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Abstract: In Distributed Denial-of-Service (DDoS) Attack, an attacker breaks into many
innocent computers (called zombies). Then, the attacker sends a large number of packets
from zombies to a server, to prevent the server from conducting normal business
operations. We design a DDoS-detection system based on a decision-tree technique and,
after detecting an attack, to trace back to the attacker’s locations with a traffic-flow
pattern-matching technique. Our system could detect DDoS attacks with the false positive
ratio about 1.2–2.4%, false negative ratio about 2–10%, and find the attack paths in
traceback with the false negative rate 8–12% and false positive rate 12–14%.
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1 Introduction

With the proliferation of computer networks come
many kinds of network attacks. Among them, the
DDoS attacks (Zaroo, 2002; Mirkovic and Reiher, 2004;
Douligeris and Mitrokotsa, 2004; Peng et al., 2007)
have caused serious economic loss. Therefore, effective
and efficient protection systems are urgently needed.
Denial-of-service attacks, as the term suggests, attempt
to deny legitimate users the services that the servers
provide.

Because an attacker could modify the source IP
addresses in the packets (i.e., IP spoofing), tracing back
the origin of an attack becomes very difficult. We design
a system that detects DDoS attacks quickly and traces
back the origins of DDoS attacks quite accurately.
The characteristics of our system include:

• there is no need to modify existing protocols
(e.g., TCP/IP)

• the set-up procedures on routers are simple

• the system can accommodate novel attacks in the
future

• the system can fit any network topology

• the traceback procedure is efficient.

In this paper, we focus on the flooding-based attack
aiming at layer 3/layer 4 in the OSI 7-layer model.
Our system basically consists of two subsystems,
the protection agent located only in victim and the
sentinels located in routers. Both protection agent and
sentinels collect all the packets passing them and retrieve
the information in network layer 3/layer 4 from those
packets, then aggregating those retrieved information for
the purpose of detection and further traceback.

The main concept of our proposed DDoS detection
is based on deciding the traffic flow pattern under the
situation without attack and the one under different
attacks. Therefore, the detection of attack from normal
situation could be viewed as the classification problem
and we propose 15 different attributes, which not
only monitor the incoming/outgoing packet/bytes rate
but also compile the TCP SYN and ACK flag rate,
to describe the traffic flow pattern. We apply the decision
tree (C4.5) technique taking these attributes as the tests
to detect abnormal traffic flow (Peng et al., 2007).

Then, we use a novel traffic pattern, matching procedure
to identify the traffic flow that is similar to the attack flow
and, based on this similarity, to trace back the origin of
an attack.

The rest of this paper is organised as follows.
In Section 2, we discuss the existing detection
and traceback mechanisms. Next, we introduce the
architecture of our system in Section 3. In Section 4, our
proposed detection and traceback method is presented.
In Section 5, the experiment results indicate that our
proposed system is capable of detecting the attacks and
tracing them back with high accuracy. Finally, we will
conclude our paper in Section 6.

2 Related work

In this section, we will introduce several DDoS detection
and traceback mechanisms (Noh et al., 2003; Liu and
Uddin, 2005; Mirkovic et al., 2003; Mirkovic and Reiher,
2005; Savage et al., 2000; Stone, 2000; Burch, 2000;
Bellovin et al., 2001) nowadays and briefly review how
they work. We also summarise the characterisation of
each mechanism in Table 1.

2.1 Related DDoS detection mechanisms

The existing DDoS detection mechanisms can be divided
into two categories depending on the locations of the
DDoS attack detection systems. One is victim based, in
which the detection system is deployed close to the victim.
The other is source based, in which the detection system
is placed close to the attack source.

2.1.1 Victim-based detection

The system applied victim-based detection mechanism
is located near the victim. The advantage of this
method is easy and quick to detect the attack. But the
mechanism is unable to mitigate the congestion on the
attack path.

• Machine learning: Machine-learning techniques
have been widely applied for DDoS attack
detection. Traffic Rate Analysis (TRA) monitors
the distribution rate of flags in TCP packets (Noh
et al., 2003). This method calculates two metrics,
TCP flag rates and protocol rates, as the criteria to
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trigger alarms. Then, it applies machine-learning
methods to identify the traffic patterns under
attack. Another system monitors not only the
network traffic but also the utilisation of resources
(Noh et al., 2003). DDoS detection in this system is
based on back-propagation Artificial Neural
Network (ANN) and Bayesian classifier.

• Statistical models: In Liu and Uddin (2005), the
non-parametric cumulative sum (CUSUM)
algorithm based on statistical models is used for
detection. It made use of a model for SYN and

SYN-ACK packets. Whenever the number of
collected SYN packets is larger than SYN-ACK
packets, a positive value of CUSUM is derived.
A large CUSUM indicates a large number of SYN
packets without the pairing SYN-ACK packets.
This usually implies a DDoS attack.

2.1.2 Source-based detection

Source-based detection attempts to deploy the detection
systems as close to the attacker as possible. Therefore,
the placement of the detection system would be on

Table 1 The comparison of DDoS detection and traceback mechanisms

Scheme Type Advantages Disadvantages

DDoS detection mechanisms

Noh et al. (2003) Victim-based • Apply machine-learning methods
to identify the traffic patterns
under attack

• Apply only on the rate of
appearance of specific flags in the
packets’ headers
(Öke and Loukas, 2007)

Liu and Uddin (2005) Victim-based • Statistical-based SYN-flooding
detection

• Achieve high detection accuracy
while maintaining low computation
overhead

• Difficult to anticipate a priori
the best values for threshold
parameters (Berral et al., 2008)

Mirkovic and Reiher
(2005)

Source-based • Detect the attacks and limit the
traffic flowing into the intranet

• Rely on edge routers to identify
the sources of the flood of
attacking packet

• Suffer from the scalability problem
and difficulty of attack traffic
identification (Fallah, 2010)

DDoS traceback mechanisms

Stone (2000) Link-testing
(Input debugging)

• The victim reports the attack
signature to the network
operator

• Heavy management
overhead (Savage et al., 2000)

• Legitimate traffic would
not be affected

• Heavy router overhead
(Savage et al., 2000)

Burch (2000) Link-testing
(controlled
flooding)

• The victim works with the closest
routers to attack every link in
the routers

• Legitimate traffic would be affected

• Does not require
the collection of
attack signatures

• Heavy network overhead
(Savage et al., 2000)

Savage et al. (2000) Packet marking • Record IP address or ID on the
unused or rarely used fields
in the IP packets

• High computation overhead for
the victim to reconstruct the attack
paths (Qu et al., 2005)

• The management, network,
and router overhead is quite low

• Give a large number of false
positives when the attack originates
from multiple attackers
(Qu et al., 2005)

Bellovin et al. (2001) ICMP traceback • Special ICMP packet transmission

• Reconstruct the attack path
with ease

• The traceback could fail since the
ICMP packets are sometimes
filtered out

• The input debugging capability that
ICMP traceback message relies on
may be not available in some
router architectures
(Savage et al., 2000)
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the edge routers. In Mirkovic et al. (2003), Mirkovic
et al. introduce five observations to build an effective
source-based detection system. D-WARD (Mirkovic and
Reiher, 2005), a famous source-based detection system, is
deployed at the gateway router to detect the attacks and
to limit the traffic flowing into the intranet. D-WARD
consists of two components, which are the observation
and throttling components. The observation component
detects the abnormal traffic by traffic statistics. When
an abnormal traffic is detected, the throttling component
then adjusts the traffic rate in source routers to limit the
attack traffic.

2.2 Related traceback mechanisms

Traceback is also an important defence against DDoS
attacks. Because of IP spoofing, the source IP address in
a packet is of little use in traceback. There are several IP
traceback methods introduced in Savage et al. (2000).

2.2.1 Link testing

Link testing starts from the router closest to the victim
and tests the upstream links of the router to identify
the incoming link of the attack packets. Then, the same
procedure is repeated to identify the upstream routers on
the attack path one by one, until the origin of the attack
is located.

There are two variations of link testing: input
debugging (Stone, 2000) and controlled flooding (Burch,
2000). Input debugging requires that the victim reports
the attack signature to the network operator. This results
in heavy management overhead when the traceback
runs across AS-level networks. Controlled flooding is a
traceback method that applies the DoS technique. The
victim works with the closest routers to attack every link
in the routers. If the rate in receiving malicious packets
in a particular link drops all of a sudden, then that link
is possibly on the attack path. Although this method
does not require the collection of attack signatures, this
method itself is an attack towards the routers. Therefore,
legitimate traffic would be affected as well.

2.2.2 Packet marking

In packet marking, (a part of) routers’ IP addresses or
ids are recorded on the unused or rarely used fields in the
IP packets. There are many variations of packet marking.
PPM node-append, PPM node-sampling and PPM edge-
sampling are the most popular packet marking methods
(Savage et al., 2000).

2.2.3 ICMP traceback

ICMP traceback (Bellovin et al., 2001) is a traceback
method that makes use of ICMP packets. ICMP
traceback is similar to packet marking. A designated
router, called the iTrace, probabilistically copies a part
of the contents of the received packets into a special
ICMP packet, which also contains the addresses of the

previous and the following routers. iTrace sends this
special ICMP packet to the source and destination of
the original packet. The victim could easily reconstruct
the attack path according to the special ICMP packets.
However, ICMP traceback could fail since the ICMP
packets are sometimes filtered out. (Some routers simply
throw away all ICMP packets to prevent ICMP flooding
attacks.)

3 Proposed system

In this section, we will present the proposed detection
and traceback system. It includes an artificial intelligence-
based (AI-based) classifier for DDoS detection and a
traffic-flow pattern matcher (Kim and Helmy, 2005) for
comparing traffic signatures and for tracing back DDoS
attacks.

3.1 System architecture

Our system consists of two components: protection
agents and sentinels. A protection agent is deployed
at the victim site for the detection purpose and the
sentinels are deployed at all the routers for the traceback
purpose. The overall organisation is shown in Figure 1.
The links between the protection agent and the sentinels
are secured tunnels, which make use of port forwarding
in SSH-2 (secure shell protocol version 2) for preventing
man-in-the-middle attacks.

3.2 System modules

In this subsection, we will introduce the components
within the protection agent and sentinels.

3.2.1 Protection agent

The protection agent is the control centre of the entire
system. The DDoS attack detection and attack path
reconstruction are all handled in the protection agent.
A protection agent consists of four components: a
packet aggregator (to aggregate the traffic signatures),
a message manager (to construct the SSH-tunnel and
handle communication between the protection agent
and sentinels), a DDoS attack detection module and a
traceback module. The DDoS attack detection module
includes the decision tree and rules. The message manager
resides in the traceback module; the traceback module
handles attack path reconstruction. Figure 2 presents the
overview of the protection agent. The procedure and the
flow chart of the protection agent is shown here and
depicted in Figure 3.

1 Obtain the signature of the current traffic flow.

2 The detection module determines if an attack is
going on based on the current traffic signature.

3 If there is no attack, the agent stores the traffic
signature into the repository.
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Figure 1 Overall organisation of our system (see online version for colours)

Figure 2 Modules in the protection agent (see online version
for colours)

4 If there is an attack, then

4.1 The agent issues a traceback command to the
upstream sentinel.

4.2 Wait until enough connection information
(which contains the IP addresses of the two
ends of the link and the distances from the
victim) is collected.

4.3 Construct the attack path with the collected
connection information.

5 Go to step 1.

3.2.2 Packet aggregator

The packet aggregator computes a traffic signature
based on all the packets passing through. The traffic
signature is used for detection and traceback. With

Figure 3 Operating flow chart in the protection agent

the help of pcap (http://www.tcpdump.org, 2004), our
system captures all incoming and outgoing packets.
For each packet, the packet header from layer 3 to
layer 4 is extracted for cross-layer monitoring. The header
information is used to compute a traffic signature, whose
format is shown in Table 2. Our system generates one
traffic signature per minute.

The traffic signatures are stored in the traffic signature
repository with timestamps of the packet arriving time.
A Bloom filter (Bloom, 1970) is used to reduce the
memory overhead while collecting the IP addresses. The
Bloom filter computes k (which is the number of hash
functions used in the bloom filter) distinct digests for each
IP address with independent hash functions, and uses the
n-bit results to index into a 2n-bit array. An example of
a Bloom filter is depicted in Figure 4. We implemented
two basic hash functions, SAX and SDBM, as the default
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Table 2 Format of a traffic signature

Attributes Value

1 Incoming packet count per t minute(s) Numeric
2 Incoming octets per t minute(s) Numeric
3 No. of incoming TCP packets per t minute(s) Numeric
4 No. of incoming UDP packets per t minute(s) Numeric
5 No. of incoming ICMP packets per t minute(s) Numeric
6 No. of incoming unknown-protocol packets

per t minute(s)
Numeric

7 No. of incoming IP addresses/No. of
outgoing IP addresses

Numeric

8 Outgoing packet count per t minute(s) Numeric
9 Outgoing octets per t minute(s) Numeric
10 No. of outgoing TCP packets per t minute(s) Numeric
11 No. of outgoing UDP packets per t minute(s) Numeric
12 No. of outgoing ICMP packets per

t minute(s)
Numeric

13 No. of outgoing unknown-protocol packets
per t minute(s)

Numeric

14 No. of incoming TCP SYN packets/No. of
incoming TCP ACK packets

Numeric

15 No. of incoming IP addresses/No. of
incoming packets per t minute(s)

Numeric

16 Time interval Bed-time,
morning,
afternoon,
night

Figure 4 Bloom filter (see online version for colours)

Figure 5 Packet aggregator (see online version for colours)

hash functions in the Bloom filter. The flow chart for
packet processing is depicted in Figure 5. With the help

of the Bloom filter, we could reduce the 32-bit IP address
into 2 bits.

3.2.3 n-hop sentinels

The n-hop sentinel is located in a router. The ‘n’
represents the number of hops from the victim. There are
four components within the sentinel: message manager,
simplified packet aggregator, traffic-pattern matching
module and traffic signature repository. Figure 6 presents
the overview of the sentinel. A sentinel aggregates the
headers of incoming packets into a simplified format of
traffic signature, shown in Table 3, which is similar to a
traffic signature.

Figure 6 Modules in the sentinel (see online version
for colours)

Table 3 Format of simplified traffic signature

Attributes Value

1 No. of incoming TCP packets per t minute(s) Numeric
2 No. of incoming UDP packets per t minute(s) Numeric
3 No. of incoming ICMP packets per t minute(s) Numeric

A sentinel collects the packets and transforms them into
traffic signature. When receiving a traceback command,
the message manager would identify the attack type in
the command and perform the Grey Relational Analysis
(GRA) to find the possible entrances of attack traffic.

1 obtain the signature of the traffic flow

2 upon receiving a traceback command, a sentinel
modifies and forwards the command to upstream
sentinels that are the possible entrances of attack
traffic identified by the traffic-pattern matching
module

3 send the connection information back to the
protection agent.

The flow chart of the whole procedure is depicted
in Figure 7. According to the implementation results
in Djalaliev et al. (2008), the sentinel greatly reduces
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Figure 7 Operating flow chart in the sentinel (see online version for colours)

the impact of DDoS attacks on the response time. For
more implementation details of the sentinel, the reader is
referred to Djalaliev et al. (2008).

4 DDoS detection and traceback mechanism

4.1 DDoS detection

It is reasonable to assume that the attack traffic would
be different from the normal traffic in some aspects. We
build a base-line traffic profile from the normal network
traffic. Whenever the network traffic deviates from the
base-line profile significantly, an attack is alarmed. We
adopt a decision-tree classifier (Li and Chan, 2006;
Rokach and Maimon, 2005) to classify network traffic.
The advantage of the decision-tree classifier is its efficiency
in both generalisation and new attack detection (Bouzida
and Cuppens, 2006). A decision tree consists of leaf

nodes representing classes and non-leaf nodes that specify
tests to be carried out on a particular attribute. The
construction of decision trees is based on training data.
Then, the classifier is used to new data. The scenario of the
proposed DDoS detection is illustrated in Figure 8.

We adopt the C4.5 (Quinlan, 1986, 1993) algorithm
to construct the decision tree. C4.5 chooses the attribute
as the splitting criterion according to the entropy-based
gain ratio to overcome the over-fitting problem. First,
C4.5 defines info(T ) in equation (1). info(T ) represents
the entropy of the training data set T and represents the
probability that one random instance from T belongs to
a class Cj (there are four classes in our system: Normal,
TCP SYN attack, UDP attack, and ICMP attack and
one traffic signature aggregated per 1 min would be
considered as one instance in our system).

info(T ) = −
k∑

j=1

[ |Tj |
|T | × log2

( |Tj |
|T |

)]
. (1)

Figure 8 DDoS detection scenario (see online version for colours)
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Then, the gain information for an attribute is defined
in equation (2). gain(X) measures the quantity of
information that is gained by partitioning T according to
the attribute X (we treat the format of traffic signature
defined in Table 2 as the attributes in our system).

gain(X) = info(T ) −
n∑

i=1

[ |Ti|
|T | × info(Ti)

]
(2)

where Ti represents the number of instances in the specific
attribute. Then, the gain ratio is defined in equation (3).

gain_ratio(X) =
gain(X)

− ∑n
i=1

[
|Ti|
|T | × log2

( |Ti|
|T |

)]
.

(3)

The attribute with the largest gain ratio is selected as the
splitting criterion in the decision tree. On the basis of
the selected attribute, the training data set is then divided
into several subsets. Another attribute is similarly selected
and each subset is further split. The splitting procedure
is repeated until all the data in a subset belong to the
same class or the gain ratios of all the attributes are
the same. The construction procedure is summarised as
follows:

1 Select the attribute with the largest gain ratio as the
splitting criterion, and create a branch for each
possible value of the selected attribute.

2 Divide the instances in the training data set into
subsets according to the selected attribute.

3 Repeat Steps 1 and 2 for each branch.

In our implementation, we define four classes –
normal, TCP SYN flooding, UDP flooding, ICMP
flooding – and 16 attributes derived from the traffic
signatures. A decision tree is then constructed from the
training data set. According to the decision tree, the
incoming traffic is classified.

4.2 Traceback

When the protection agent detects an attack, it raises an
alarm to the traceback module. Because the source IP
address in a packet could be easily spoofed, it cannot be
used for traceback. Instead, we make use of traffic-flow
pattern matching for traceback. Our objective is to
find the routers where the attack traffic first enters the
network. Starting from the victim, we attempt to discover
the routers on the attack path one by one, until we reach
the entry points of the attack traffic. For each router, we
identify the incoming link on which the incoming traffic
is most similar to the outgoing attack traffic. Then, that
link is deemed to be on the attack path.

To determine the similarity of the traffic on the
communication links, we make use of traffic-flow pattern
matching (Kim and Helmy, 2005; Mansfield et al., 2000).
There are two separate procedures in pattern matching:
trend-pattern matching and volume-pattern matching.
Traffic pattern matching is done in sentinels and the

results are collected by the protection agent, which will
construct the attack paths.

4.2.1 Attack edge determination

When a DDoS attack was detected, the traceback
module will wait for sentinels to aggregate the traffic
signatures. Then, the traceback module puts the attack
traffic signatures aggregated during the attack and
the timestamp when the attack was detected into the
traceback command.

The traceback module in the protection agent
issues a traceback command to the upstream sentinel,
which is referred to as the 1-hop sentinel. When
the 1-hop sentinel receives the traceback command,
it searches the traffic signature repository for every
Network Interface Card (NIC) to retrieve the traffic
signatures with the appropriate attack type and the
aggregated timestamp that matches the timestamp in
the traceback command. Afterwards, the sentinel applies
the traffic-flow pattern-matching algorithm to identify
the set of NICs that are the possible entrances the
attack traffic may come from. If a router is equipped
with n network interface cards, there will be 2n − 2
different combinations (the two cases – no NIC and
all NICs – are ignored). And if n = 1, then this only
one NIC will be considered as the entrance of attack
traffic. After identifying the suspicious entrances of the
attack traffic, the sentinel would send the connection
information (which includes IP addresses of the two
ends of the link and their distances from victim) to the
protection agent through an SSH tunnel. In this way, the
protection agent could receive the links that the attack
traffic might pass through.

After sending back the connection information, the
sentinel puts the traffic signatures aggregated by the
suspicious NIC into the traceback command as new
evidence and forwards this modified command to the
upstream sentinel. When the upstream sentinel receives
the traceback command, it repeats the same procedure
until the entrance router is reached. Figure 9 illustrates
the algorithm of the edge of attack path sampling. After
all the connection information is collected, the attack
paths could be reconstructed.

4.2.2 Traffic-flow pattern matching

In a DDoS attack, the attack traffic enters the network
from multiple routers and flows to a single victim.
The communication links that the attack traffic passes
through form a tree (under normal routing) with the
victim as the root and the entrances as the leaves. Our
traceback method starts from the victim and identifies the
routers on the tree one by one. Each sentinel will find the
upstream routers on the tree.

The major problem in our traceback method lies
in identifying the upstream routers of attack traffic in
the sentinels. Therefore, the aim of traffic-flow pattern
matching is to identify the subset of NICs on a router
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Figure 9 Algorithm for determining the attack edges

whose collective incoming traffic has similar signature as
the attack traffic that goes out of that router. We apply
two kinds of pattern-matching techniques, which measure
both the trend and the volume of network traffic.

• Trend-Pattern Matching: Trend-pattern matching is
based on the assumption that the DDoS attack
traffic should dominate the change in the outgoing
traffic from a router. Hence, we need to characterise
the traffic trend quantitatively and determine if they
are similar.

Unlike other systems that compare traffic signatures
with conventional statistical methods that favour
the major sample space instead of small sample
space and are easily affected by the extreme value,
GRA (Deng, 1989; Lin and Liu, 2004) is used in
our system. The GRA is applicable to a small
sample size and could overcome the weakness of
conventional statistic method by analysing the
relation between factors from a small amount of
data set. Because of the concern of the efficiency in
traceback, the duration of the observation window1

is quite short and the resulting sample size is quite
small. Therefore, the GRA could satisfy our need
and achieve the relational comparison in less effort
within a large number of NICs. There are three
pre-processing steps for the GRA:

• grey relational maximising operation

• grey relational coefficient computation

• grey relational grade computation.

During the observation window, the 1-hop sentinel
computes a sequence of traffic signatures (one per
minute) for each combination of NICs. The
maximising operation (equation (4)) is then applied
to normalise the signatures. The purpose of the

maximising operation is to diminish the magnitude
of sequences and make them comparable.

y(k) =
x(k)
xmax

(4)

where the original signature sequence is x = {x(1),
x(2), . . . , x(n)} and the normalised sequence is
y = {y(1), y(2), . . . , y(n)}.
There is a sequence of signatures for each
combination of NICs on a router. Among the
sequences y1, y2, . . . etc., we wish to find the
combination of NICs whose sequence of signatures
is most similar to the sequence y0 of the signatures
of the attack traffic. We use equation (5)
(Hsia et al., 2004) to compute grade r(y0, yi), for
each sequence yi.

r(y0, yi) =
(

∆max − ∆0i

∆max − ∆min

)
(5)

where
∆min = min

∀i
min
∀k

∆0i(k) = min
∀i

min
∀k

|y0(k) − yi(k)|,
∆max = max

∀i
max

∀k
∆0i(k) = max

∀i
max

∀k
|y0(k) − yi(k)|

and ∆0i = 1
n

∑n
k=1 ∆0i(k)

r(y0, yi) may be interpreted as the similarity
between the sequences y0 and yi. If
r(y0, y1) > r(y0, y2), we may conclude that the
sequence y1 is more similar to the sequence y0 than
the sequence y2.

• Volume-pattern matching: Trend-pattern matching
considers only the similarity of two sequences but
not their magnitude (here magnitude means the
volume of traffic). Volume-pattern matching will
compare the magnitudes of two sequences. We use
equation (6) to compute a volume coefficient gi for
each sequence xi.

gi =
∑n

k=1

√
x0(k)xi(k)∑n

k=1 x0(k)
. (6)

4.2.3 Traceback command forwarding policy

The grade r(y0, yi) represents the similarity in shape
of the two sequences y0 and yi while the volume
coefficient gi represents the similarity in volume of
the two sequences. When the grade r(y0, yi) is greater
than a selected threshold Ttrend, we claim that the two
sequences have the same shape. Similarly, when the
volume coefficient gi is greater than a certain threshold
Tvol, we claim that two sequences have the same volume.
In our system, we use Ttrend = 0.8 and Tvol = 0.9. This
would reduce the false positive/negative ratios in our
experiment.

We consider only the sequences xi for which
r(y0, yi) > Ttrend and gi > Tvol. Among these sequences,
we choose the sequence with the largest r(y0, yi). The
subsets of NICs corresponding to the chosen sequence
are deemed as the entrances for the attack traffic to enter



130 Y-C. Wu et al.

the router. When there is no sequence for which gi > Tvol,
we claim that all the NICs are the entrances for the attack
traffic to enter the router. Otherwise, the router is not on
the attack path and the sentinel on the router will stop
forwarding the traceback command.

5 Experiment design and results

5.1 Simulation design

We verified the performance of the proposed detection
and traceback system on the DETER test-bed (Benzel
et al., 2006). The DETER test-bed provides users an
environment to emulate the real-world network traffic
with an easy-to-use web interface and various tools,
such as SEER (Schwab et al., 2007), a benchmark
for DDoS defence mechanism. There are three major
components in a DDoS attack experiment: topology
design, legitimate traffic (background traffic) and attack
traffic.

5.1.1 Topology design

In our experiment, there are 5 zombie attackers,
20 routers and 10 clients, which perform common web

browsing. The network topology is generated with the
Waxman algorithm (Waxman, 1988), which is shown in
Figure 10.

5.1.2 Legitimate traffic generation

The background traffic (i.e., normal traffic, without
attacks) is generated with harpoon (Sommers et al., 2004)
from the actual trace data collected at the computing
centre of Department of Computer Science in National
Chiao Tung University. The machine is a web page server
in the centre.

5.1.3 Experiment scenarios

The background traffic was collected from 25 June,
2008 (Wednesday) midnight to 27 June, 2008 (Friday)
midnights (48 h in total), which is divided into two
groups: the traffic on 25 June (denoted as data25) is
used as training data set while the traffic collected on 26
June (denoted as data26) for testing purpose. Each day is
further divided into four periods: bed-time (0 am–7 am),
morning (7 am–12 pm), afternoon (12 pm–18 pm) and
evening (18 pm–24 am).

There are four iterations in our experiment. The first
two iterations constitute the training phase while the

Figure 10 Experiment topology design (see online version for colours)
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last two the testing phase. First, we feed the simulation
environment with data25. We obtain 1440 signatures
(one per minute) for the background traffic. Second, we
feed the simulation with data25 plus randomly generated
attack traffic. We obtain another 1440 signatures and
these signatures with attack traffic would be denoted
as attack traffic signatures. The two sets of signatures
are used to build the decision tree with the C4.5
algorithm. Third, we feed the simulation with data26.
The resulting 1440 signatures are used to calculate the
false positive ratio. Finally, we feed the simulation
with data26 and randomly generated attack traffic.
The resulting 1440 signatures will be used to calculate
the false negative ratio and the false classification
ratio.

5.1.4 Attack traffic generation

The attack traffic is randomly generated with the SEER
tool. We tested three kinds of attacks: TCP SYN flood,
UDP flood and ICMP flood. To simplify the experiment,
at most one attack is underway at any time. Each attack
lasts for 1 h in the training phase and for 12 min during
the testing phase. The amount of attack traffic for each
attack during the training phase is shown in Table 4. The
amount of attack traffic during the testing phase is shown
in Table 5. The testing phase is repeated three times, each
with different attack traffic.

Table 4 Attack scenario in training data

TCP SYN flood UDP flood ICMP flood

150 pkt/per sec 150 pkt/per sec 150 pkt/per sec
Pkt. size: 66 bytes Pkt. size: 256 bytes Pkt. size: 256 bytes

Table 5 Attack scenario for evaluating purpose

TCP SYN flood UDP flood ICMP flood

Scenario 1
250 pkt/per sec 250 pkt/per sec 250 pkt/per sec
Pkt. size: 66 bytes Pkt. size: 256 bytes Pkt. size: 256 bytes

Scenario 2
150 pkt/per sec 150 pkt/per sec 150 pkt/per sec
Pkt. size: 66 bytes Pkt. size: 256 bytes Pkt. size: 256 bytes

Scenario 3
70 pkt/per sec 70 pkt/per sec 70 pkt/per sec
Pkt. size: 66 bytes Pkt. size: 256 bytes Pkt. size: 256 bytes

5.2 Performance evaluation

5.2.1 Performance metric

• Performance metrics for DDoS detection: In
detecting DDoS attacks, we focus on four metrics:
(FNR False Negative Ratio), (FPR False Positive
Ratio), (FCR False Classification Ratio) and
detection latency. According to Table 6, the
definitions of FNR and FPR are listed as equations
(7) and (8), respectively.

Table 6 Situation analysis in detection

Detection result

Actual situation Attack Normal

Attack A B
Normal C D

‘A’ is the number of attack signatures that are successfully and
correctly detected by the protection agent; ‘B’ is the number
of attack signatures that the protection agent failed to detect;
‘C’ is the number of reported attack signatures while there is
actually no attack; and ‘D’ is the number of normal traffic
signatures that are recognised as normal (that is, not identified
as an attack).

Table 7 defines the FCR for different attacks. In TCP
SYN flooding attack, the false classification represents
the ratio between the number of TCP SYN flooding
attack traffic signatures that are detected as UDP
flooding attack signatures or ICMP flooding attack
signatures and the total number of TCP SYN flooding
attack traffic signatures. The false classification ratio in
UDP flooding attack and ICMP flooding are deduced in
the same way. Detection latency represents the average
number of time slots needed to detect the attack when the
attack was launched in our experiment.

FNR =
B

A + B
(7)

FPR =
C

C + D
. (8)

Table 7 The false classification ratio

Equation

TCP SYN flood Ni=ICMP +Ni=UDP
Rj=T CP

UDP flood Ni=ICMP +Ni=T CP
Rj=UDP

ICMP flood Ni=T CP +Ni=UDP
Rj=ICMP

Ni represents the number of attack traffic signatures that the
protection agent detected as attack i; Rj represents the number
of attack traffic signatures actually generated by attack j.

According to Table 6, the FNR (see equation (7))
represents the ratio between the number of attack traffic
signatures that are not detected and the total number
of attack traffic signatures. FPR (see equation (8))
represents the ratio between the number of normal traffic
signatures that are claimed as attack signatures and the
total number of normal signatures.

• Performance metrics for DDoS traceback:
In DDoS traceback performance evaluation, we
define the Misidentified Normal Edge Ratio
(MNER) and Misidentified Attack Edge Ratio
(MAER) as our metrics for traceback. According to
Table 8, MNER (see equation (9)) represents the
ratio between the numbers of normal edges
but are claimed as attack edges by the sentinels
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and the total number of normal edges. MAER
(see equation (10)) represents the ratio between the
number of attack edges that are not found by the
sentinels and the total number of attack edges.

MNER =
G

G + H
(9)

MAER =
F

E + F
. (10)

Table 8 Situation analysis in traceback

Report result
Actual situation Attack path Normal path

Attack path e f
Normal path g h

‘e’ is the number of attack edges that are successfully and
correctly reported by sentinels; ‘f ’ is the number of attack edges
the sentinels failed to identify; ‘g’ is the number of edges that
are not on the attack path but are mistakenly identified as
attack edges by the sentinels and ‘h’ is the total number of
edges that are not on the attack path and are recognised as
normal.

5.2.2 Simulation results

• Performance of DDoS detection: Figure 11 depicts
the false positive ratios for the four periods in a
day. The result indicates that the false positive ratio
ranges from 1.2% (bed time) to 2.4% (morning).
In Noh et al. (2003), the false positive ratio ranges
from 1% to 8% depending on the background
traffic. However, it is not clear the amount of attack

traffic in Noh et al. (2003). In D-WARD (Mirkovic
and Reiher, 2005), the false positive ratio (which is
called false alarm) is about 2%. However, it is clear
about the amount of attack and normal traffic.

Figures 12–14 depict the false negative ratios of TCP
SYN flooding, UDP flooding, and ICMP flooding,
respectively. Because the sending rates in the ICMP
flooding attack and the UDP flooding attack are the
same, the results in ICMP and UDP flooding attacks are
similar. When the attack rate is 150 packets per second
(note that in the training phase the attack rate is 150
packets per second), the false negative ratio ranges from
5–10% for UDP and ICMP flooding. The false negative
ratio is 2–3% for the TCP SYN flooding.

Figures 15–17 depict the results in the false
classification ratios. The results show that the false
classification ratio for the TCP SYN attacks is lower
than that for ICMP and UDP flooding attacks. Nearly
40–50% of ICMP attacks may be mistaken as UDP
attacks. Similarly, nearly 40–50% of UDP attacks may
be mistaken as ICMP attacks. On the other hand, TCP
SYN attacks are seldom mis-classified.

Another important issue in DDoS detection is the
detection latency, i.e., how soon the system will claim an
attack after the attack traffic reaches the victim. In our
system, time is sliced into 1-minute slots. According to
the results in Figures 18–20, our system could claim an
attack within 1–1.4 min under different attack rates.

• Performance of attacker traceback: When
reconstructing the attack paths, it is possible to
mistake an edge that is not on the attack path as an

Figure 11 False positive ratio in DDoS detection (see online version for colours)

Figure 12 False Negative Ratio in TCP SYN flooding (see online version for colours)
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Figure 13 False Negative Ratio in UDP flooding (see online version for colours)

Figure 14 False Negative Ratio in ICMP flooding (see online version for colours)

Figure 15 False Classification Ratio in TCP SYN flooding (see online version for colours)

Figure 16 False Classification Ratio in UDP flooding (see online version for colours)

Figure 17 False Classification Ratio in ICMP flooding (see online version for colours)
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Figure 18 Detection latency in TCP SYN flooding (see online version for colours)

Figure 19 Detection latency in UDP flooding (see online version for colours)

Figure 20 Detection latency in ICMP flooding (see online version for colours)

attack edge and vice versa. Figures 21 and 22 show
MNER and MAER with different observed
windows and different trend-pattern thresholds.
Remember the observed window is the amount of
time the sentinels collect traffic data after an attack

is claimed. Figure 22 shows that MAER is almost a
constant while Ttrend < 0.9 regardless of the
observed window. The results also verify that the
GRA is suitable for small sample space (size of
sample space < 30).

Figure 21 Misidentified Normal Edge Ratio (MNER) in traceback (see online version for colours)
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Figure 22 Misidentified Attack Edge Ratio (MAER) in traceback (see online version for colours)

When we keep MAER low (i.e., the Ttrend < 0.9),
the lowest MNER is around 12–18.5% (from Figure
21). Furthermore, we enforce an observed window for
at least 3 min, MNER falls between 12 and 14%.
In Izaddoost et al. (2007), MNER is 17–19% in old iTrace
model and 6% in new proposed model under different
network traffic. MNER in Figure 21 is less than 10%
but that system makes use of a modified probability
packet marking mechanism, which involves many other
issues.

6 Conclusions

In this paper, we propose a DDoS defence system, which
includes attack detection by decision tree and attacker
traceback with traffic-pattern matching. Our system is
based on the observation that the network traffic under
DDoS attack would differ from the traffic in normal
situation. We apply the decision tree (C4.5) generating
algorithm to construct the classification model and detect
abnormal traffic flow. In traceback phase, we use a novel
traffic pattern-matching procedure, which is based on
GRA, to identify the traffic flow that is similar to the
attack flow and, based on this similarity, to trace back
the origin of an attack. The attack path reconstruction
is then accomplished by the protection agent and the
sentinels.

We conduct our experiment on the DETER system.
According to our experiment results, our system could
detect the DDoS attack with the false positive ratio
about 1.2–2.4%, false negative ratio about 2–10% with
different attacks and attack sending rates and find the
attack path in traceback. The misidentified attack edge
ratio is about 8–12% and misidentified normal edge ratio
about 12–14%. The result indicates that our proposed
system is capable of detecting the attacks and tracing
them back with high accuracy and within a short
time.
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