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A set of semiconductor device model and parameters bridges the communities between circuit design and chip fabrication. In this article,
we present an intelligent extraction technique for obtaining a set of optimal model parameters of the surface-potential-based PSP model for the
sub-45-nm metal-oxide-semiconductor field effect transistors (MOSFETs). The proposed algorithm combines the standard velocity and position
update rules in a particle swarm optimization (PSO) algorithm, and the operations of differential mutation and probability crossover from a
differential evolution method. This differential approach can increase the diversity of the population and help particles escape from the local optimal
solutions. In addition, the adopted fitness function considers not only the error of the I − V curves, but also their first derivatives. Compared with
conventional engineering extraction strategy, the hybrid method extracts 14 DC parameters simultaneously for sub-45-nm N-MOSFET devices.
The best accuracy and interesting computational efficiency are obtained by several testing cases.

Keywords Differential evolution; Hybrid method; MOSFET; Parameter extraction; Particle swarm optimization; PSP.

Introduction

Compact models for metal-oxide-semiconductor field
effect transistors (MOSFETs) have been indispensable
bridges between device fabrication and integrated circuit
design over the past two decades [1–3]. Among the state-of-
the-art MOSFET compact models [4–9], surface-potential-
based models [10–12] are regarded as the advanced ones
to contain all relevant physical effects with the aggressive
down-scaling of complimentary metal-oxide semiconductor
(CMOS) technologies. The PSP model of MOSFETs
[11, 12] is one of the most popular surface-potential-
based models and has been selected as a new standard
for nanoscale CMOS devices [3]. However, the model’s
parameters should be carefully optimized so that the
model can describe the device’s electrical characteristics
as accurate as possible to measurements. Conventional
statistics and local numerical methods, such as curve fitting,
regression, and Newton iteration methods [13–16] have
been employed for deep-submicron MOSFET parameter
extraction. However, these existing methods have several
known deficiencies, as follows: (1) poor convergence
without good initial guesses; (2) much time is required to
seek an optimal solution; (3) difficulty with simultaneous
multiobjective optimizations; and (4) limited prediction
capability for the sub-45nm MOSFET era. Furthermore,
they also require a well-trained device engineer with
detailed knowledge of MOSFET models and optimization
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methods to master each extraction process. Extraction with
such local-based methods or tools may increase the product
manufacturing cost, prolong the product time to market,
complicate the design procedures, and reduce the model
accuracy and reliability [17].
The particle swarm optimization (PSO) algorithms [18,

19] were originally devised by Kennedy and Eberhart. It
is a cooperative search method inspired by the behavior
of birds flocking in search of food. The PSO algorithm
features its simple form, easy implementation steps, and
fast convergence. PSO has been applied to many real-
world problems successfully. However, PSO could fail or
become inefficient if the particles get trapped in local
minima. One effective method to avoid this premature
convergence problem is to increase the diversity of the
population. Differential evolution (DE) method [20–22]
is also a stochastic population–based optimization method
invented by Storn and Price. Its simple structure has drawn
much attention. DE employs the differential information
to guide its further search, compared with PSO. Methods
that combine PSO and DE may pursue fast convergence
and high diversity in the population [23–25]. Consequently,
computationally robust parameter extraction techniques for
searching a set of accurate and reliable parameters of the
PSP model [26, 27] are urgent in nowadays nanoscale
MOSFETs.
In this article, a hybrid optimization technique [17, 27–29]

is successfully implemented for PSP MOSFET compact
model parameter extraction. Our approach integrates the
operations of differential mutation and probability crossover
from DE and the standard velocity and position update
rules of PSO. The differential approach taken from DE is
used to increase the diversity of the population. Compared
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HYBRID DIFFERENTIAL EVOLUTION 389

with a conventional genetic algorithm (GA), DE, and PSO
[30–39], the approach exhibits better results in terms of
accuracy and efficiency. The error of current-voltage curves
and the error of their first derivatives are found to be less
than 1% and 2%, respectively. In particular, our hybrid DE-
PSO can overcome the difficulty to reduce transconductance
�Gm� error. Application of our hybrid DE-PSO to extract
parameters of several sub-45nm testing NMOSFETs with
different dimension is also successfully obtained in terms
of accuracy and computational efficiency.
This article is organized as follows. Section 2 briefs

the surface-potential-based PSP model. Section 3 illustrates
our parameter extraction configuration and optimization
technique. Section 4 shows the results for various tested
MOSFETs. Finally, we draw conclusions and suggest future
work.

The PSP model for MOSFETs

PSP is the latest and the most advanced compact
MOSFET model, compared with the charge-based BSIM
model [3]. It was developed by integrating and enhancing
the best electrical and physical properties of the two surface-
potential-based models SP (developed at the Pennsylvania
State University) [10] and MOS Model 11 [7] (developed
by Philips Research). The PSP has been selected as a new
industry standard for the next generation compact MOSFET
model by the Compact Modeling Council [3]. The drain
current of PSP model is given below:

IDS = BETN · Cox · F�L ·
q∗
im

Gvsat

· ��� (1)

where BETN is a model parameter, Cox is oxide capacitance,
q∗
im is the effective inversion charge, and �� is the

difference between drain end surface potential and source
end surface potential. Gvsat and F�L will be discussed
later. Next, we briefly introduce some essential equations
along with model parameters. More detailed introduction
and complete model equations can be found in [12]. The
bulk potential �B, which serves as a reference potential, is
given by

�B = DPHIB + 2�T ln�NEFF/ni�� (2)

where DPHIB and NEFF are model parameters to be
extracted. NEFF is related to substrate doping and
DPHIB modulates bulk potential shift. Drain-induced
barrier lowering (DIBL) is a significant effect in nanoscale
MOSFETs. The model parameter associated with DIBL is
CF and it controls the influence of drain bias on potential
barrier

�VG = CF · Vdsx� (3)

Interface states also have effects on the surface potential; in
PSP it is given by

�ss = �T ·
(
1+ CT · TKR

TKD

)
· xs (4)

�sd = �T ·
(
1+ CT · TKR

TKD

)
· xd� (5)

where CT is a model parameter associated with interface
states. The effective drain-source voltage is modeled by the
smooth function

Vdse =
VDS

�1+ �VDS/Vdsat�
AX	1/AX

� (6)

Model parameter AX determines the smoothness of the
transition. The following are equations related to the Gvsat

term in drain current model. They combine the mobility
model, velocity saturation effect, and series resistance
effect. FETA, BETN, RS, THESAT are model parameters to
be extracted:

Eeff = Eeff0 · �qbm + 2 · FETA · qim�� (7)


s = 2 · BETN · RS · 
b · 
g · qim� (8)

Gmob =
1+ ��E · Eeff �

�� + Cs ·
(

qbm
qim+qbm

)2

+ 
s

�x

� (9)

�∗
sat =

THESAT

Gmob�s ·G�L

� (10)

zsat = ��∗
sat · ���2� (11)

and

Gvsat =
Gmob ·G�L

2
· �1+√

1+ 2 · zsat�� (12)

The following are equations related to F�L term in the
drain current model. They account for channel length
modulation (CLM) effect. ALP, ALP1, ALP2, and VP are
model parameters to be extracted:

T1 = ln
(
1+ VDS−��

VP

1+ Vdse−��

VP

)
� (13)

T2 = ln
(
1+ Vdsx − ��

VP

)
� (14)

�L/L = ALP · T1� (15)

�L1/L =
[
ALP + ALP1

q∗
im

· R1

]
· T1

+ ALP2 · qbm · R2
2 · T2� (16)

G�L = 1
1+ �L/L+ ��L/L�2

� (17)

and

F�L = �1+ �L1/L+ ��L1/L�
2	 ·G�L� (18)
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390 Y. LI AND Y.-H. TSENG

Table 1.—A set of PSP model parameters to be extracted in this work.

Parameter Physical meaning Min Max

NEFF Substrate doping 1.0 e + 20 1.0 e + 26
DPHIB Offset of body potential −0�3 0.3
CT Interface states factor 0 5
CF DIBL Parameter 0 1
BETN Product of channel aspect ratio and

zero-field mobility
1.0 e − 4 10

XCOR Non-universality parameter 0 1
FETA Effective field parameter 0 10
RS Source/drain series resistance 1 1000
THESAT Velocity saturation parameter 0 15
AX Linear/saturation transition factor 1 5
ALP CLM pre-factor 0 3
ALP1 CLM enhancement factor above

threshold
0 1

ALP2 CLM enhancement factor below
threshold

0 1

VP CLM logarithmic dependence factor 1.0 e − 10 1

Table 1 shows the PSP model parameters extracted in
this work together with their physical meanings, minimal
values, and maximal values.
Different physical effects of MOSFETs have different

influence on the I − V characteristics of the devices. Since
the derivation of PSP model is close to the physical
prototype, the model parameters relevant to different
physical effects also have different effects on different
operation regions of MOSFET. For example, the doping-
related parameter would affect the whole regions of I − V
characteristics. The parameter related to source/drain series
resistance is dominant when MOSFET is operated in low
drain bias together with high gate bias. The influence of
parameters corresponding to CLM effects emerges when
MOSFET is operated under high drain bias.
According to the above observations, we generally would

not extract all parameters simultaneously. Instead, we divide
the parameter extraction procedure into several steps. In
each step, some specific parameters are adjusted to fit
limited range of I − V curves using optimization methods.
The parameter extraction procedure used in this work is
described in Table 2 which is mainly based on the steps [12]
with some modifications. First, the magnitude and shape of
Id −Vgs curves under low drain bias is roughly formed in the
step 1. Next, the subthreshold behaviors of Id − Vgs curves
are optimized in the step 2. In the step 3, the mobility-related
and series-resistance-related parameters are optimized. In
the step 4, parameters corresponding to velocity saturation

Table 2.—The extraction procedure of PSP model parameters.

Step Optimized parameters Fitting target

1 NEFF, DPHIB, BETN,
FETA, RS

Id − Vgs curves

2 NEFF, DPHIB, CT Subthreshold region in Id − Vgs

curves
3 BETN, XCOR, FETA, RS Strong inversion region in Id − Vgs

curves
4 THESAT, ALP1, ALP2, VP,

AX, CF
Id − Vds curves

5 All above parameters Both Id − Vgs and Id − Vds curves

Figure 1.—Plot of fitness score versus the number of generation for the
sensitivity analysis of six group-wised PSP model parameters.

and channel length modulation are determined. Finally, in
the step 5, all parameters are fine tuned to fit the overall
I − V curves. If the specified stopping criterion is not
reached, parameter extraction procedure repeats.
Figure 1 shows sensitivity analysis of grouped model

parameters. The sensitivity analysis can help us understand
the degree of effects of different groups of parameters on
the I − V characteristics. In our experiment, only one group
of parameters is adjusted at a time while other groups of
parameter are locked. It can be found that the mobility and
process related parameters affect the I − V characteristics
the most. DIBL, series resistance, velocity saturation, and
CLM have less effect on the I − V characteristics.

The system configuration and extraction

techniques

Figure 2 illustrates the architecture of the program
implemented in this study. The program can be divided
into three layers: the I/O layer, the kernel layer, and
the model layer. The I/O layer deals with loading the
measurement data, output of extracted parameters file, and
output of I − V plot files which are simulated results using
the extracted parameters. The kernel layer includes flow
control, error calculation, and the function of numerical
differentiation for I − V curves. Most importantly, several
optimization algorithms are also implemented in the kernel
layer. Model layer consists of a set of model equations
and model parameter information which contains the name,
default value, maximum value, and minimum value of each
parameter. In addition, the function of feeding parameter
set into model equation is also developed in this layer. Data
can be passed from layer to layer if it is necessary. For
example, the kernel would pass a trial set of parameters to
the model layer, and the corresponding simulation results
would be sent back to the kernel during the optimization
process.
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HYBRID DIFFERENTIAL EVOLUTION 391

Figure 2.—The system architecture of the parameter extraction program
implemented in the tool.

Differential Evolution (DE)
Differential evolution (DE) starts with a random

population and generates new offspring by forming a trial
vector of each parent individual (target vector) of the
population. DE is composed of three operations: mutation,
crossover, and selection. The mutation operator creates
mutant individuals by adding the weighted difference
between two individuals to a third individual. Specifically,
for each individual xt

i , a mutant individual is generated
according to

vt+1
i = xt

r1
+ F · �xt

r2
− xt

r3
�� (19)

where r1� r2� r3 ∈ 
1� 2� � � � � NP� are chosen randomly and
are different from the running index i. F ∈ �0� 2	 is a real
and constant factor that controls the amplification of the
differential variation. Crossover operator is used to increase
the diversity of the population. The trial individual

ut+1
i = �ut+1

i�1 � � � � � u
t+1
i�D �� (20)

is formed where

ut+1
i�j =

{
vt+1
i�j � if rand�j� ≤ CR

xt
i�j� otherwise

� j = 1� 2� � � � � D� (21)

rand�j� is the jth uniform random number distributed
within �0� 1	. CR ∈ �0� 1	 is the user-defined crossover rate.
The selection operator adopts the greedy selection scheme.
The trial individual ut+1

i is compared to target individual
xt+1
i . If the fitness of the trial individual is lower than that of

the target individual, the target individual will be replaced
by the trial individual.

PSO
For an optimization problem with n variables, a fixed

number of particles are initially generated and randomly

spread over the search space. The position of each particle
is a potential solution of the optimization problem. Each
particle has its own velocity, and it can fly to next position
in the search space according to its velocity. For an n
dimensional problem, the position and velocity vector for
the ith particle in the population can be represented as

xi = �xi�1� xi�2� � � � � xi�n�� (22)

vi = �vi�1� vi�2� � � � � vi�n�� (23)

In the flying process, each particle can memorize the best
position which has ever been (it is a locally best position),
and knows the best position of the whole populations
have ever been, which is a globally best position. By part
of individual experience and part of group’s experience,
particles move towards the desired solution. For each
iteration, the velocity of particle follows

vt+1
i = wvti + C1 · r1 · �pt

i − xt
i �+ C2 · r2 · �gt − xt

i �� (24)

Then, the position of particle is updated by

xt+1
i = xt

i + vt+1
i � (25)

where t is the iteration number, i is the particle index, p
denotes the local best position, and g denotes the global
best position. r1 and r2 are random numbers uniformly
distributed in the interval of [0, 1] which act as the stochastic
sources in the algorithm. The constant w is so-called the
inertia weight of particle which represents the influence of
previous velocity of particle on its new velocity. C1 and C2
control the effects of local and global guides, respectively.
Notably, a convergence of PSO algorithm could be ensured
with considering w = 0�7298� C1 = C2 = 1�49618 [19].

The Hybrid DE-PSO Algorithm
The hybrid DE-PSO algorithm combines the standard

velocity and position update rules of PSO and the operations
of differential mutation and probability crossover from
DE. Figure 3(a) shows a flowchart of the hybrid DE-PSO
algorithm. For all iterations, individuals are first sorted
according to their fitness values. The individuals in the
better half of the population proceed as PSO. On the other
hand, the remaining part of new population is generated by
modifying the better half of the population using differential
evolution.
Programming procedures for the hybrid DE-PSO, PSO,

and DE algorithms are shown in Figs. 3(b–d), respectively,
where mi represents the mutant particle created by adding
the weighted position difference between two particles to
a third particle. r1, r2, r3 are randomly chosen within
1� 2� � � � � N and are different from each other. F is a real
and constant factor that controls the amplification of the
differential variation. CR is the crossover rate. In this work,
we use F = 0�8 and CR = 0�3 [21].
The sorting of each iteration preserves the better obtained

solutions. If the solution generated by differential evolution
lies within the better half of the population, it will proceed
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392 Y. LI AND Y.-H. TSENG

Figure 3.—(a) Flowchart of the hybrid DE-PSO algorithm and programming
procedures corresponding to the (b) hybrid DE-PSO, (c) PSO, (d) and DE
algorithms, respectively.

with PSO. In differential evolution, the individuals in the
worse half of the population have chances to be selected
to create the mutant individual. This will help increase
the diversity of the population. In addition, the difference
between individuals decreases with evolution. As a result,
the differential evolution technique can help both global

Figure 3.—Continued.

search at the beginning of the evolution and local search
near the end of the evolution.

The Fitness Functions
Fitness functions are used to evaluate the quality of

solutions. Most importantly, the fitness scores of solutions
guide the search directions in all evolutionary based
algorithms investigated in this work. The measured data
contains a set of drain current-gate voltage �Id − Vgs� and
drain current-drain voltage �Id − Vds� curves. Our goal is to
minimize the error between the model-generated data and
measured data. Therefore, we define the fitness function
as the root mean square error of current-voltage �I − V �
curves. For analog design, the model is even required to
produce accurate derivatives of current. Therefore, the error
of transconductanceGm = �Id/�Vgs and output conductance
Gds = �Id/�Vds should be considered in the fitness function.
We define the fitness function as follows:

f = f1 + f2 + f3 + f4� (26)

where

f1 =
√∑

Vgs
�Imod

d − I
exp
d �2/N

Max�I
exp
d �

� (27)
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HYBRID DIFFERENTIAL EVOLUTION 393

f2 =
√∑

Vgs
�Gmod

m −G
exp
m �2/N

Max�G
exp
m �

� (28)

f3 =
√∑

Vds
�Imod

d − I
exp
d �2/N

Max�I
exp
d �

� (29)

and

f4 =
√∑

Vds
�Gmod

ds −G
exp
ds �

2/N

Max�G
exp
ds �

� (30)

N is the number of measured data points. The superscripts
“mod” and “exp” represents the model-generated values and
experimental data, respectively. The meanings of f1, f2, f3,
and f4 are the RMS errors of Id − Vgs curves, Gm curves,
Id − Vds curves, and Gds curves, respectively.

Results and discussion

Figure 4 compares the fitness score with respect to
the generation for with and without applying parameter
extraction procedure when PSO is implemented. The
parameter extraction procedure is described in Table 2.
As shown in Fig. 4, the fitness score oscillates up and
down when parameter extraction procedure is applied. In
a single step of parameter extraction procedure, a local
region or subset of I − V curves are optimized. However,
this may cause the error of other region of I − V curves
to increase. Similar results can be found when DE-PSO
is implemented, as shown in Fig. 5. This indicates that it
is not easy to clearly decouple parameters corresponding
to different I − V curves. Therefore, parameter extraction
with several steps may not be an efficient way to extract
surface-potential-based model parameters.
We further investigate the feasibility to extract parameters

without extraction procedure. In other words, we extract
all 14 direct current (DC) parameters in a single step. GA,

Figure 4.—The fitness score versus the number of generation for the
optimization with (solid line) and without (dashed line) applying parameter
extraction procedure when PSO is implemented.

Figure 5.—The fitness score versus the generation for the optimization with
(solid line) and without (dashed line) applying parameter extraction procedure
when DE-PSO is implemented.

DE, PSO, and the proposed hybrid DE-PSO algorithm are
implemented in our optimization kernel. In our experiments,
the population size is fixed to 50, and the maximum number
of generations is set to 2000. Thirty independent runs of
were carried out for each algorithm. The fitness score is
defined as shown in Eqs. (26)–(30), which is the sum of
Id − Vgs error, Id − Vds error, Gm error, and Gds error.

Figure 6.—Plot of the score versus the number of generations among different
algorithms.

Table 3.—Comparison of successful runs and the
number of generations among different extraction
algorithms.

GA DE PSO DE-PSO

S 2 1 24 30
Max 1967 – 1922 824
Median – 1766 579 158
Min 310 – 163 56
Average 1139 1766 1249 241
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394 Y. LI AND Y.-H. TSENG

Table 4.—A comparison of accuracy with respect to different extraction
algorithm.

GA (%) DE (%) PSO (%) DE-PSO (%)

�max of Id − Vgs 3.81 1.93 0.80 0.55
�min of Id − Vgs 0.50 0.50 0.41 0.41
�av of Id − Vgs 0.90 0.82 0.54 0.45
�max of Gm 7.84 7.17 2.46 1.65
�min of Gm 1.73 1.80 1.44 1.43
�av of Gm 3.76 2.78 1.74 1.49
�max of Id − Vds 6.59 2.02 1.05 0.63
�min of Id − Vds 0.55 0.88 0.39 0.40
�av of Id − Vds 1.07 1.36 0.58 0.44
�max of Gds 7.43 1.89 1.42 1.15
�min of Gds 1.05 1.11 1.03 0.98
�av of Gds 1.54 1.41 1.14 1.08

Table 5.—Final extracted results of devices with different dimensions.

RMS errors

Length
(nm)

Width
(nm)

Id − Vgs

(%)
Gm

(%)
Id − Vds

(%)
Gds

(%)
Number of
generations

Successful
runs

16 16 0.46 1.60 0.40 0.70 241 30
32 5000 0.23 1.37 0.86 1.00 250 30
32 32 0.28 1.01 0.56 0.91 328 30
45 110 0.32 1.43 0.82 1.44 476 22
45 1000 0.20 0.82 0.53 0.97 358 30

Figure 6 shows the fitness score convergence behavior
of the proposed hybrid DE-PSO in comparison with
conventional PSO, DE, and GA. The tested case was
N-MOSFET device with W/L = 16 nm/16 nm. The
demonstrated results are with average results of 30
independent runs. It can be found that DE-PSO can achieve
much lower fitness score than DE and GA after 2000
generations. In addition, DE-PSO reaches the same good
fitness score as PSO in fewer generations. The probable

reason is that the mutation and crossover scheme facilitates
the global search ability of PSO and the selection scheme
reduces resource waste on poor individuals.
Table 3 lists the comparison of successful runs and

the number of generations among different extraction
algorithms. S denotes the number of successful runs. A
run is considered to be successful if it is able to reach the
specified goals. That is, Id − Vgs error within 1%, Id − Vds

error within 1%, Gm error within 2%, and Gds error within
2%. The maximum, median, minimum, and the average
number of generation of successful runs are also listed in
the table. It is found that the successful runs are less than
2 for GA and DE. On the other hand, all 30 runs can reach
the specified goal successfully when DE-PSO is applied.
Besides, the number of generations required for successful
runs are significantly fewer for DE-PSO than that for
PSO. This result indicates that the hybrid DE-PSO is more
effective and efficient than other evolutionary methods.
Table 4 lists the accuracy comparison among different

extraction algorithms. The maximum, minimum, and
average errors are denoted by �max, �min, and �av,
respectively. It is found that GA and DE have difficulty
reducing Gm error. A few runs of PSO also fail due to
slightly larger Gm error. One competitive advantage of the
proposed DE-PSO algorithm is the method can find better
solutions and keep the minimal Gm error.
Table 5 lists the final extracted results of devices

of different dimensions obtained by the hybrid DE-PSO
algorithm, including the Id − Vgs error, Gm error, Id − Vds

error,Gds error. The average number of generations required
to reach our specified goal and the number of successful runs
are also summarized in the Table 5. By the verification of
devices of different dimensions, the hybrid DE-PSO shows
excellent numerical results in terms of the solution accuracy,
computational efficiency and effectiveness for the parameter
extraction of PSP MOSFET model.
Figures 7–11 illustrate the simulated results with the final

extracted parameters for the tested NMOS devices with

Figure 7.—Measured and simulated characteristics for W/L = 16 nm/16 nm NMOS device using parameters extracted by DE-PSO algorithm: (a) Id − Vgs at
Vds = 0�05V; (b) Id − Vds at Vbs = 0V; (c) transconductance; and (d) output conductance.
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Figure 8.—Measured and simulated characteristics for W/L = 32 nm/32 nm NMOS device using parameters extracted by DE-PSO algorithm: (a) Id − Vgs at
Vds = 0�05V ; (b) Id − Vds at Vbs = 0V ; (c) transconductance; and (d) output conductance.

Figure 9.—Measured and simulated characteristics for W/L = 5�m/32 nm NMOS device using parameters extracted by DE-PSO algorithm: (a) Id − Vgs at
Vds = 0�05V; (b) Id − Vds at Vbs = 0V ; (c) transconductance; and (d) output conductance.

various device dimensions. The solid lines are the simulated
results and the dotted lines are the measured data. It is
obvious that the simulated I − V characteristics are in good
agreement with the measured data as well as their first
derivatives.

Conclusions

In this article, we have successfully proposed a hybrid
DE-PSO algorithm for surface-potential-based PSP model
parameter extraction of nanoscale MOSFETs’. Based on the
combination of the standard velocity and position update
rules of PSO and the operations of differential mutation
and probability crossover from DE, our method successfully
extracts 14 DC parameters for a single MOSFET device
simultaneously. The accuracy and efficiency of the

algorithm has been obtained, verified and reported in this
study for sub-45 nm NMOSFETs, through several testing
cases which have one set of Id − Vgs and Id − Vds curves.
For more sets of I − V curves, it needs to be investigated
in our future work. Compared with GA, DE, and PSO, DE-
PSO is particularly able to overcome the difficulty to obtain
accurate Gm characteristics. The hybrid DE-PSO algorithm
is expected to be a promising method to extract model
parameters for different kinds of semiconductor devices.
It was shown recently that PSO is actually not a new
paradigm but an elitist real-coded genetic algorithm [39].
Also, the dimensional problems of Eqs. (24) and (25) have
pointed out. Nevertheless, it will not affect any of the
reported results. We are currently studying other operation
schemes for population in DE and PSO including alternating
generations for more robust methodologies.
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Figure 10.—Measured and simulated characteristics for W/L = 110 nm/65 nm NMOS device using parameters extracted by DE-PSO algorithm: (a) Id − Vgs at
Vds = 0�05V ; (b) Id − Vds at Vbs = 0V ; (c) transconductance; and (d) output conductance.

Figure 11.—Measured and simulated characteristics for W/L = 1�m/45 nm NMOS device using parameters extracted by DE-PSO algorithm: (a) Id − Vgs at
Vds = 0�05V ; (b) Id − Vds at Vbs = 0V ; (c) transconductance; and (d) output conductance.
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