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Let A¼ (an,k)n,k�0 be a non-negative matrix. Denote by Lp,q(A) the
supremum of those L satisfying the following inequality:

X1
n¼0

X1
k¼0

an, kxk

 !q !1=q

� L
X1
k¼0

xk
p

 !1=p

ðX2 ‘p,X � 0Þ:

The purpose of this article is to establish a Bennett-type formula for kH 0
�k
#
p, p

and a Hardy-type formula for L#p, pðH
�
�Þ and Lp, pðH

�
�Þ, where H�

� is a
generalized Hausdorff matrix and 05p� 1. Similar results are also
established for Lp,qðH

�
�Þ and Lp,qððH

�
�Þ

t
Þ for other ranges of p and q. Our

results extend [Chen and Wang, Lower bounds of Copson type for Hausdorff
matrices, Linear Algebra Appl. 422 (2007), pp. 208–217] and [Chen and
Wang, Lower bounds of Copson type for Hausdorff matrices: II, Linear

Algebra Appl. 422 (2007) pp. 563–573] from H0
� to H�

� with �� 0 and
completely solve the value problem of kH0

�k
#
p, p, L

#
p, pðH

�
�Þ, Lp, pðH

�
�Þ, and

Lp, pððH
�
�Þ

t
Þ for �2N[ {0}.
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1. Introduction

Let ‘p denote the space of all complex sequences X ¼ fxng
1
n¼0 such that

kXkp :¼ ð
P1

n¼0 jxnj
pÞ

1=p 51. We have kXkp�kXkq for 05p� q�1. Write X� 0 if
xn� 0 for all n. We also write X# for the case x0� x1� � � �. For p, q2R n {0} and
A¼ (an,k)n,k�0� 0, denote by Lp,q(A) the supremum of those L obeying the following
inequality:

X1
n¼0

X1
k¼0

an, kxk

 !q !1=q

� L
X1
k¼0

xk
p

 !1=p

ðX2 ‘p,X � 0Þ:
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The study of Lp,q(A) goes back to Copson [9] (see also [4,11,12]). It is clear that
Lp,qðAÞ � L#p,qðAÞ � kAk

#
p,q � kAkp,q, where

L#p,qðAÞ ¼ inf
kXkp¼1,X�0,X#

kAXkq, kAk#p,q ¼ sup
kXkp¼1,X�0,X#

kAXkq,

and

kAkp,q ¼ sup
kXkp¼1

kAXkq:

Moreover, by (1.3), given below, we infer that for any m� 0 and 1� p51,

jAjp, p �

�Xm
k¼0

X1
n¼0

jan, kj
p

�1=p

� ðmþ 1Þ1=pLp, pðAÞ,

where

jAjp, p ¼
X1
k¼0

X1
n¼0

jan, kj
p

 !1=p

:

This gives

Lp, pðAÞ �
1

ðmþ 1Þ1=p
jAjp, p:

Whenever jAjp,p51, the rights side of the last inequality tends to 0 as m!1. In
this case, Lp,p(A)¼ 0. Thus, for 1� p51, Lp,p(A)40)jAjp,p¼1. As indicated in
[8, Section 3], 05Lp, pðA

NM
W Þ51¼)kA

NM
W kp, p 51, where 1� p51 and ANM

W is
any Nörlund matrix. In [7, Corollaries 3.3 and 3.5], we further indicated that there
are many cases for which 05Lp,qðH

0
�Þ51, but kH0

�kp,q ¼ 1, where 05q� p� 1,
� is a Borel probability measure on [0, 1] and H�

� ¼ ðh
�
n, kÞn, k�0 is the generalized

Hausdorff matrix associated with �, defined by

h�n, k ¼
nþ �

n� k

� � Z 1

0

�kþ�ð1� �Þn�kd�ð�Þ ðn � kÞ,

0 ðn5 kÞ:

8<
:

As indicated in Theorem 3.1 and the remark before Lemma 2.4, kH0
�k
#
p,q may be finite,

butkH0
�kp,q ¼ 1. Thesedisplay the significanceof studyingLp,q(A),L

#
p,qðAÞandkAk

#
p,q.

In [5, Theorem 4] and [1, Theorems 2 and 3], Bennett and Grosse-Erdmann
established the following general results:

kAk#p,q ¼ sup
r�0
ð1þ rÞ�1=p

X1
n¼0

Xr
k¼0

an, k

 !q !1=q

ð05 p � 1; p � q51Þ,

ð1:1Þ

L#p,qðAÞ ¼ inf
r�0
ð1þ rÞ�1=p

X1
n¼0

Xr
k¼0

an, k

 !q !1=q

ð1 � p � 1; 05 q � pÞ,

ð1:2Þ

Lp,qðAÞ ¼ inf
k�0

X1
n¼0

a
q
n, k

 !1=q

ð1 � p � 1; 05 q � pÞ: ð1:3Þ
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As indicated in [1,2,6,8,14,15], some further investigations for the extreme values

appeared in (1.1)–(1.3) are necessary even for ‘nice’ matrices A, such as A ¼ H�
�

or ðH�
�Þ

t, where (�)t denotes the transpose of (�). The known results for H0
� and ðH0

�Þ
t

are listed below. In [2, Theorem H], Bennett proved that

kH0
�k
#
p, p ¼

Z 1

0

��1=p d�ð�Þ ð1 � p51Þ: ð1:4Þ

In [2, Theorem 1] and [3, Theorem 7.18], he also showed that

L#p, pðH
0
�Þ ¼

X1
n¼0

Z 1

0

ð1� �Þn d�ð�Þ

� �p
 !1=p

ð1 � p51Þ ð1:5Þ

and

Lp, pððH
0
�Þ

t
Þ ¼

Z 1

0

��1=p
�

d�ð�Þ ð05 p � 1Þ, ð1:6Þ

where 1/pþ 1/p�¼ 1. Recently, we found several new results on Lp,qðH
0
�Þ or on

Lp,qððH
0
�Þ

t
Þ with p different from the one given in (1.6). For instance, in [6], we proved

that Lp,qðH
0
�Þ ¼ �ðf1gÞ and Lp,qððH

0
�Þ

t
Þ ¼ ðð�ðf0gÞÞq þ ð�ðf1gÞÞqÞ1=q, where 15q�

p�1. The case 05q� 1� p�1 was also examined there. In [7, Theorem 2.3],
we also claimed that ifZ

ð0,1�

��ð1=pþ�Þd�ð�Þ51 for some �4 0, ð1:7Þ

then the following formula holds:

Lp, pðH
0
�Þ ¼

Z
ð0,1�

��1=pd�ð�Þ ð05 p � 1Þ: ð1:8Þ

In the same article, we pointed out that such a result is false for �¼ 0.
From the last paragraph, we see that the values of kH0

�k
#
p, p and L#p, pðH

0
�Þ for

05p51 are unclear. Moreover, no significant formulae are found for these values

wheneverH0
� is replaced byH�

�. The purpose of this article is to solve these problems.
In particular, we establish a Bennett-type formula for kH0

�k
#
p,q with 05p� q� 1

(cf Theorem 3.1), and we also prove in Theorem 4.3 that under (1.7) and �40,
the values of L#p, pðH

�
�Þ and Lp, pðH

�
�Þ are determined by the integral given in (1.8).

The details will be given in Sections 3–6. Our results extend [6] and [7] fromH0
� toH�

�

with �� 0.

2. Preliminaries

We list several results which will be used in the following sections. The first one

indicates that (1.7) is stronger than (2.1), where

X1
n¼0

Z
ð0,1�

ð1� �Þn d�ð�Þ

� �p

51: ð2:1Þ
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LEMMA 2.1 Let 05p� 1. Then (1.7)) (2.1).

Proof By [16, Chapter III, Equation (1.15)], there exists a suitable constant C

such that�Z
ð0,1�

ð1� �Þnd�ð�Þ

�p

� C

Z
ð0,1�

A1=pþ��1
n ð1� �Þnd�ð�Þ

� �p

ðnþ 1Þ��p�1þp, ð2:2Þ

where A�n ¼
nþ�
n

� �
and �40 is given in (1.7). Summing up both sides of (2.2) from

n¼ 0 to 1 first and then applying the Hölder inequality, we getX1
n¼0

Z
ð0,1�

ð1� �Þnd�ð�Þ

� �p

� C

�X1
n¼0

Z
ð0,1�

A1=pþ��1
n ð1� �Þnd�ð�Þ

�p�X1
n¼0

ðnþ 1Þ
��p
1�p�1

�1�p

� C

�
1� p

�p

�1�p�Z
ð0,1�

X1
n¼0

A1=pþ��1
n ð1� �Þnd�ð�Þ

�p

: ð2:3Þ

For � 2 (0, 1], we have
P1

n¼0 A
1=pþ��1
n ð1� �Þn ¼ ��ð1=pþ�Þ (see [16, Chapter III,

Equation (1.9)]). Plugging this into the right side of (2.3), we obtainX1
n¼0

Z
ð0,1�

ð1� �Þnd�ð�Þ

� �p

� C

�
1� p

�p

�1�p�Z
ð0,1�

��ð1=pþ�Þd�ð�Þ

�p

:

Hence, (1.7)) (2.1). g

In general, (1.7) does not imply (2.4), where

X1
n¼0

Z 1

0

ð1� �Þnd�ð�Þ

� �p

51: ð2:4Þ

The measure �¼ (1/2)�0þ (1/2)�1 gives a counterexample, where �� denotes the Dirac

measure at �, defined by

��ðE Þ ¼
1 if � 2E,

0 otherwise:

�
ð2:5Þ

We also point out that (2.1) does not imply (1.7). Consider the measure

� ¼
P1

k¼0 �
�1m

�1=p
k ðlogmkÞ

�1�m�1
k
, where mk"1, logmk� (kþ 1)2/p and

� ¼
P1

k¼0 m
�1=p
k ðlogmkÞ

�1. For such � and mk, we have

m�1k

1� ð1� 1=mkÞ
p �! 1=p as k!1,

which impliesX1
n¼0

�Z
ð0,1�

ð1� �Þnd�ð�Þ

�p

�
X1
k¼0

X1
n¼0

ð1� 1=mkÞ
np��pm�1k ðlogmkÞ

�p

¼ ��p
X1
k¼0

m�1k

1� ð1� 1=mkÞ
p ðlogmkÞ

�p

� ��p
X1
k¼0

m�1k

1� ð1� 1=mkÞ
p ðkþ 1Þ�2 51:
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This shows that (2.1) holds. However, (1.7) fails becauseZ
ð0,1�

��ð1=pþ�Þd�ð�Þ ¼ ��1
X1
k¼0

m�
kðlogmkÞ

�1
¼ 1 for all �4 0:

In [2, Theorem 1], Bennett proved that for 1� q51,

1

rþ 1

X1
n¼0

�Xr
k¼0

h0n, k

�q

ð2:6Þ

is increasing in r. In the following, we claim that (2.6) is a decreasing function in r for
05q� 1. This result will be used to establish Theorem 3.1.

LEMMA 2.2 Let 05q� 1. The following assertions are true.

(i) For any fixed r2N[ {0}, the sequence f
Pr

k¼0 h
0
n, kg
1
n¼0 is decreasing.

(ii) The sequence defined by (2.6) decreases with r (r¼ 0, 1, . . .).

Proof Consider (i). We have
Pr

k¼0 h
0
n, k ¼

R 1
0 ð
Pr

k¼0 e
0
n, kð�ÞÞd�ð�Þ, where

e�n, kð�Þ ¼
nþ �

n� k

� �
�kþ�ð1� �Þn�k ðn � kÞ,

0 ðn5 kÞ:

(
ð2:7Þ

It suffices to show that f
Pr

k¼0 e
0
n, kð�Þg

1
n¼0 is decreasing for all � 2 [0, 1]. By definition,Pr

k¼0 e
0
n, kð�Þ ¼ 1 for n¼ 0, 1, . . . , r, so it suffices to show that f

Pr
k¼0 e

0
n, kð�Þg

1
n¼r

is decreasing. Without loss of generality, we only discuss those n� rþ 1. Clearly,Pr
k¼0 e

0
n, kð�Þ ¼

Pn
k¼0 e

0
n, kð�Þ �

Pn
k¼rþ1 e

0
n, kð�Þ ¼ 1�

Pn
k¼rþ1 e

0
n, kð�Þ. On the other

hand,

Xn
k¼rþ1

e0n, kð�Þ ¼
Xn
k¼rþ1

n

k

� �
�kð1� �Þn�k ¼

Xm
j¼0

mþ rþ 1

m� j

� �
� jþrþ1ð1� �Þm�j,

where m¼ n� (rþ 1). By [13, Lemma 2], f
Pn

k¼rþ1 e
0
n, kð�Þg

1
n¼rþ1 is increasing. Hence,

f
Pr

k¼0 e
0
n, kð�Þg

1
n¼r is decreasing. This verifies (i). Next, we prove (ii). Fix r2N[ {0}.

Let X ¼ fxkg
1
k¼0 and Y ¼ fykg

1
k¼0 be defined by

xnðrþ2Þþj ¼
Xr
k¼0

h0n, k ðn � 0; 0 � j � rþ 1Þ

and

ynðrþ1Þþj ¼
Xrþ1
k¼0

h0n, k ðn � 0; 0 � j � rÞ:

The assertion (i) ensures that fxkg
1
k¼0 is decreasing. By [2, Equation (27)], we havePN

k¼0 xk �
PN

k¼0 yk for all N. On the other hand,

X1
k¼0

xk ¼ ðrþ 2Þ
Xr
k¼0

X1
n¼0

h0n, k ¼ ðrþ 2Þðrþ 1Þ

Z 1

0

��1d�ð�Þ ð2:8Þ
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and

X1
k¼0

yk ¼ ðrþ 1Þ
Xrþ1
k¼0

X1
n¼0

h0n, k ¼ ðrþ 2Þðrþ 1Þ

Z 1

0

��1d�ð�Þ: ð2:9Þ

So
P1

k¼N xk �
P1

k¼N yk for all N. By [3, Lemma 20.21], we get
P1

k¼0 x
q
k �

P1
k¼0 y

q
k.

To replace xk in (2.8) and yk in (2.9) by x
q
k and y

q
k, respectively, we see that

1
rþ1

P1
n¼0ð

Pr
k¼0 h

0
n, kÞ

q
� 1

rþ2

P1
n¼0ð

Prþ1
k¼0 h

0
n, kÞ

q. This completes the proof. g

Lemma 2.2(i) may be false if h0n, k is replaced by h�n, k with �40. Consider �¼ ��,
where �� is defined by (2.5). Fix n and r. We have

lim
�!0þ

Pr
k¼0 h

�
nþ1, kPr

k¼0 h
�
n, k

¼ lim
�!0þ

nþ1þ�
nþ1

� �
ð1� �Þnþ1 þ �f� � �g

nþ�
n

� �
ð1� �Þn þ �f� � �g

¼ 1þ
�

nþ 1
4 1:

Hence, there exists some �2 (0, 1), depending on n and r, such thatPr
k¼0 h

�
nþ1, k 4

Pr
k¼0 h

�
n, k. This shows that f

Pr
k¼0 h

�
n, kg
1
n¼0 may not be decreasing.

For q¼ 1, we have

X1
n¼0

Xr
k¼0

h�n, k

 !q

¼
Xr
k¼0

X1
n¼0

h�n, k ¼ ðrþ 1Þ

Z 1

0

��1d�ð�Þ ðr ¼ 0, 1, . . .Þ,

and so 1
rþ1

P1
n¼0ð

Pr
k¼0 h

�
n, kÞ

q is decreasing in r for all �� 0. We are unable to
determine whether it is true for �40 and 05q51.

To prove Theorem 4.2, we need the following lemma, which extends
[3, Proposition 19.2] and [6, Lemma 2.1] from e0n, kð�Þ to e�n, kð�Þ, where �40.

LEMMA 2.3 Let �40. The following assertions hold.

(i) For �� [0, 1], �k :¼ kf
R

� e�n, kð�Þd�ð�Þg
1
n¼kkp decreases for 1� p�1, and

increases for 05p� 1.
(ii) Moreover, if �� [�, 1� �] for some 05�51/2, then �k# 0 for 15p�1, "1

for 05p51, and is equal to
R

��
�1d�(�) for p¼ 1.

Proof Consider (i). We have

Z
�

e�n, kð�Þd�ð�Þ ¼ �ð�Þ 	

Z 1

0

e�n, kð�Þd�
�ð�Þ,

where d�� ¼ 	�

�ð�Þd� is a probability measure on [0, 1] and 	� denotes the charac-
teristic function of the set �. Hence, we only need to prove the case �¼ [0, 1].
Without loss of generality, we assume �((0, 1]) 6¼ 0. Let d
ð�Þ ¼ ��d�ð�Þ=

R 1
0 �

�d�ð�Þ
and 
k ¼

R 1
0 �

kd
ð�Þ. Define the matrix S¼ (si, j)i, j�0 by

si, j ¼
Di
kþ1

Dj
k
ði � j Þ,

0 ði5 j Þ,

8<
:

where D
k¼ 
k� 
kþ1. Following the proof of [3, Proposition 19.2], we can proveP1
i¼0 si, j ¼ 1 for all j and supi�0

P1
j¼0 si, j � 1. From [3, Propositions 7.1 and 7.4] and

kSk1,1 ¼ supi�0
P1

j¼0 si, j, we get

kSkp, p � 1 ð1 � p � 1Þ and Lp, pðS Þ � 1 ð05 p � 1Þ: ð2:10Þ
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On the other hand,

Xi
j¼0

si, j
kþ �þ j

j

� �
Dj
k ¼ Di
kþ1

Xi
j¼0

kþ �þ j

j

� �

¼
kþ 1þ �þ i

i

� �
Di
kþ1:

Moreover, ð
R 1
0 �

�d�ð�ÞÞDi
k ¼ Di�k for all k, where

�k ¼

Z 1

0

�kþ�d�ð�Þ ðk ¼ 0, 1, . . .Þ: ð2:11Þ

By (2.10),

kþ 1þ �þ i

i

� �
Di
kþ1

� 	1
i¼0











p

� kSkp, p
kþ �þ j

j

� �
Dj
k

� 	1
j¼0













p

�
kþ �þ j

j

� �
Dj
k

� 	1
j¼0













p

ð1 � p � 1Þ:

This implies that �k ¼ kf
nþ�
n�k

� �
Dn�k�kg

1
n¼kkp decreases with k for 1� p�1.

Analogously, it follows from Lp,p(S )� 1 that �k increases with k for 05p� 1.

Next, let �� [�, 1� �], where 05�51/2. For 15p51, by Minkowski’s inequality,

we get

�k �

Z
�

�X1
n¼k

�
e�n, kð�Þ

�p�1=p

d�ð�Þ

�

Z
�

�X1
n¼k

e�n, kð�ÞÞ
1=p sup

n�k

e�n, kð�Þ

 !1�1=p

d�ð�Þ

¼

Z
�

��1=p
�
sup
n�k

e�n, kð�Þ

�1�1=p

d�ð�Þ: ð2:12Þ

By [3, Equation (19.13)], for � 2�,

sup
m�k

e�m, kð�Þ � �
��ð½��þ1Þ sup

m�k

e0mþ½��þ1, kþ½��þ1ð�Þ

 !

�! 0 as k!1: ð2:13Þ

Applying Fatou’s Lemma to (2.12) first and then using (2.13), we infer that

lim sup
k!1

�k �

Z
�

��1=p lim sup
k!1

�
sup
n�k

e�n, kð�Þ

�1�1=p
 !

d�ð�Þ ¼ 0:

Combining this with (i), we conclude that �k# 0 for 15p�1. We leave the proof

of the cases p¼1, 05p51 and p¼ 1 to the readers. g
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From Lemma 2.3(ii) and the definition, we see that for �40, if �((0, 1)) 6¼ 0, then
kH�

�kp,q ¼ 1 for all p40 and 05q51. By the definition, we can also prove that this
result still holds for �¼ 0.

The following two lemmas will be used in the proof of Theorem 4.3.

LEMMA 2.4 Let p, q40. The following assertions hold.

(i) h�þsn, k ¼ h�nþs, kþs for all n, k� 0, where �� 0 and s2N[ {0}.
(ii) The function ��Lp,qðH

�
�Þ is increasing on N[ {0}.

Proof The assertion (i) follows from the definition. Let �1,�22N[ {0} and
s :¼ �1� �2� 0. By (i), kH�1

� Xkq ¼ kH
�2
� X
0kq for all X ¼ fxkg

1
k¼0 � 0, where

X0 ¼ fx0kg
1
k¼0 is defined by

x0k ¼
0 ð0 � k5 sÞ,
xk�s ðk � sÞ:

�

This leads us to (ii) and the proof is complete. g

Lemma 2.4(ii) may be false if we replace Lp,qðH
�
�Þ by L#p,qðH

�
�Þ. A counterexample

is given by �¼ (1/2)�0þ (1/2)�1. For such measure, by definition,
L#p, pðH

0
�Þ ¼ 14 1=2 ¼ L#p, pðH

1
�Þ for p40.

LEMMA 2.5 Let �� 0 and �41/p40. Set X�� ¼ fx
�
kg
1
k¼0 with

x�k ¼
kþ �

k

� ��
kþ �þ �

k

� �
: ð2:14Þ

Then X�� � 0, X�� #, and X�� 2 ‘p. Moreover, if
R 1
0 �
�� d�ð�Þ51, then

kH�
�X

�
�kp � kX

�
�kp

Z 1

0

���d�ð�Þ: ð2:15Þ

Proof Clearly, X�� � 0 and X�� #. By [16, Chapter III, Equation (1.15)], we have
x�k ’

�ð1þ�þ�Þ
�ð1þ�Þ k��, and so X�� 2 ‘p. It is easy to see that

nþ �

n� k

� � kþ �

k

� ��
kþ �þ �

k

� �
¼

nþ �þ �

n� k

� � nþ �

n

� �� nþ �þ �

n

� �
:

This implies

kH�
�X

�
�kp ¼

�X1
n¼0

�Xn
k¼0

nþ �

n� k

� �
Dn�k�kx

�
k

�p�1=p

¼

�X1
n¼0

�
x�n

Xn
k¼0

nþ �þ �

n� k

� �
Dn�k�k

�p�1=p

, ð2:16Þ

where �k is defined by (2.11). Since d� is a Borel probability measure andR 1
0 �
��d�ð�Þ51, by [13, Theorem 3], we getZ 1

0

���d�ð�Þ ¼ sup
n�0

Xn
k¼0

nþ �þ �

n� k

� �
Dn�k�k: ð2:17Þ

Inserting (2.17) into (2.16), the desired result follows. g
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Lemma 2.5 provides an upper bound estimate for the values of L#p, pðH
�
�Þ and

Lp, pðH
�
�Þ. We shall see this point later.

3. Investigation of the values of kH0
lk
#
p,q for the case 05p� q� 1

Equation (1.1) is the special case bn¼ 1 of [5, Theorem 4]. It allows us to derive
the following result. Our result compliments the case 05p� q� 1, which (1.4) does

not deal with.

THEOREM 3.1 Let 05p� q� 1. Then

kH 0
�k
#
p,q ¼

X1
n¼0

Z 1

0

ð1� �Þnd�ð�Þ

� �q
 !1=q

: ð3:1Þ

Proof From (1.1) and Lemma 2.2(ii), we obtain

kH0
�k
#
q,q ¼

X1
n¼0

ðh0n,0Þ
q

 !1=q

¼
X1
n¼0

Z 1

0

ð1� �Þnd�ð�Þ

� �q
 !1=q

: ð3:2Þ

On the other hand, the definition of kH0
�k
#
p,q implies

X1
n¼0

ðh0n,0Þ
q

 !1=q

� kH0
�k
#
p,q � kH

0
�k
#
q,q: ð3:3Þ

Putting (3.2)–(3.3) together yields (3.1). g

We are unable to determine whether (3.1) still holds for kH�
�k
#
p,q with �40.

4. Investigation of the values of L#p,qðH
�
lÞ and Lp,qðH

�
lÞ for the case 05q� p� 1

Now, we come to the evaluation of L#p,qðH
�
�Þ and Lp,qðH

�
�Þ. We state the results here

and give their proofs in the following section. The following result extends
[7, Theorem 2.3, Equation (2.1)] from H0

� to H�
�, where �� 0.

THEOREM 4.1 Let �� 0 and 05q� p� 1. Then

L#p,qðH
�
�Þ � Lp,qðH

�
�Þ �

Z
ð0,1�

��1=qd�ð�Þ: ð4:1Þ

Clearly, both inequalities in (4.1) are equalities whenever the integral at the

right side of (4.1) is 1. In the following, we investigate the equality problem for
other cases.

THEOREM 4.2 Let 05q5p� 1. The following assertions are true.

(i) Both inequalities in (4.1) are equalities for �40 (respectively �¼ 0) if and only
if �({0})þ�({1})¼ 1 (respectively �({1})¼ 1) or the integral in (4.1) is 1.
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(ii) For �� 0, the second inequality in (4.1) is an equality if and only

if �({0})þ�({1})¼ 1 or the integral in (4.1) is 1.

Theorem 4.2(ii) extends [7, Theorem 2.3(i)] from �¼ 0 to �� 0. For �¼ 0

and �({0})þ�({1})¼ 1, Theorem 4.2(ii) ensures that the second inequality

in (4.1) becomes an equality for the case 05q5p� 1. However, the choice �¼
(1/2)�0þ (1/2)�1 indicates that the same phenomenon may not happen to the first

inequality. The same measure also shows that the condition �({1})¼ 1 in Theorem

4.2(i) cannot be replaced by �({0})þ�({1})¼ 1.

For 05q¼ p� 1, we have the following result.

THEOREM 4.3 Let 05p� 1. The following assertions hold.

(i) For �40, if (1.7) or p¼ 1 holds, then

L#p, pðH
�
�Þ ¼ Lp, pðH

�
�Þ ¼

Z
ð0,1�

��1=pd�ð�Þ: ð4:2Þ

Equation (4.2) still holds for the case that �¼ 0, p¼ 1, and �({0})¼ 0. If we only

assume �¼ 0 and p¼ 1, then the second equality in (4.2) remains valid.
(ii) For �2N[ {0}, L#p, pðH

�
�Þ51 if and only if (2.1) (respectively (2.4))

is satisfied for �2N (respectively �¼ 0). Moreover, in this case, (4.2) holds.
(iii) For �2N[ {0}, Lp, pðH

�
�Þ51()ð2:1Þ is satisfied. Moreover, the second

equality in (4.2) holds.

Theorem 4.3(i) extends [7, Theorem 2.3(ii) and (iii)] from �¼ 0 to �� 0.

We remark that Equation (4.2) may be false for �¼ 0. A counterexample is given

by the measure �¼ (1/2)�0þ (1/2)�1. For this measure,

L#p, pðH
0
�Þ ¼ 14 1=2 ¼

Z
ð0,1�

��1=pd�ð�Þ ð05 p � 1Þ:

The same measure also shows that the condition �({0})¼ 0 required in Theorem

4.3(i) cannot be removed. Moreover, condition (2.4) in Theorem 4.3(ii) cannot be

replaced by (1.7). By the way, we are unable to determine whether the results of

Theorem 4.3(ii) and (iii) remain valid for all �40.
By [3, Proposition 7.9], Lp,qððH

�
�Þ

t
Þ ¼ Lq�, p� ðH

�
�Þ, where �15p� q50, 1/pþ

1/p�¼ 1 and 1/qþ 1/q�¼ 1. We have 05p�� q�51. This enables us to restate

the statements of Theorems 4.1–4.3 in terms of Lp,qððH
�
�Þ

t
Þ. The following is one

of them.

THEOREM 4.4 Let �15p� q50. Then

Lp,qððH
�
�Þ

t
Þ �

Z
ð0,1�

��1=p
�

d�ð�Þ ð� � 0Þ: ð4:3Þ

Moreover, the equality holds for p¼ q if (4.4) is satisfied:Z
ð0,1�

��ð1=p
�þ�Þd�ð�Þ51 for some �4 0: ð4:4Þ

Theorem 4.4 fills up the gap �15p� q50, which [3, Theorem 7.18] (see (1.6))

does not deal with.
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5. Proofs of Theorems 4.1–4.3

Proof of Theorem 4.1 It suffices to show that Lp,qðH
�
�Þ �

R
ð0,1� �

�1=qd�ð�Þ: Let

E�ð�Þ ¼ ðe�n, kð�ÞÞn, k�0 denote the generalized Euler matrix defined by (2.7). For

05�� 1, the column sums of E�(�) are all equal to ��1. According to [13, Lemma 2]

and [10, Equation (4.2.4)], supn�0
P1

k¼0 e
�
n, kð�Þ ¼ 1. By [3, Proposition 7.4], we see

that Lq,q(E
�(�))� ��1/q. Applying Minkowski’s inequality, we get

kH�
�Xkq ¼

Z 1

0

E�ð�ÞXd�ð�Þ











q

�

Z
ð0,1�

kE�ð�ÞXkqd�ð�Þ

�

Z
ð0,1�

��1=q d�ð�Þ

� �
kXkq �

Z
ð0,1�

��1=qd�ð�Þ

� �
kXkp,

where X� 0. This leads us to (4.1). g

Proof of Theorem 4.2 First, consider (ii). Obviously, the second inequality in (4.1) is

an equality if the integral in (4.1) is1. For the case that �({0})þ�({1})¼ 1, we have

�((0, 1))¼ 0, and so for �40,

kH�
�e0kq ¼

�X1
n¼0

ðh�n,0Þ
q

�1=q

¼

�X1
n¼0

�
nþ �

n

� � Z 1

0

��ð1� �Þnd�ð�Þ

�q�1=q

¼ �ðf1gÞ ¼

Z
ð0,1�

��1=qd�ð�Þ, ð5:1Þ

where e0¼ (1, 0, . . .). This shows that Lp,qðH
�
�Þ �

R
ð0,1� �

�1=qd�ð�Þ. From [7, Equation

(2.3)], we find that the same inequality still holds for the case �¼ 0. Combining these

with (4.1), we conclude that the second inequality in (4.1) is an equality.
Conversely, assume that �({0})þ�({1}) 6¼ 1 and

R
(0,1]�

�1/q d�(�)51. We shall

prove that the second inequality in (4.1) is not an equality. Let e�n, kð�Þ be defined

by (2.7). Then

Z
ð0,1�

��1=qd�ð�Þ ¼

Z
ð0,1�

�X1
n¼0

e�n,0ð�Þ

�1=q

d�ð�Þ:

By assumption, 05q51. This implies
P1

n¼0 e
�
n,0ð�Þ5

P1
n¼0ðe

�
n,0ð�ÞÞ

q for all � 2 (0, 1).
Since �((0, 1)) 6¼ 0, it follows from Minkowski’s inequality that

Z
ð0,1�

��1=qd�ð�Þ5
Z
ð0,1�

�X1
n¼0

ðe�n,0ð�ÞÞ
q

�1=q

d�ð�Þ �

�
h�n,0






	1
n¼0






q

: ð5:2Þ

This enables us to find 05�51 such thatZ
ð0,1�

��1=qd�ð�Þ5�

�
h�n,0






	1
n¼0






q

: ð5:3Þ

We claim that

Lp,qðH
�
�Þ � min

�
�

q�p
q

Z
ð0,1�

��1=qd�ð�Þ,�

�
h�n,0






	1
n¼0






q

�
: ð5:4Þ
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Let X� 0 with kXkp¼ 1. Then xk0�� for some k0 or xk5� for all k. For the first

case, by Lemma 2.3, we get

kH�
�Xkq � xk0

X1
n¼0

ðh�n, k0 Þ
q

 !1=q

� �

�
h�n,0






	1
n¼0






q

ð�4 0Þ:

As for the second case, we have
P1

k¼0 x
q
k � �

q�p
P1

k¼0 x
p
k ¼ �

q�p. Applying (4.1),

we infer that

kH�
�Xkq �

Z
ð0,1�

��1=qd�ð�Þ

� �
kXkq � �

q�p
q

Z
ð0,1�

��1=qd�ð�Þ:

Hence, no matter which case occurs, kH�
�Xkq is always greater than or equal to

the minimum given in (5.4), and consequently, (5.4) follows. We have �(q�p)/q41.

By (5.3)–(5.4), the second inequality in (4.1) is not an equality. This completes the

proof of (ii).
Next, we prove (i). Obviously, (5.1) is true for the case �¼ 0 if �({1})¼ 1. Putting

(4.1) and (5.1) together, the ‘if ’ part of (i) follows. For the ‘only if ’ part, we assume

that both inequalities in (4.1) are equalities. By (ii), �({0})þ�({1})¼ 1 or the

integral in (4.1) is1. This finishes the proof of the case �40. As for �¼ 0, we shall

further conclude �({1})¼ 1. Under the condition �({0})þ�({1})¼ 1, we have

H0
� ¼

1 0 � � � � � �

�ðf0gÞ �ðf1gÞ 0 � � �

�ðf0gÞ 0 �ðf1gÞ . .
.

..

. ..
. . .

. . .
.

0
BBBBB@

1
CCCCCA:

If �({0}) 6¼ 0, then by definition, L#p,qðH
0
�Þ ¼ 1. But we have assumed that both

inequalities in (4.1) are equalities. This leads us to

L#p,qðH
0
�Þ ¼

R
ð0,1� �

�1=q d�ð�Þ ¼ �ðf1gÞ51, which is a contradiction. Hence,

�({0})¼ 0 and the desired result follows. g

Proof of Theorem 4.3 Consider (i). For �40, we have e�n, kð0Þ ¼ 0 for all n, k, so

kH�
�e0k1 ¼

X1
n¼0

h�n,0 ¼

Z
ð0,1�

X1
n¼0

e�n,0ð�Þd�ð�Þ ¼

Z
ð0,1�

��1d�ð�Þ, ð5:5Þ

where e0¼ (1, 0,. . .). Thus, L#1,1ðH
�
�Þ �

R
ð0,1� �

�1d�ð�Þ: Combining this with (4.1),

we get (4.2) for the case p¼ 1. Obviously, the above argument also applies to the case

that �¼ 0, p¼ 1, and �({0})¼ 0. To replace e0 in (5.5) by e1¼ (0, 1, 0, . . .), the same

argument also proves the second equality in (4.2) for the case that �¼ 0 and p¼ 1.

Next, consider (1.7). Without loss of generality, we assume �((0, 1]) 6¼ 0, and

consequently, the probability measure �(0) exists, where d�ð�Þ ¼
	ð�,1�
�ðð�, 1�Þd�. By (1.7),R 1

0 �
��d�ð0Þð�Þ51 for 1/p5�51/pþ �. For such �, Lemma 2.5 ensures that X�� � 0,

X�� #, and

kH�
�ð0Þ

X��kp � kX
�
�kp

Z 1

0

���d�ð0Þð�Þ, ð5:6Þ
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where X�� is defined by (2.14). We have assumed �40, so

h�n, k ¼
nþ �

n� k

� � Z
ð0,1�

�kþ�ð1� �Þn�k d�ð�Þ ðn � kÞ: ð5:7Þ

Inserting (5.7) into (5.6), we obtain

kH�
�X

�
�kp � kX

�
�kp

Z
ð0,1�

���d�ð�Þ: ð5:8Þ

We have ���� ��(1/pþ�)2L1((0, 1]). By (1.7) and Lebesgue’s dominated convergence

theorem,

lim
�!1=p

Z
ð0,1�

��� d�ð�Þ ¼

Z
ð0,1�

��1=p d�ð�Þ:

Putting this with (4.1) and (5.8) together yieldsZ
ð0,1�

��1=pd�ð�Þ � Lp, pðH
�
�Þ � L#p, pðH

�
�Þ

� lim
�!1=p

kH�
�X

�
�kp

kX��kp
�

Z
ð0,1�

��1=pd�ð�Þ, ð5:9Þ

which gives (4.2) for the case (1.7).
Next, consider (iii). Let �2N[ {0}. Obviously, (iii) holds if �((0, 1])¼ 0.

Hence, we assume that �((0, 1]) 6¼ 0. Suppose that Lp, pðH
�
�Þ51. Then for

X¼ (. . ., xk0, . . .)� 0, we have
kH�

�Xkp
kXkp

�
xk0kfh

�
n, k0
g1n¼0kp

kXkp
, so kfh�n, kg

1
n¼0kp 51 for some

k. By [3, Proposition 19.2],

I :¼
X1
n¼0

�Z
ð0,1�

ð1� �Þnd�ð�Þ

�p

� ð�ðð0, 1�ÞÞp
X1

n¼�þk

�
n

�þ k

� �Z 1

0

�kþ�ð1� �Þn���kd�ð0Þð�Þ

�p

¼
X1
n¼k

�
nþ �

n� k

� � Z
ð0,1�

�kþ�ð1� �Þn�k d�ð�Þ

�p

� kfh�n, kg
1
n¼0k

p
p for all k:

Thus, I51. Conversely, assume I51. We shall show that Lp, pðH
�
�Þ51. From

Lemma 2.4(ii), we know that Lp, pðH
�
�Þ is increasing in �. Without loss of generality,

we assume �2N. We have h�n, k ¼ h0nþ�, kþ� and

h0n, k ¼

n

n� k

� � Z
ð0,1�

�kð1� �Þn�kd�ð�Þ ðn � k � 1Þ,

0 ðn5 kÞ:

8<
: ð5:10Þ

Applying (1.1) twice and Theorem 3.1 once, we get

Lp, pðH
�
�Þ � L#p, pðH

�
�Þ � kH

�
�k
#
p, p ¼ sup

r�0

�
1

rþ 1

X1
n¼0

�Xr
k¼0

h�n, k

�p�1=p

� sup
r�0

�
rþ �þ 1

rþ 1

1

rþ �þ 1

X1
n¼0

�Xrþ�
k¼1

h0n, k

�p�1=p

� ð1þ �Þ1=p�ðð0, 1�ÞkH0
�ð0Þ
k#p, p ¼ ð1þ �Þ

1=pI1=p 51: ð5:11Þ
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Hence, Lp, pðH
�
�Þ51 if and only if (2.1) holds. For (iii), it remains to prove the

equality. By (4.1) and the monotonicity of ��Lp, pðH
�
�Þ, it suffices to show that

Lp, pðH
�
�Þ �

R
ð0,1� �

�1=pd�ð�Þ for �� 1. We have assumed �((0, 1]) 6¼ 0 at the beginning

of the proof of (iii), so �((�0, 1])40 for some �040. Let 05�5�0 and �41/p. We

have
R 1
0 �
�� d�ð�Þð�Þ51. To modify the argument from (5.6) to (5.9), we can find

��41/p such that

kH�
�ð�Þ

X��� k
p
p �

� Z
ð0,1�

��1=pd�ð�Þð�Þ

� �p

þ �

	
kX��� k

p
p:

It is clear that X��� # and

kH�
�X

��
� k

p
p � ð�ðð�, 1�ÞÞ

p
kH�

�ð�Þ
X��� k

p
p þ

X1
n¼0

X1
k¼0

h�n, k � �ðð�, 1�Þĥn, k

��� ���x��k
 !p

�

� Z
ð�,1�

��1=pd�ð�Þ

� �p

þ � þ ðkA�k
#
p, pÞ

p

	
kX��� k

p
p, ð5:12Þ

where H�
�ð�Þ
¼ ðĥn, kÞn, k�0 and A� ¼ ða

�
n, kÞn, k�0, defined by

ĥn, k ¼
nþ �

n� k

� � Z 1

0

�kþ�ð1� �Þn�kd�ð�Þð�Þ ðn � kÞ,

0 ðn5 kÞ,

8<
:

and

a�n, k ¼ h�n, k � �ðð�, 1�Þĥn, k

��� ��� ðn, k � 0Þ:

We claim that kA�k
#
p, p! 0 as � # 0. If so, the limiting case of (5.12) gives

Lp, pðH
�
�Þ � L#p, pðH

�
�Þ �

R
ð0,1� �

�1=pd�ð�Þ. This is what we want. From the definitions

of h�n, k and ĥn,k, we obtain

a�n, k ¼

nþ �

n� k

� � Z
½0,��

�kþ�ð1� �Þn�kd�ð�Þ ðn � kÞ,

0 ðn5 kÞ:

8<
:

Without loss of generality, we only consider those � with �([0, �]) 6¼ 0. Using an

argument similar to (5.11), we can prove

kA�k
#
p, p � �ð½0, ��Þð1þ �Þ

1=p

�X1
n¼0

�Z
ð0,��

ð1� �Þn
d�ð�Þ

�ð½0, ��Þ

�p�1=p

¼ ð1þ �Þ1=p
�X1

n¼0

�Z
ð0,��

ð1� �Þnd�ð�Þ

�p�1=p

�! 0 as � # 0:

The last fact is based on (2.1) and Lebesgue’s dominated convergence theorem. This

finishes the proof of (iii).
Finally, we prove (ii). We have X�� #, so the proof of (iii) can apply to the

corresponding parts of (ii). In particular, the case �2N of (ii) holds. It remains to

prove the case �¼ 0. For X2 ‘p and X# 0, we have

kH0
�Xkp � x0kfh

0
n,0g
1
n¼0kp ¼ x0

X1
n¼0

Z 1

0

ð1� �Þn d�ð�Þ

� �p
 !1=p

:
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Hence, (2.4) holds if L#p, pðH
0
�Þ51. Conversely, assume that (2.4) holds. We have

L#p, pðH
0
�Þ � kH

0
�k
#
p, p. By (2.4) and Theorem 3.1, we obtain L#p, pðH

0
�Þ51. Hence,

L#p, pðH
0
�Þ51 if and only if (2.4) holds. From

14
X1
n¼0

Z 1

0

ð1� �Þn d�ð�Þ

� �p

�
X1
n¼0

ð�ðf0gÞÞp,

we see �({0})¼ 0. This implies (5.10), even if n� k� 1 is replaced by n� k.

Moreover, �((0, 1]) 6¼ 0, and so �((�0, 1])40 for some �040. Following the preceding

proof of (iii), we can easily derive (4.2) for the case �¼ 0 of (ii). We leave it

to the readers. g

6. Investigation of the values of Lp,qðH
a
lÞ and Lp,qððH

a
lÞÞ

t with 1� p�1 and

05q� p

In [6, Theorems 2.2 and 3.1], we found suitable formulae for Lp,qðH
0
�Þ and

Lp,qððH
0
�Þ

t
Þ, where 1� p�1 and 05q� p. In the following, we extend them to the

cases Lp,qðH
�
�Þ and Lp,qððH

�
�Þ

t
Þ with �40.

THEOREM 6.1 Let 1� p�1 and 05q� p. Then the following two assertions hold.

(i) For 05q� 1,

Lp,qðH
�
�Þ ¼

�X1
n¼0

�
nþ�

n

� �Z 1

0

��ð1� �Þnd�ð�Þ

�q	1=q

if �40 or �¼ 0,�ðf0gÞ ¼ 0,

�X1
n¼1

�
n

Z 1

0

�ð1� �Þn�1d�ð�Þ

�q	1=q

if �¼ 0 and �ðf0gÞ40:

8>>>><
>>>>:

(ii) If 15q�1 and ð
P1

n¼0 jh
�
n, k0
jqÞ

1=q 51 for some k0� 0, then

Lp,qðH
�
�Þ ¼ lim

n!1
�n ¼ �ðf1gÞ,

where �n is defined by (2.11). We also have

Lp,qðH
�
�Þ ¼ 1 if

X1
n¼0

jh�n, kj
q

 !1=q

¼ 1 for all k � 0:

Proof The case �¼ 0 has been proven in [6, Theorem 2.2], so we assume �40.

Applying (1.3), we get Lp,qðH
�
�Þ ¼ infk�0ð

P1
n¼0ðh

�
n, kÞ

q
Þ
1=q: Hence, (i) follows from

Lemma 2.3. For (ii), we have e�n, kð0Þ ¼ 0 for all n, k� 0, e�k, kð1Þ ¼ 1, and e�n, kð1Þ ¼ 0

for all n4k� 0. To replace en,k(�) by e�n, kð�Þ, the same proof as [6, Theorem 2.2(ii)]

leads us to the desired result of (ii). g

THEOREM 6.2 Let 1� p�1 and 05q� p. Then the following two assertions hold.

(i) Lp,qððH
�
�Þ

t
Þ ¼

R 1
0 �

�d�ð�Þ if 05q� 1.
(ii) Lp,qððH

0
�Þ

t
Þ ¼ ðð�ðf0gÞÞq þ ð�ðf1gÞÞqÞ1=q if 15q�1.

(iii) Lp,qððH
�
�Þ

t
Þ ¼ �ðf1gÞ if �40 and 15q�1.
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Proof By (1.3), Lp,qððH
�
�Þ

t
Þ ¼ infn�0ð

Pn
k¼0ðh

�
n, kÞ

q
Þ
1=q: Consider the case 05q� 1.

Then kfh�n, kg
1
k¼0k1 � kfh

�
n, kg
1
k¼0kq. Moreover, by [13, Lemma 2], we know thatPn

k¼0 h
�
n, k is increasing in n. Putting these together yields

Z 1

0

��d�ð�Þ ¼ h�0,0 �
Xn
k¼0

h�n, k �
Xn
k¼0

ðh�n, kÞ
q

 !1=q

for n � 1:

Hence, Lp,qððH
�
�Þ

t
Þ ¼ h�0,0 and (i) follows. The case (ii) has been proved in

[6, Theorem 3.1], so we consider (iii). For m� 2, we have

�ðf1gÞ � inf
n�0

h�n,n � Lp,qððH
�
�Þ

t
Þ � h�m,0 þ h�m,m þ

Xm�1
k¼1

ðh�m, kÞ
q

 !1=q

: ð6:1Þ

Since �40, it follows from Lebesgue’s dominated convergence theorem that

h�m,0 ¼

Z
ð0,1�

mþ �

m

� �
��ð1� �Þmd�ð�Þ �! 0 as m!1 ð6:2Þ

and

h�m,m ¼

Z
ð0,1�

�mþ�d�ð�Þ�!�ðf1gÞ as m!1: ð6:3Þ

Like [6, Equation (3.2)], applying [10, Equation (4.2.4)], we can prove

Xm�1
k¼1

ðh�m, kÞ
q

 !1=q

�

Z
ð0,1Þ

Xm�1
k¼1

ðe�m, kð�ÞÞ
q

 !1=q

d�ð�Þ

� sup
05�51

Xm�1
k¼1

e�m, kð�Þ

 !1=qZ
ð0,1Þ

sup
1�k�m�1

e�m, kð�Þ

 !1�1=q

d�ð�Þ

�

Z
ð0,1Þ

sup
1�k�m�1

e�m, kð�Þ

 !1�1=q

d�ð�Þ, ð6:4Þ

where e�m, kð�Þ is defined by (2.7). For � 2 (0, 1), we have

sup
1�k�m�1

e�m, kð�Þ � sup
k4k0

sup
n�k

e�n, kð�Þ

 !
þ sup

1�k�k0

e�m, kð�Þ ðm4 k0 � 1Þ:

As proved in (2.13), supn�k e
�
n, kð�Þ ! 0 as k!1. On the other hand, for each k with

1� k� k0, e
�
m, kð�Þ ! 0 as m!1. Hence, sup1�k�m�1 e

�
m, kð�Þ ! 0 as m!1. Putting

this with (6.4) together and applying Lebesgue’s dominated convergence theorem,

we obtain

Xm�1
k¼1

ðh�m, kÞ
q

 !1=q

�! 0 as m!1: ð6:5Þ

Hence, (iii) follows from (6.1)–(6.3) and (6.5). We complete the proof. g
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