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Abstract. This paper proposes an integrated model of a scratch drive
actuator (SDA) based on a fourth-order governing equation of the Euler–
Bernoulli theory. By solving this equation with proper boundary conditions,
typical SDA output characteristics, such as noncontact length, priming
voltage, deflection curve, output force, and bending stress, can be deter-
mined. The results of the output force in a static model are then used as
the input of single degree-of-freedom dynamic SDA model to investigate
the friction effect. Electroplated nickel SDA arrays, 80 μm in main beam
length and 65 μm in width with a suspended spring, are fabricated and
tested. The average travel distances after 1500 input pulses of 80–120 V
are measured and found to be from 4.7 to 12.9 μm. The average measured
output forces are from 10.2 to 28.3 μN. The simulation from the dynamic
model is closer to the measured total travel distance and the output force
than the static model, in general. The difference between simulations and
experimental data due to energy dissipation can be reduced by including
the friction effect in the dynamic model. Deviations between simulations
and measured results are less than 10% in full range showing the su-
perior capability of the proposed SDA model. C© 2011 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3549920]
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1 Introduction
Most electrostatic microactuators operate in a linear region
before pull-in occurs. One major exception is the scratch
drive actuator (SDA), which is nonlinearly operated in a
postpriming region.1 The unique features of the SDA in-
clude force output in micro-Newton order, stepping ahead
at nanometer resolution, and long traveling ability up to the
millimeter level. These features make it attractive in micro-
and nanomanipulation.2–6 However, most present models are
basically piecewise in analyzing SDA performance and lim-
ited in the static region due to the complexity of the nonlin-
early dynamic coupling between electrostatic, mechanical,
and friction forces. Despite its importance in the field of
MEMS, the SDA is not well understood.

Some researchers have attempted to explore the relation-
ship between the step size and the input voltage of the SDA.
The step size under constant load is the most fundamental
case and has been studied by using various methods. One
approach was to measure the contact length of a charged
SDA with an insulated layer by using an interference image,
and then to calculate the step size from the geometry of se-
lected images.1, 2 This approach did not analytically relate the
step size and input voltage. Another approach used a second-
order differential equation5 to predict the step size by using
a modified Petersen model. As the moment and deflection
equations are from different assumptions, the prediction of
priming was higher than the experimental data. An energy
method was used by treating the reaction force at bushing as
a concentrated load.7 Since electrostatic force did distribute
along the main beam during operation, the predicted step size
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was overestimated in comparison with measured results.7, 8

For the step size with a variable load, such as an SDA con-
nected to a suspended spring under a continuous loading and
unloading process, it was usually experimentally determined
by averaging the measured total forward distance with the
total input pulses.5, 9 However, it must be pointed out that
the spring force proportional to the deflection dynamically
affects the step size. The step size becomes zero when the
spring force is equal to the output force of the SDA. For
the determination of the SDA output force, only experimen-
tal approaches have been reported, including buckled-load2

and spring-deflection5, 9 methods. Until now, no analytical
formulation has been reported to demonstrate the dynamic
behaviors of the SDA, including the variable loading and the
friction effects.

One way to simulate the dynamic response of the SDA
to cyclic input is to treat it as a mass-spring-damper system
of a single degree of freedom (SDOF) under cyclic input of
an electrostatic force, which can be classified as vibration-
induced motion.10, 11 By integrating the equations of motion,
the displacement and the velocity of the mass can be numer-
ically found.

Two analytical models of the SDA are proposed here to
analyze the static and dynamic behaviors in sequence. First,
a fourth-order differential governing equation based on the
Euler–Bernoulli theory and the modified Petersen model with
a distributed electrostatic force is proposed. The performance
and characteristics of the SDA, such as the deflection curve of
the main beam, the static step size, the bending moment, the
maximum stress, and the output force at a given input voltage,
could all be determined for the first time in SDA analysis.
Second, an SDOF model of an SDA is proposed to analyze
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Fig. 1 Basic structure and elements of the SDA.

the vibrational motion to find the total travel distance and the
dynamic output force under various sets of friction conditions
and spring constants. In order to verify the proposed models,
the microelectroplated nickel SDA array connected with a
suspended spring is fabricated and tested to compare with
simulation results.

2 Modeling of SDA
2.1 Operation Principle of SDA
A typical SDA may include the main beam, bushing, support
beams, rails, dielectrics, and a substrate, as shown in Fig. 1.
The operation of an SDA from rest to scratch forward is
classified into five states, as shown in Fig. 2: (1) initial,
(2) pull in, (c) priming, (d) postpriming, and (e) one-step
forward after discharge. As the input voltage V increases
from zero, the still SDA [Fig. 2(a)] starts rotating about the
bushing paw and the end edge of the main beam will just
touch the dielectrics at the pull-in voltage, Vpi [Fig. 2(b)]. For
input voltage higher than pull-in voltage Vpi, the main beam

Fig. 2 Five states in SDA operation procedures at different input
voltages: (a) initial, zero input; (b) pull-in, voltage Vpi ; (c) priming,
voltage Vpr ; (d) postpriming, voltage Vpp; (e) one-step forward after
discharge.

will be bent and gradually becomes a surface contact with the
dielectrics [Fig. 2(c)], so-called priming, at input voltage Vpr.
In priming state, the contact point between the bushing paw
and the dielectrics may be pushed forward a little. After that,
the contact length of the main beam with dielectrics increases
as the input voltage increases in postpriming range at voltage
Vpp, as shown in Fig. 2(d). The contact point between the
bushing paw and the dielectrics will be pushed forward more
to achieve one forward step. Finally, the input voltage is
fully discharged, and the SDA will snap back and keep the
one forward step, as shown in Fig. 2(e).

2.2 Static Analysis of SDA Deflection
Some assumptions are made first. The Euler–Bernoulli the-
ory is applied to the design and analysis of the main and
the support beams. The bushing, dielectrics, and rails are as-
sumed rigid. The angle between the bushing and the main
beam remains as a right angle during the whole operation,
and the electrostatic force acted upon the bushing is ignored.
At the pull-in, priming, and postpriming states, the contact
between the main beam and the dielectrics remains fixed. In
other words, one end of the main beam is fixed and only the
bushing can move at the priming and the postpriming states.
No slippage occurs during charging and discharging. The
vertical displacement of the bushing top is negligible during
main beam deflection in the priming and the postpriming
states. The fringing effect of the electrostatic field is ignored.

For a general parallel-plate capacitor, the distributed load
q, i.e., the electrostatic force per unit length applied to the
plate, is given as a constant

q = ε0W V 2

2d2
, (1)

where ε0 is the permittivity of air, V is the input voltage, W
is the width of the plate, and d is the gap between two plates.
Let the SDA be modeled as a plate capacitor, d is defined as
the distance from the main beam to the electrode on the sub-
strate, including air and the dielectric layers. The distance
d will be varied with the main beam deflection y by elec-
trostatic load q and constrained by the bushing and support
beams, where q should be a function of the horizontal posi-
tion x and the main beam deflection y. Due to this nonlinear
coupling between the electrostatic load q and the main beam
deflection y, there is not yet an exact solution for the deflec-
tion curve y thus far. A modified Petersen model has been
proposed to define the deflection curve of a cantilever beam
under an electrostatic force as a second-order polynomial of
horizontal position x in a postpriming state.5 By combining
the Euler–Bernoulli beam theory12 and the modified Petersen
model,5, 13 the governing equation of the main beam with the
distributed electrostatic load q(x) at a postpriming state can
be expressed as a fourth-order differential equation:

d4 y

dx4
= q(x)

E I
= ε0W V 2

E I (a + bx2)2
, (2)

where a is equal to the thickness t of the dielectric layer di-
vided by the relative permittivity k, b is equal to h / ln2, ln
is the noncontact length of the main beam at the given input
voltage, h is the bushing height, E is Young’s modulus of the
SDA material, I is the second-area moment of the main beam,
and x is the horizontal coordinate of the element in consid-
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Fig. 3 Coordinate system and electrostatic force density in postprim-
ing configuration. The electrostatic force density in the contact region
is constant. In the noncontact region, the electrostatic force density
follows Eq. (2).

eration. The downward deflection is defined as positive. The
coordinate system is shown in Fig. 3, where the origin is
defined as the juncture point between the contact and non-
contact regimes with distance h above. Integrating Eq. (2)
successively four times leads to the following equations:

d3 y

dx3
= ε0W V 2

E I

[
x

2a(a + bx2)
+ tan−1[bx/(ab)1/2]

2a(ab)1/2

]
+ c1, (3)

d2 y

dx2
= ε0W V 2

E I

[
ln a

4ab
+ x tan−1[bx/(ab)1/2]

2a(ab)1/2

]
+c1x+c2, (4)

dy

dx
= ε0W V 2

E I

[
x(ln a − 1)

4ab
+ (a + bx2) tan−1[bx/(ab)1/2]

4(ab)3/2

]

+c1

2
x2 + c2x + c3, (5)

y = ε0W V 2

E I

[
3 ln a − 2 ln

(
1 + bx2/a

)
24b2

+ 3x2 ln a − 4x2

24ab

+ (3ax + bx3) tan−1[bx/(ab)1/2]

12(ab)3/2

]

+ c1

6
x3 + c2

2
x2 + c3x + c4. (6)

The integration constants, c1, c2, c3, c4, and noncontact length
ln, can be solved with the following five boundary conditions:

y(0) = h, (7)

y′(0) = 0, (8)

y′′(0) = 0, (9)

y(ln) = 0, (10)

kt y′(ln) = E I y′(ln). (11)

The y coordinate of the contact point is the bushing height
h, as indicated by Eq. (7). Also, the contact region is flat and
fixed to the dielectrics at a postpriming state, so the slope and
moment at origin O are zero, as implied by Eqs. (8) and (9),
respectively. Equation (10) states that the vertical displace-
ment of the bushing is negligible. Equation (11) expresses
the balance between the moment EIy′′(ln) of the main beam
and the torque kt y′(ln) from the support beam at x = ln. The
parameter kt is the torsional spring constant of the support
beam and is defined as 2βGWst3/Ls, where β is a constant
based on the ratio of the width to thickness of the support
beam,14 Ws is the width of the support beam, Ls is the length
of the support beam, and G is the shear modulus of the SDA
material.

Applying the boundary conditions Eqs. (7)–(9) into char-
acteristic Eqs. (4)–(6), the integration constants c2, c3, and
c4 can be solved as

c2 = −ε0W V 2

E I

ln a

4ab
, (12)

c3 = 0, (13)

c4 = h − ε0W V 2

E I

(
l4
n ln a

8h2

)
. (14)

Applying Eq. (10) into characteristic Eq. (3), the integration
constant c1 can be solved as

c1 = ε0W V 2

E I

[
1

abln
−

(
3a + bl2

n

)
tan−1[bln/(ab)1/2]

2(ab)3/2l2
n

+ ln(1 + bl2
n/a)

2b2l3
n

]
− 6h

l3
n

. (15)

Rewriting the expression of Eq. (11) in terms of Eqs. (4)
and (5) can lead to the characteristic equation of noncontact
length ln

kt

{
ε0W V 2

E I

[
−2a tan−1[bln/(ab)1/2]

4(ab)3/2
+ ln(1 + bl2

n/a)

4b2ln
+ ln

4ab

]
− 3h

ln

}

=
{

ε0W V 2

[
−3a tan−1[bln/(ab)1/2]

2(ab)3/2ln
+ 1

ab
+ ln(1 + bl2

n/a)

2b2l2
n

]
− 6E I h

l2
n

}
. (16)
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Since no explicit solution exists, the noncontact length ln is
solved by a numerical method. At the priming state, the non-
contact length is considered to be the same as the main beam
length L. Then, the priming voltage Vpr can be determined
from reorganizing Eq. (16) by replacing ln with the main
beam length L as

Vpr =
[(

3kt h/L − 6E I h/L2
)

A1 − A2

]1/2

, (17)

where

A1 = ε0kt W

E I

[
−2a tan−1[bL/(ab)1/2]

4(ab)3/2

+ ln(1 + bL2/a)

4bL
+ L

4ab

]
, (18)

A2 = ε0W

[
−3a tan−1[bL/(ab)1/2]

2(ab)3/2 L

+ 1

ab
+ ln(1 + bL2/a)

2b2 L2

]
. (19)

By definition, the bending moment M at any position x
along the main beam is proportional to the second-order
derivative of y. When flexural rigidity EI is constant, the
bending moment can be expressed as

M = −E I
d2 y

dx2
= ε0W V 2

(
bl2

n x
(− tan−1[bx/(ab)1/2] + tan−1[bln/(ab)1/2]

) + 3ax tan−1[bln/(ab)1/2]

2(ab2)3/2l2
n

− x

abln

− x ln[1 + bl2
n/a]

2b2l3
n

)
+ 6E I h

l3
n

x . (20)

The maximum moment Mm along the main beam for a spe-
cific input voltage occurs at position xm where the shear
force, − EI dy/dx, becomes zero. Then, the maximum bend-
ing stress σ m along the main beam happens at the same
position and can be expressed as

σm = 6Mm

W t2
. (21)

The output force Fo of a charged SDA array along the
main beam varies with the input voltage. The friction force
along the contact regime is assumed to be large enough to
keep the contact area stationary. The horizontal output force
Fo is basically the horizontal component of the electrostatic
force along the main beam. It can be solved by integrating
the horizontal component of electrostatic force along the
noncontact part as

Fo = N
∫ ln

0

ε0W V 2 sin θ

(a + bx2)2
dx, (22)

where N is the SDA number in the SDA array and θ is the
angle between the horizontal and the tangent line along the
main beam.

In finding the static step size, Fig. 4 shows the displace-
ments of the bushing paw and the bushing top at different
input voltages. At pull-in voltage, the SDA rotates about
the bushing paw. Due to the slope change on the bushing,
the bushing top horizontally moves back with magnitude
�x1 = h*tan− 1(h/L), as shown in Fig. 4(a). When the in-
put voltage exceeds the priming voltage, the main beam
starts bending and causes the bushing top to move further
backward due to the bending moment, the so-called cur-
vature shortening effect, which has not been considered in
previous literature on the SDA. This lateral displacement
due to a curvature shortening effect12 can be formulated as

�x2 = 1/2
∫ ln

0 (dy/dx)2dx , as shown in Fig. 4(b). Since the
angle between the main beam and the rigid bushing is as-
sumed to remain 90 deg during deformation, the bushing
paw has to move forward. Then, the horizontal distance be-
tween the bushing top and the bushing paw becomes �x3
= h*|dy/dx| [Fig. 4(c)]. By combining these three effects, the
net one forward step size of the bushing paw in static load
becomes [Fig. 4(d)]

�xs = �x3 − �x1 − �x2

= h ∗
(∣∣∣∣dy

dx

∣∣∣∣
x=L

− tan−1 h

L

)
− 1

2

∫ ln

0

(
dy

dx

)2

dx .

(23)

Fig. 4 Components of the SDA step size. (a) Initial state without
movement. (b) The main beam rotates around the bushing paw
when just the pull in can cause lateral backward movement �x1.
(c) The curvature shortening effect in a postpriming regime causes
the bushing top lateral movement �x2 further backward. Also, the
bushing paw displaces �x3 forward and keeps 90 deg with the
main beam. (d) The SDA is discharged fully with one net step size
�xs = �x3 − �x1 − �x2.

J. Micro/Nanolith. MEMS MOEMS Jan–Mar 2011/Vol. 10(1)013016-4

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 04/24/2014 Terms of Use: http://spiedl.org/terms



Chen, Chang, and Hsu: Improved model of rectangular scratch drive actuator

Fig. 5 Dynamic model of the SDA. (a) SDOF Mass-spring-damper
model. (b) Simulink model of the SDA system.

Two different equations are proposed here to calculate the
static step size in each input pulse and the total travel distance
of the SDA array with a restoring spring force after certain
input pulses:

�x(n) = �x∗
0 [Fo − k∗x(n − 1)]/Fo, (24)

x(n) = x(n − 1) + �x(n), (25)

where the �x(n) is the step size at the n’th input pulse and �x0
is the step size without considering external load, calculated
from Eq. (23). The x(n) is the total travel distance of the SDA
array after n input pulses, k is the spring constant, and F0 is the
output force of the SDA array calculated from Eq. (22). The
x(0) is set to zero. Qualitatively speaking, the restoring force
of the spring is small at the beginning of the test and the step
size is close to the calculated value without the external load.
As the spring deflection increases, the step size decreases
with the increasing spring load. When the SDA array can no
longer pull the spring, the step size becomes zero.

2.3 Dynamic Analysis of SDA Motion
To explore the dynamic behaviors of the SDA, including
friction effects, an SDOF mass-spring-damper model shown
in Fig. 5(a) is proposed. The equation of motion is given as

mẍ + cẋ + μFN sign(ẋ) + kx = F∗
Oabs[sin(ωt)]. (26)

The variable x represents the displacement of the SDA. The
lump-mass m defines the total mass of the SDA array. The co-
efficient k is the spring constant of the suspended spring. The
damper may contain two types of friction: Coulomb friction
of coefficient μ and viscous damping of coefficient c. FN is
the normal force between the contact area of the main beam
and the insulated layer. In MEMS, the body force, similar to
the gravity force, is often much less than the surface traction
force, which is also similar to the electrostatic force. So the
normal force is simplified to contain only the electrostatic
force in the contact area. FO is the amplitude of the driving
force, which is the horizontal component of the electrostatic

force along the noncontact part of the main beam, and the
force along the bushing is still ignored. The driving voltage
is in sinusoidal wave sin(ωt) with frequency ω. However, it is
noted that the electrostatic force in an SDA is always attrac-
tive between contact surfaces. Therefore, the driving force
waveform is the same as the absolute of the driving voltage
waveform. The friction terms in Eq. (26) may be normalized
and rearranged as follows:

c

m
ẋ+ μFN

m
sign(ẋ)=sign(ẋ)∗[gain∗abs(ẋ)+offset]. (27)

The gain is defined as c/m and the offset is the normalized
dry friction force is defined as μFN/m. To simplify derivation,
both static and dynamic dry friction coefficients are assumed
to be μ.

A SimulinkTM model is built according to Eqs. (26) and
(27), as shown in Fig. 5(b). The function block, called the
“Coulomb and Viscous Friction,” models the discontinuity
at zero velocity and linear gain otherwise. The offset cor-
responds to the normalized Coulomb friction and the gain
corresponds to the normalized viscous friction. As a result,
this block is implemented as

y = sign(u) ∗ [gain ∗ abs(u) + offset], (28)

where y is the block output and u is the block input. The
gain and offset are the normalized block parameters c/m and
μFN/m, respectively. When the Coulomb friction is ignored,
the response subjected to cyclical input FO*abs[sin(ωt)] may
be underdamping, critical damping, or overdamping accord-
ing to whether the discrimination term (c2 − 4 km) is less
than, equal to, or larger than zero. These phenomena are
classified as a vibration-induced displacement problem,10, 11

which explains in principle the reason why some SDAs do
scratch forward but some do not.

When friction is considered, the analysis of displacement
response becomes more complex.15, 16 Here MatlabTM and
Simulink are used to numerically simulate the dynamic be-
haviors of SDA.

3 Fabrication and Measurements
A two-mask microelectroplated nickel process is developed
to fabricate an Ni SDA array structure. The test structure is
composed of four SDAs connected to a suspended spring that
is anchored to the contact electrode.

The fabrication process, shown in Fig. 6, is summarized
as follows: (a) Starting from a 4-in. RCA-clean (100) wafer,
a 6000-Å thick LPCVD silicon nitride is grown in a furnace
as the dielectric layer. (b) In the first patterning process: a
2-μm photoresist FH6400 is coated as the sacrificial layer,
receives a 90◦C soft bake for 10 min, as well as a hydration re-
action for 20 min, and then the pattern of bushing and contact
electrode by the first mask is created. (c) In the sputtering pro-
cess, 200-Å-thick Ti and 1500-Å-thick Cu are sequentially
sputtered as the adhesive and seed layers, respectively. (d)
In the second patterning process, a 5-μm-thick photoresist
AZ9260 is coated, then the pattern of the electroplating mold
by the second mask is created. (e) In the electroplating nickel
process, the Ni test structure is electroplated with a Watt bath
with a current density of 10 mA/cm2 for 10 min to form
2-μm-thick Ni. (f) In the releasing process, acetone is used to
remove electroplating mold AZ9260, then the Cu seed layer

J. Micro/Nanolith. MEMS MOEMS Jan–Mar 2011/Vol. 10(1)013016-5

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 04/24/2014 Terms of Use: http://spiedl.org/terms



Chen, Chang, and Hsu: Improved model of rectangular scratch drive actuator

Fig. 6 Fabrication process of the microelectroplated nickel SDA.
(a) LPCVD Si3N4. (b) Bushing and fixture patterning. (c) Cu/Ti seed
layer. (d) Device structure patterning. (e) Nickel electroplating. (f)
Releasing.

is removed by soaking in a CR-7T solution for about 20 s. A
Ti adhesive layer is then removed by soaking in a buffered
oxide etch solution for about 10 s. Then, the FH6400 sacri-
ficial layer is removed by soaking in acetone for 30 min. By
immersing in an isopropyl alcohol solution and vibrating
about 20 s for releasing, then drying at 60◦C, a fully sus-
pended Ni SDA structure can be obtained. A typical fabri-
cated device is shown in Fig. 7. The dimension parameters
used in subsequent analyses are measured and listed as fol-
lows: number of SDAs per device, N = 4; main beam length,
L = 80.8 μm; main beam width, W = 65 μm; thickness,
t = 2.1 μm; bushing height, h = 2.2 μm; support beam
length, Ls = 25.0 μm; and support beam width, Ws = 4.0 μm.
Other material properties are adopted from Sharpe et al.,17

Mazza et al.,18 and Cho et al.,19 including Young’s modulus,
E = 176 GPa and shear modulus, G = 67 GPa.

The experimental equipment for the loading test includes
an optical microscope mounted with a CCD camera on a
probe station connected to a PC with image process software,
a function generator, and a high-voltage power amplifier. The

Fig. 7 Typical images of the SDA array. (a) Experimental setup. (b)
SEM image of whole released test structure. The width of the SDA
main plate is 65 μm and the outer size of each tether spring is 200
μm × 18 μm with a linewidth of 4 μm. (c) Partial image of device at
an early stage with small spring deflection. (d) Partial image near the
final stage with large spring deflection.

test chip is fixed on the probe station table by vacuum chuck.
Two probes are adjusted to touch the contact electrode of
the SDA array and the substrate, respectively. The test signal
is generated from the function generator and amplified and
calibrated by the high-voltage power amplifier to be 40–120
V in sinusoidal waveform of 500 Hz with 10 V increment.
The motion of the SDA array is recorded from the CCD
camera into the computer and then analyzed by image process
software. Typical images of a fabricated device under cyclic
load are shown in Fig. 7.

4 Results and Discussions
4.1 Static Analysis of SDA Deflection
Numerical codes on MATLAB software are developed to per-
form the deflection analysis on the proposed static model
based on parameters listed in Sec. 3. The noncontact length
ln is calculated from Eq. (16) at each specified input voltage
in a postpriming state. The results are plotted in Fig. 8. The

Fig. 8 Noncontact length of SDA against input voltage. Noncontact
length means the minimum plate length to keep the SDA priming for
given inputs. Kazuaki’s work is calculated from the equation proposed
in Ref. 7.
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Fig. 9 Simulated results on priming voltage. All models show that
the shorter plate has a higher priming voltage. Linderman’s work is
calculated from the equation in Ref. 5.

priming voltages are calculated from Eq. (17) and plotted in
Fig. 9. The noncontact length decreases fast at the beginning
of the postpriming region because a longer beam is more flex-
ible. The slope of the noncontact length curve becomes flatter
near 120 V, indicating that the electrostatic force is struggling
to deform the main beam further. The contact length lc, equal
to (L − ln), should be long enough to provide a sufficient
fixing force to hold the main beam contact part still, although
it should be short enough to discharge quickly. The simulated
static step sizes, with and without the curvature shortening
effect and from Kazuaki’s7 model, are shown in Fig. 10. The
proposed model with the curvature shortening effect is found
to provide the smallest step size.

The calculated total travel distances by Eq. (25) during
1500 input pulses are plotted in Fig. 11 for five different input
voltages, from 80 to 120 V. The experimental results after
1500 pulses are also shown in Fig. 11. The SDA array moves
rapidly at the beginning. Then, the motion tends to slow
down with an increase in spring force until the SDA array
can no longer pull the spring. It will reach a stable state faster
at lower input voltages because of the smaller output force.

Fig. 10 Simulated static step size by different models. This work
predicts the most conservative step size.

Fig. 11 Measured and simulated total travel distances in 1500 input
pulses for voltages from 80 to 120 V. Simulated results are based on
Eqs. (24) and (25), and friction is not considered in these simulations.

The measured travel distances are smaller than the simulated
results, where the maximum deviation between the measured
and the calculated total travel distance is around 10%. From
Eq. (20), the maximum bending moments Mm along the main
beam at different input voltages can be calculated. From
Eq. (21), the maximum bending stresses σ m are calculated to
be from 169 to 495 MPa, as shown in Fig. 12, for input voltage
from 40 to 120 V, respectively. However, the displacements
of an SDA cannot be steadily measured for input voltage
below 80 V. It is believed that the contact length is not long
enough to provide sufficient friction force for the SDA array
to steadily step forward for voltages below 80 V.

4.2 Dynamic Analysis of SDA Motion
From the standard test specimen in this work, the total device
mass m and spring constant can be calculated as 4.87×10−10

kg and 2.19 μN/μm, respectively, according to the material
properties and measured device dimensions. The correspond-
ing normalized spring constant k/m of the fabricated device
is then 4.5×109. Two other normalized spring constants,
3.6×109 and 5.63×109, are also used in simulations to show
the effect of spring-constant variation on device responses.

Fig. 12 Simulated maximum bending stress. Device can survive
1×106 cycles with stress less than fatigue strength. Device may have
short life cycles with stress around yielding stress. Stress at ultimate
stress makes the device immediately fail.
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Fig. 13 Effect of spring constant on travel distance. Parameters: 120 V, m = 4.87×10−10 kg; viscous friction c/m is fixed at 1.12×107,
k/m = [3.6×109, 4.5×109, 5.63×109], Coulomb friction μ/m = [0, 4500].

Fig. 14 Effect of viscous damping on travel distance. c/m = [0.75, 1.5, 2.25]×107, k/m is fixed at 4.5×109, μ/m is set as zero, at 3140 rad/s, m
= 4.87×10−10 kg.
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Fig. 15 Driving frequency effect on travel distance. Parameters: 120 V, k/m = 4.5×109, c/m = 0.75×107, μ/m = [0, 5600], driving frequency =
[314 3140 31400] (rad/sec), m = 4.87×10−10 kg.

The scale ratio for the other two spring constants is set to
be 1.25, i.e., 5.63/4.5 = 4.5/3.6 = 1.25. The undamped nat-
ural frequency ωn of the equivalent SDOF system is about
67 000 Hz, much higher than the driving frequency of 500
Hz; therefore, the system can be classified as a stiff system.20

Since the viscous friction coefficient and the Coulomb fric-
tion coefficient are not yet known exactly in the current device
or from previous literature about the SDA, various parameter
sets are simulated to find out the better-matched parameter
set with experimental results.

Figure 13 shows the simulated total travel distances of the
SDA at three different spring constants. Each spring constant

Fig. 16 Output forces and total travel distances from static model,
dynamic model, and experimental data.

is accompanied by two different Coulomb friction values,
zero and 4500. The average steady-state displacement of
each curve is shown to decrease with an increase in spring
constant. The Coulomb friction is found to reduce both the
average and the amplitude of displacement due to the stick-
slip effect.

To learn the effects of viscous friction, the simulated total
travel distances for three different viscous friction ratios are
shown in Fig. 14. For the specific input voltage, the aver-
age displacement is nearly the same for the three different
viscous friction ratios. The oscillation amplitude at steady
state is more evident as the c/m ratio decreases. The simu-
lated total travel distances at 120 V with different driving
frequencies are shown in Fig. 15. For a specific Coulomb
offset, the averaged displacement at steady state is almost
the same, but the oscillating amplitude is quite different. The
oscillating amplitude is found to decrease with an increase
in driving frequency. This phenomenon was also discussed
in Thomsen21 for nonlinear oscillation. Based on its concept,
the SDA may be viewed as a low-pass filter that will pass the
low-frequency component and attenuate the component am-
plitude at a higher frequency. Therefore, it is better to drive
the SDA at a higher frequency to reduce oscillations.

As mentioned earlier, the Coulomb offset and the vis-
cous friction coefficient are both not exactly known in the
experiment. Therefore, a manual matching process between
simulations and experimental results is performed to identify
a closer parameter set on viscous friction and Coulomb fric-
tion. Finally, a better matched set is found where the normal-
ized viscous friction c/m ratio is 0.40×106 and the Coulomb
friction offset ratio μ/m is 15 000. Due to the limitation
of our facilities, our image capture system cannot capture
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the oscillating waveform in nanometer resolution. However,
Fig. 16 compares the experimental results with simulations
from static and dynamic models, including output force and
total travel distance. It is shown that simulations from the dy-
namic model are closer to the measured total travel distance
and the output force than to the static model, in general.
This indicates that difference between simulations and ex-
perimental data due to energy dissipation can be reduced by
including the friction effect in the dynamic model.

5 Conclusion
Static and dynamic models of a rectangular SDA are pro-
posed here. The improved static model provides a more sys-
tematic approach to simulate many key characteristics that
were not fully presented in previous literatures. The dynamic
model is driven by the output force derived from the static
model. It considers the SDA device as an SDOF mass-spring-
damper system to evaluate the dynamic behaviors at steady
state. The vibration-induced displacement of the SDA sub-
jected to various factors has been simulated and discussed.
A parameter set on friction to match with experimental re-
sults is suggested for the fabricated microelectroplated nickel
SDA device. By properly considering the friction effect, dy-
namic simulations are shown to be closer to the experimental
data than to static simulations because of the included en-
ergy dissipation. The proposed models have the potential to
be further modified to analyze SDAs other than those of a
rectangular shape.
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