.37 4.95 6.87 
5.84 3.27 8.79 7.56 6.53 6.06 8.60 

52.84 51.21 51.96 49.12 54.56 55.85 51.35 
0 0 1 1 1 0 0 

0.23 -0 .24 0.20 -0.07 0.38 0.03 0.25 
2.77 2.66 2.45 2.78 3.04 2.57 2.33 
3.47 3.38 3.03 3.53 3.77 3.23 2.98 

-0.52 -0 .66 -2.55 -0 .34 0.44 -1.79! -0 .92 
5.23 3.80 6.57 6.14 4.29 7.39 5.69 
6.35 4.79 8.24 7.67 5.40 9.30 7.30 

50.64 54.02 52.76 54.97 50.24 56.24 55.66 
0 0 0 1 0 0 0 

-0.02 0.95 0.81 -0.19 -0.42 -0.13 0.51 
2.90 3.19 3.33 3.23 3.34 3.20 2.83 
3.60 4.08 4.28 4.00 4.01 3.93 3.43 

-0.20 0.01 0.50 -0 .80 -3.09 -0.81 -0.16 
4.53 2.46 8.57 6.01 7.46 6.17 7.93 
5.47 3.08 10.39 7.61 9.43 7.75 10.07 

54.56 51.25 50.77 51.71 52.19 51.76 54.71 
0 1 1 0 0 0 0 

TABLE 5. Verification of Proposed Simulation Procedure Based on 500 Samples 
along with 10 Simulation Runs for Correlation Coefficients 

True Error Case 
Variable pair value criteria 1 2 3 4 5 6 7 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (1 O) 

Variables 1 and 2 0.45 e b (%) -0 .54 -1.60 2.77 -1 .34 -4.3t  -0 .04 1.75 
Variables 1 and 2 0.45 em,bs (%) 4.571 2.60 5.14 5.99 5.77 4.14 5.28 
Variables 1 and 2 0.45 e,ms (%) 5.58 3.41 6.75 7.71 6.61 4.37 6.14 
Variables 1 and 3 0.30 eb (%) 2.69 -0 .70 5.14 -1.41 -4 .72 2.68 0.05 
Variables 1 and 3 0.30 era,b, (%) 6.471 6.08 8.44 10.73 8.43 5.45 6.31 
Variables 1 and 3 0.30 erm s (%) 7.91i 8.24 11.14 13.00 10.08 6.66 7.58 
Variables 2 and 3 0.42 e b (%) 0.19 -1.60 0.47 -2.38 -2.32 -0 .29 -0.11 
Variables 2 and 3 0.42 em,bs (%) 2.28 3.65 4.87 5.68 3.54 3.36 5.63 
Variables 2 and 3 0.42 erm, (%) 2.83 4.19 6.13 6.93 4.54 4.12 6.76 
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TABLE 6. Verification of Proposed Simulation Procedure Based on 500 Samples 
along with ;imuiation Runs for Marginal Statistical Properties and Distributions 

Variable 
(1) 

1 Mean 
1 Mean 
1 Mean 
1 STD 
1 STD 
1 STD 
1 K-S Pr 
1 K-S Pr 

2 Mean 
2 Mean 
2 Mean 
2 STD 
2 STD 
2 STD 
2 K-S Pr 
2 K-S Pr 

3 Mean 
3 Mean 
3 Mean 
3 STD 
3 STD 
3 STD 
3 K-S Pr 
3 K-S Pr 

True Error 
value criteria 

(2) (3) 

7.25 eb (%) 
7.25 emabs (%) 

7.25 erm, (%) 
2.73 eb (%) 
2.73 emat, s (%) 
2.73 e,m~ (%) 

]Average (%)] 
]Number of rejeetions] 

I 
7.67 eb (%) 
7.67 e,,,b, (%) 
7.67 erm s (%) 
2.60 eb (%) 
2.60 e,~,b , (%) 
2.60 er,~ (%) 

]Average (%)] 
]Number of rejections] 

6.92 ] eb (%) 
6.92 e,,,ab , (%) 
6.92 erm s (%) 
2.82 eb (%) 
2.82 emab, (%) 
2.82 er,,~ (%) 

]Average (%)] 
[Number of rejections] 

Case 

1 2 3 4 5 6 7 
(4) (5) (6) (7) (8) (9) (1 O) 

0.41 -0 .16 -0.35 0.17 0.57 0.17 0.45 
1.01i 0.78 0.49 0.98 1.09 0.78 0.76 
1.111 0.91 0.72 1.10 1 . 2 3  0.99 0.93 

-0 .06 - 0 3 9  0.37 -0 .47 -0.71 -0 .20 1.40 
1.06 0.84 1.26 2.74 1.10 1.59 2.82 
1.56 0.93 1 . 6 5  3.48 1.36 2.12 3.59 

43.03 44.93 56.62 42.92 43.51 41.63 54.53 
0 0 0 0 0 1 0 

0.50 -0 .19 0.17 -0.52 0.42 0.72 0.18 
0.81 0.65 0.70 1.i1 0.79 0.86 0.83 
1.11 0.76 0.88 1.36 0.85 1.09 0.95 

-0.01 -0.44 1.48 1.18 -1.18 1.37 -0.61 
1.38 1 . 2 3  1 .9% 1.64 1.29 2.55 2.24 
1.61 1.58 2.41 1 . 9 1  1.56 3.52 2.98 

49.95 58.47 59.74 45.27 51.93 62.46 56.02 
0 0 0 0 0 0 0 

0.22 0.60 -0.09 -0.35 0.82 0.35 0.13 
0.86 1 . 1 1  0.52 1.16 1 . 1 9  1.00 0.78 
1.14 1.50 0.65 1.44 1 . 6 1  1.47 0.91 
0.32 -0.08 2.11 -1.51 1.68 -0 .70 -0 .39 
1.95 0.47 3.13 2.33 4.34 1.89 1.24 
2.30 0.64 3.98 2.99 4.62 2.13 1.68 

47.21 49.84 55.74 50.27 47.15 42.77 67.58 
0 0 0 0 0 0 0 

TABLE 7. Verification of Proposed Simulation Procedure Based on 500 Samples 
with 10 Simulation Runs for Case of Strong and Negative Correlation for Correlation 
Coefficients 

True Error 
Variable pair value criteria 

(1) (2) (3) 

Variables 1 and 2 0.80 eb (%) 
Variables 1 and 2 0.80 em,bs (%) 
Variables 1 and 2 0.80 e,,~ (%) 
Variables I and 3 -0.30 eb (%) 
Variables 1 and 3 -0 .30 era,b, (%) 
Variables 1 and 3 -0.30 e~, (%) 
Variables 2 and 3 -0 .42 eb (%) 
Variables 2 and 3 -0 .42 e,,,b , (%) 
Variables 2 and 3 -0,42 e,,,~ (%) 

Case 

1 2 3 4 5 6 
(4) (5) (6) (7) (8) (9) 

0.10 0.28 1.14 0.09 0.52 0.25 
0.99 1.35 1.56 0.71 0.79 0.91 
1.11 1.59 1.78 0.86 0.93 1.12 

-0 .60 -2.45 -0 .54 -1.49 3.25 -3.06 
8.24 7.15 5.97 5.59 4.66 7.19 

10.06 8.52 7.19 6.06 6.53 9.33 
0.54 -0.31 -1.41 -1 .66 1.20 -3.21 
4.97 4.41 3.63 3.89 3.62 4.61 
5.88 5.06 4.84 5.30 4.11 5.87 

7 
(I0) 

- 0 . 4 8  

1.18 
1.40 
2.68 
7.53 
9.20 
0.52 
3.85 
5.06 
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TABLE 8. Verification of Proposed Simulation Procedure Based on 500 Samples 
with 10 Simulation Runs for Case of Strong and Negative Correlation for Marginal 
Statistical Properties and Distributions 

Variable 
(t) 

1 Mean 
1 Mean 
1 Mean 
1 STD 
1 STD 
1 STD 
1 K-S Pr 
1 K-S Pr 

2 Mean 
2 Mean 
2 Mean 
2 STD 
2 STD 
2 STD 
2 K-S Pr 
2 K-S Pr 

3 Mean 
3 Mean 
3 Mean 
3 STD 
3 STD 
3 STD 
3 K-S Pr 
3 K-S Pr 

True Error 
value criteria 

(2) (3) 
7.25 eb (%) 
7.25 i emabs (%) 
7.25 em,s (%) 
2.73 e b (%) 
2.73 e,, , , ,b s (%) 
2.73 e,m, (%) 

[Average (%)] 
[Number of rejections] 

7.67 e b (%) 
7.67 em,~s (%) 
7.67 erm s (%) 
2.60 eb (%) 
2.60 e,,,bs (%) 
2.60 erms (%) 

[Average (%)] 
[Number of rejections] 

6.92 eb (%) 
6.92 e,,,,b~ (%) 
6.92 erm, (%) 
2.82 eb (%) 
2.82 emabs (%) 
2.82 e,~s (%) 

[Average (%)] 
[Number of rejections] 

Case 

1 2 3 4 5 6 7 
(4) (5) (6) (7) (8) (9) (1 O) 

-0.03 -0.56 0.14 -0.31 -0.2? 0.69 -0.11 
0.78 1.14 0.68 1.24 0.66 1.01 1.00 
0.88 1.35 0.82 1.57 0.84 1.10 1.13 

-0.09 -0.19 0.26 -0.85 0.51 -0.10 -0.06 
1.32 1 . 3 1  2.68 1.57 1.95 1.43 2.61 
1.65 1.45 3.36 2.11 2.27 1.74 3.46 

58.38 48.70 49.49 41.37 60.62 51.71 42.77 
0 0 0 0 0 0 0 

-0.47 -0.27 0.45 0.01 0.09 0.73 0.03 
0.77 0.85 0.75 0.96 1.08 1.07 0.61 
0.84 1.01 0.88 1.17 1.18 1.22 0.81 

-0.22 0.81 1.11 0.56 -0.01 0.61 -0.59 
1.78 1.04 2.13 1.29 1.07 2.88 2.48 
2.10 1.!3 2.48 1.53 1.26 3.43 2.67 

47.81 59.23 51.26 46.00 48.21 49.51 62.69 
0 0 0 0 0 0 0 

0.27 0.40 -0.08 -0.31 -0.14 -0.64! 0.32 
0.88 1 . 0 1  0.57 1.06 1.36 1.31 1.18 
0.95 1.16 0.74 1 . 2 1  1.50 1 . 6 1  1.56 
0.16 -0.36 -0.94 -0.12 1.95 -0.41 0.67 
2.04 0.81 1.98 1.42 2.80 3.02 1.84 
2.38 1.05 3.15 1.90 3.81 3.53 2.30 

58.12 48.36 59.49 41.37 45.84 44.07 45.92 
0 0 0 0 0 1 0 

technique (Ang and Tang 1984) is applied. By the antithetic-variate tech- 
nique, the statistical properties of interest, 0, are computed by 

1 
6 = ~ (61 ~- 62) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9) 

where 01 and 02 are the two unbiased estimators of 0. A simple antithetic- 
variates algorithm (Dagpunar 1988) to reduce the variance is to generate 
01 and 02 based on random number sets U and l-U, with U being the uniform 
random variable in (0, 1), which results a negative correlation between 01 
and 6> 

Kolmogorov-Smirnov Test 
To examine whether the proposed Monte Carlo simulation procedure 

could genera te  r a n d o m  var ia tes  that  p r e se rve  the  known  marg ina l  distri- 
butions of  the  s tochast ic  p a r a m e t e r s  invo lved ,  the  g e n e r a t e d  r a n d o m  var ia tes  
are examined  by the  K o l m o g o r o v - S m i r n o v  (KS) test  (Press  et  al. 1989). T h e  
reason for  choosing KS test  is to avoid  unnecessa ry  b inning of  da ta  that  
could cause loss of  in fo rmat ion .  In  the  KS test ,  the  null  hypothes is  is that  
the genera ted  r a n d o m  var ia tes  have  the  same  marg ina l  d is t r ibut ion  as t he  
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one used in simulation. The test statistic D is the maximum absolute dif- 
ference between the distribution functions for the true stochastic variable 
under consideration and the generated random variates. Then, the signifi- 
cance level associated with the observed maximum absolute difference shows 
the likelihood that the random maximum absolute difference would exceed 
the observed value. A smaller probability means a stronger disparity be- 
tween the null hypothesis and the data. A significance level of 0.05 is com- 
monly used in the test below which the null hypothesis is rejected. 

Results 
To show the relative precision of the simulated results, the two extreme 

cases in Table 2 of 50 samples with 100 simulation runs and 500 samples 
with 10 simulation runs are presented in Tables 3, 4, 5, and 6, respectively. 
In all seven cases, the values of e,,,,b, and erms associated with the simulated 
statistical properties are large when the sample size is small and their values 
decrease monotonically as the sample size increases. However, the values 
of percentage bias, eb, for all different sample sizes are practically zero. This 
shows that the proposed simulation procedure could generate statistics that 
have little or no systematic error. Based on this observation, the verification 
experiment adopts the larger sample size. 

Table 5 shows the values of the different error criteria for the correlation 
coefficients computed from the proposed Monte Carlo simulation procedure 
based on 500 samples. Judging the values of emabs and erms, the proposed 
Monte Carlo simulation procedure is capable of generating random variates 
that closely preserve the original correlation structure of the stochastic pa- 
rameters when the sample size is moderate or large. Furthermore, Table 6 
lists the true and simulated statistical moments for each stochastic param- 
eter. The small values of percentage errors associated with e,,,bs and erm~ 
indicate that the simulated results well preserve the true moments. 

To show the ability of the proposed simulation procedure to preserve the 
original marginal distributions, values of averaged significance probability 
of the KS test and the number of rejections during the 10 simulation runs 
are shown in Table 6. The only rejection occurred for variable 1 in case 6. 
The averaged significance probabilities are much greater than the commonly 
adopted rejection levels of 1-5 %. This indicates that the generated samples 
by the proposed simulation algorithm follow the true distribution quite 
closely. 

Condition adopted in Tables 5 and 6 for the experiment considers positive 
yet somewhat weak correlations among the random variables. To examine 
the performance of the proposed simulation procedure in a different con- 
dition, a stronger correlation coefficient 0.80 and two negative correlation 
coefficients, as listed in column 2 of Table 7, are used. The results shown 
in Tables 7 and 8, in general, do not reveal anything different from what 
have been observed in Tables 5 and 6. 

According to the results obtained from the verification experiment, the 
proposed Monte Carlo simulation procedure exhibits its ability to preserve 
the marginal distribution and other relevant statistical properties of non- 
normal correlated random variables. Therefore, the proposed procedure 
expands the applicability of the present multivariate simulation to accom- 
modate correlated, nonnormal random variables. 

APPLICATION 

For demonstration, the proposed Monte Carlo simulation procedure was 
applied to the reliability analysis of bridge pier scour using a simple model 
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developed by Johnson (1992). Different combinations of distributions of 
correlated stochastic parameters in the bridge pier scour model were used 
to examine the effect of distribution on the probability that the scour depth 
would exceed the designed pier depth. 

Pier Scour  M o d e l  
Johnson (1992) proposed an empirical pier scour model based on exper- 

imental data from various sources 

D, = 2.02Xy F~ -~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (10) 

in which Ds = the predicted scour depth; k = the model correction factor; 
y = the flow depth; b = pier width; F = the Froude number; and cr = 
the sediment gradation. Because the model is empirical by nature, uncer- 
tainties exist in both model itself and the inputs/parameters involved (Yeh 
and Tung 1993). Consequently, the scour depth computed from (10) is 
subject to uncertainty and it is likely that a specified design pier depth could 
be exceeded resulting in potential threat to bridge safety. 

Failure Probabi l i ty  E v a l u a t i o n  
The stochastic parameters considered in (10) are ;M y, F, and ~. The 

stochasticity of model correction factor, k, represents the model uncertainty 
associated the pier scour model whereas the randomness of y, F, and 
results from model input uncertainties. Their means and coefficients of 
variation are listed in Table 9. According to Johnson (1992), all stochastic 
variables, except the model correction factor k, are correlated random Var- 
iables with the correlation matrix given in Table 10. The model correction 
factor k is treated herein as an independent random variable. To examine 
the effect of distributions of stochastic parameters on the scour risk, three 
sets of distributional assumptions were used, which are: (1) All normal; (2) 

TABLE 9. Means and Coefficients of Variation (CV) of Parameters used in the 
Pier Scour Model (from Johnson 1992) 

Variables Mean CV 
(1) (2) (3) 

k 1.000 0.18 
y 4.250 0.20 
F 0.537 0.38 
~r 4.000 0.20 

TABLE 10. Correlation among Parameters used in the Pier Scour Model (from 
Johnson 1992) 

Variables X 
(1) (2) 

x 1.00 
y 0.00 
F 0.00 
~r 0.00 

Y 
(3) 

0.00 
1.00 

-0.33 
-0.79 

F 
(4) 

0.00 
- 0.33 

1.00 
0.29 

O" 

(4) 

0.00 
-0.79 

0.29 
1.00 
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all lognormal; and (3) mixture distributions that assign log-normal to ~ and 
~, gamma to y, and Weibull to F. 

Based on the marginal distributions and correlations for the stochastic 
parameters, 100,000 samples were generated by the proposed Monte Carlo 
simulation procedure to calculate the possible realizations of scour depths. 
Therefore, the failure probability PI for a certain designed pier depth, Dp, 
can be estimated as 

number of (Ds > De) . . . . . . . . . . . . . . . . . . . . .  (11) 
Pf = Pr(Ds > Dp) = 100,000 

Fig. 3 shows the effect of the probability distribution of stochastic pa- 
rameters on the failure probability curve. The discrepancy between the 
failure probability curves enlarges as the design pier depth increases. This 
suggests that accurate assessments of the marginal distributions of the pa- 
rameters involved is crucial for an accurate determination of failure prob- 
ability when it is small. The cases with all log-normal distribution and mix- 
ture of distributions have longer tails than the case with all normal distribution. 
Using a multivariate normal distribution results in underestimating the po- 
tential risk. In many reliability analyses, especially for highly safe structures 
where failure probability is small, accuracy in the tail probability estimation 
is important (Tung and Mays 1980). 

The effect of correlation among the stochastic parameters on the failure 
probability is shown in Figs. 4-6.  As can be observed, the discrepancy 
among the failure probability curves grows as the design pier depth increases. 
It is interesting to note that without considering the correlation among 
stochastic parameters, the resulting failure probability is higher than that 
considering correlation. Therefore, in this example, considering stochastic 
parameters as independent random variables yields a conservative estima- 
tion of failure probability. 

Although the failure probabilities shown in Figs. 4 -6  for the pier scour 
example vary less than order of magnitude, this does not imply that incor- 
poration of correlation information of stochastic variables is not essential 
in reliability analysis. In cases other than what is being considered, partic- 
ularly where there are high negative correlations, the accounting for cor- 
related variables may change the resulting failure probability by orders of 
magnitude (Thoft-Christensen and Baker 1982). 

SUMMARY AND CONCLUSIONS 

Monte Carlo simulation procedures are frequently applied in probabilistic 
analysis of engineering problems. The approach provides design engineers 
with essential information on system response under the stochastic envi- 
ronment and with valuable insight about the system behavior. 

In spite of being an effective tool, multivariate Monte Carlo simulation 
is much restricted by the dimension and, perhaps, more by the distribution 
type of correlated stochastic parameters. This study proposes a procedure 
to generate multivariate, nonnormal, correlated random variates based on 
the specified marginal distributions and correlation coefficients. The pro- 
cedure is based on the empiricalequations derived by Liu and Der Kiur- 
eghian (1986) which, according to the marginal distribution types of the 
stochastic parameters, transform the correlation coefficients from the orig- 
inal parameter space to those of standard normal space. In doing so, many 
efficient algorithms for generating multivariate normal random variates can 
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be applied. Therefore, the proposed procedure extends the applicability of 
multivariate Monte Carlo simulation. 

To ensure the proposed procedure would preserve the statistical char- 
acteristics of the original stochastic parameters, the generated correlation 
matrix and distribution are examined by a numerical verification. The results 
from the numerical verification indicate that the proposed procedure for 
multivariate Monte Carlo simulation can preserve the marginal distributions 
and the corresponding correlation structure very satisfactorily. 

For illustration, the proposed procedure is applied to assess the failure 
probability in a bridge pier scour problem. The results indicate that accurate 
estimation of reliability, especially in the tail part of the distribution, should 
account for relevant stochastic information including correlation and mar- 
ginal distributions. 

In practical engineering problems, probability distributions associated 
with the stochastic parameters are generally subject to uncertainty. This 
distributional model uncertainty could potentially have a significant effect 
on the results of reliability analysis, especially on the tail part of the dis- 
tribution. When the distribution types of stochastic parameters are uncer- 
tain, distributions that are potential candidates should be applied. In the 
past, multivariate Monte Carlo simulation can only be applied to a few 
distributional cases. The proposed procedure allows examination of the 
effect of probability model uncertainty due to its ability to handle various 
nonnormal, correlated random variables. 
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