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Mobile computing systems usually express a user movement trajectory as a sequence of areas
that capture the user movement trace. Given a set of user movement trajectories, user
movement patterns refer to the sequences of areas through which a user frequently travels. In
an attempt to obtain user movement patterns for mobile applications, prior studies explore the
problem of mining user movement patterns from the movement logs of mobile users. These
movement logs generate a data record whenever a mobile user crosses base station coverage
areas. However, this type of movement log does not exist in the system and thus generates
extra overheads. By exploiting an existing log, namely, call detail records, this article proposes a
Regression-based approach for mining User Movement Patterns (abbreviated as RUMP). This
approach views call detail records as random sample trajectory data, and thus, user movement
patterns are represented as movement functions in this article. We propose algorithm LS
(standing for Large Sequence) to extract the call detail records that capture frequent user
movement behaviors. By exploring the spatio-temporal locality of continuous movements (i.e.,
a mobile user is likely to be in nearby areas if the time interval between consecutive calls is
small), we develop algorithm TC (standing for Time Clustering) to cluster call detail records.
Then, by utilizing regression analysis, we develop algorithm MF (standing for Movement
Function) to derive movement functions. Experimental studies involving both synthetic and
real datasets show that RUMP is able to derive user movement functions close to the frequent
movement behaviors of mobile users.
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1. Introduction

Mobile services, such as navigation services, mobile search and location-aware services, are becoming very popular. These
wireless communication systems enable users to access various kinds of information from anywhere at any time. A mobile
computing system usually expresses a user movement trajectory as a sequence of areas in which the mobile user moves.1 In this
article, we aim at mining user movement patterns for a mobile user. Thus, given a user's set of movement trajectories, user
movement patterns refer to the sequences of areas that this user frequently travels. Analysis of user trajectory data could provide
some understandings and management of moving objects [1,2]. User movement patterns can be used to improve system
performance, such as designing personal paging area [3], and developing data allocation strategies [4–6], querying strategies [7],
and navigation services [8,9].
To discover user movement patterns in a mobile computing system, the methods proposed in previous studies require

movement logs to record the movements of mobile users. For example, in [4,5], when a mobile user moves from the coverage area
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of base station i to the coverage area of base station j, a handoff procedure is performed to smoothly switch communication
channels between base stations. Meanwhile, the movement log generates a movement pair (i,j). However, the movement log is
not an existing log of mobile systems and needs some overheads to generate during handoff procedures. Hence, generating
movement logs for all mobile users leads to increased storage costs and decreases the performance of mobile computing systems.
Therefore, prior works are not practical for mobile computing systems due to the overhead of generating movement logs. In fact,
mobile computing systems generate call detail records (abbreviated as CDR) when a mobile user makes or receives phone calls
[10]. Table 1 shows an example of call detail records, where Uid represents the identification of a user making or receiving calls,
and Cellid represents the corresponding base station that serves that user. Time information (i.e., date and time) is recorded in the
CDR.2 Table 1 shows that the CDRs of a mobile user contain both spatial (i.e., base station identification) and temporal information
(i.e., date and time). Since CDRs reflect the movement behaviors of users, this article addresses the problem of mining user
movement patterns from an existing log of CDRs, thereby reducing the overhead of generating a movement log.
Fig. 1 shows some trajectories of one user, where the dashed line represents one real trajectory of this user and the regions with

mobile phones indicate that the user is receiving or making phone calls. This user's calling behavior is captured in the log of CDRs,

Table 1
An example of call detail records.

Uid Date Time Cellid

1 Day 1 07:30 A
1 Day 1 09:32 D
1 Day 1 09:49 E
1 Day 1 13:50 H
1 Day 2 08:50 C
1 Day 2 09:50 E
1 Day 2 14:00 H
1 Day 3 07:15 A
1 Day 3 09:02 C
1 Day 3 09:30 D
1 Day 4 12:30 W
1 Day 4 12:52 X
1 Day 4 13:30 Y

2 The real call detail records analyzed in this study were provided by Taiwan mobile service providers, and we only extracted some useful attributes of call
detail records to mine user movement patterns.

(a) Day1 (b) Day2

(c) Day3 (d) Day4

Fig. 1. An example of call detail records.

2 C.-C. Hung, W.-C. Peng / Data & Knowledge Engineering 70 (2011) 1–20



and Table 1 shows the CDR log. Fig. 1 shows that CDRs are data points that are randomly sampled from trajectories and the
corresponding locations of these CDRs are scattered over the mobile computing environment. As a result, mining user movement
behaviors from CDRs is a challenging task. Given these random sample data points, we aim to derive movement functions that are
close to real user trajectories. We refer these movement functions as movement patterns due to that movement functions reflect
the frequent movement behavior of users. Fig. 2 shows the movement function of a user for the example above.
This article proposes a novel approach, called RUMP (standing for Regression-based approach for User Movement Patterns), to

mine user movement patterns from CDRs. Given a set of data points, the main objective of regression analysis is to derive a
regression function that minimizes the sum of distances between the function derived and data points. In this approach, call detail
records are viewed as data points, while the regression functions derived are regarded as movement functions. However, not all
call detail records should be involved in mining user movement patterns. Without carefully selecting CDRs, user movement
patterns cannot reflect the frequent movement behaviors of mobile users. On the other hand, CDRs should be fully utilized for
mining user movement patterns since only limited information is available in the CDR logs. Thus, several issues remain to be
addressed to efficiently utilize CDRs for mining user movement patterns.

1.1. Extracting frequent movement behaviors from CDRs

As mentioned before, user movement patterns refer to the frequent movement behaviors of mobile users. However, the CDR
logs not only contain frequent user movement behaviors, but also include infrequent movement behaviors. For example, a user
usually goes to his office and is back to his home every weekday (as Fig. 1(a), (b) and (c) shows), and occasionally takes a trip (as
Fig. 1(d) shows). The frequent movement behavior is the trajectory from his home to his office, whereas a trip is an infrequent
movement behavior. Since regression analysis is sensitive to these infrequent CDRs, they should be eliminated. In other words, the
call detail records that capture the frequent movement behaviors of users should be extracted. To extract the frequent movement
behaviors of mobile users, we develop algorithm LS (standing for Large Sequence) to extract base stations whose coverage areas
are frequently visited by users.

1.2. Determining the number of regression functions

Once CDRs that capture the frequent movement behaviors have been extracted, it is necessary to determine how many
regression functions are needed. If only one regression function is derived, it may not be very close to the frequent user movement
behavior. Thus, given a set of call detail records of the frequent movement behavior, clustering techniques can be used to divide
call detail records into several groups. The number of groups is viewed as the number of regression functions. The movement
trajectories of mobile users generally follow spatio-temporal locality (i.e., if the time interval between two consecutive calls of a
mobile user is small, the mobile user is likely to have moved nearby). Therefore, the feature of spatio-temporal locality in
algorithm TC (standing for Time Clustering) can be used to group the call detail records with a close occurrence time.

1.3. Deriving movement functions

Location identification techniques typically use one of two locationmodels: the geometricmodel and the symbolicmodels [11].
The geometric model specifies the location in n-dimensional coordinates (typically n=2 or 3). The symbolic model, however, uses
logical entities to describe the location. This article represents the location of mobile users in CDRs using the symbolic model (i.e.,
the base station identification). To derive movement functions of a mobile user, the location of the call detail records in the
symbolic model must be transformed into the geometric model. Then, with the cluster results obtained, we develop algorithmMF
(standing for Movement Function) for each cluster. This algorithm utilizes weighted regression analysis to derive the
corresponding movement functions of a user.
The RUMP approach consists of a series of algorithms that tackle the various issues described above. This study evaluates RUMP

performance using both synthetic and real datasets. Sensitivity analysis is conducted on several design parameters. Experimental
results show that RUMP is able to efficiently and effectively derive user movement patterns that capture the frequent movement
behaviors of mobile users.

Fig. 2. A movement function of a user.
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The rest of this article is organized as follows. Section 2 presents some related works. Section 3 then devises algorithms for
mining user movement patterns. Section 4 presents performance results. Finally, Section 5 draws conclusions.

2. Related works

The problem of mining user movement patterns has attracted a considerable amount of research effort. Prior studies are
generally classified into two categories based on their definitions of user movement patterns: spatial movement patterns and
spatio-temporal movement patterns. In the first category, a user movement pattern refers to a sequence consisting of base station
identifications or pre-defined regions. In the second category, user movement patterns represent the spatio-temporal associated
relationships among base station identifications or pre-defined regions.
In the first category, the authors in [12] proposed an information–theoretical method to mine user movement patterns and

represented them in a trie data structure. Moreover, the authors in [3] proposed a statistical approach to mine user movement
patterns. The authors of [13] and [4] proposed a data mining approach for mining user movement patterns based on the
movement logs of mobile users.
In the second category, user movement patterns are usually extracted from user trajectories, where trajectories are detailed

user movements. A considerable amount of research efforts focuses on mining spatio-temporal association rules [14–19]. The
authors in [20] explored the fuzziness of locations in patterns and developed algorithms to discover spatio-temporal sequential
patterns. Furthermore, the authors in [21] proposed a clustering-based approach to discover movement regions within time
intervals. In [22], the authors developed a hybrid prediction model, consisting of vector-based and pattern-based models, to
predict user movements. In [23] and [24], the authors exploited temporal annotated sequences in which sequences are associated
with time information (i.e., transition times between two movements).
To the best of our knowledge, this study proposes a new way of mining user movement patterns from random sample data

points. Though the main theme of this article is to mine user movement patterns from call detail records, the proposed approach
can be used for other log data with randomly sampled data features. Existing studies neither fully utilize fragmented spatio-
temporal information (e.g., call detail records) for mining user movement patterns nor explore regression techniques for deriving
movement functions. These features distinguish this article from others. Our preliminary work was presented in [25]. The current
article extends this preliminary work with more detailed complexity and theoretical analysis. Furthermore, we conduct an
extensive performance analysis on both synthetic and real datasets. Finally, this study investigates the sensitivity of several
parameters, such as the calling behavior and thresholds for each algorithm.

3. A regression-based approach for mining user movement patterns

This section develops a regression-based approach (i.e., RUMP) consisting of a sequence of algorithms to mine user movement
patterns. First, Section 3.1 provides an overview of RUMP, and the following sections present details of Algorithm LS, TC, and MF.

3.1. An overview

Given a log of CDRs, the goal of this article is to derive movement functions that closely reflect the frequent movement
behaviors of mobile users. Due to that CDRs are random samples, the timestamps of CDRs are not likely to be the same even if a
user follows the same movement behavior. Consequently, a basic time slot is defined as a time interval. For example, if call detail
records whose occurrence time is within the time interval of one time slot, these CDRs are associated with the same time slot.
Therefore, these CDRs are further put in a movement record defined as follows:

3.1.1. Definition: movement record
A movement record is defined as a set of pairs (BSi:Ni), where BSi is a base station and Ni is the number of occurrence counts of

BSi in call detail records whose occurring times are within the same time slot.

Table 2
Notations used in our algorithms.

Definition Notation

Number of movement sequences w
Movement sequence i MSi
Movement record at time slot j in MSi MRi,j
A large movement sequence LMS
Large movement record at time slot i LMRi
An aggregation movement sequence AMS
Aggregated movement record at time slot i AMRi
A time projection sequence of AMS TPAMS

A clustered time projection sequence of AMS CTPAMS
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Assume that one time unit has its time interval of 6:00 am to 10:00 am. From Table 1, in Day 1, we could have one movement
record that includes {A:1, D:1, E:1} since the occurrence time of three call detail records (i.e., A, D, and E) is within the time interval
(i.e., 6:00 am to 10:00 am). With the definition of movement records, a movement sequence is defined as follows:

3.1.2. Definition: movement sequence
Amovement sequence MSi, denoted by bMRi,1,MRi,2,MRi,3, ...,MRi,εN, is an ordered sequence of εmovement records, whereMRi,j

is the movement record at time slot j in MSi and ε is an adjustable parameter.
The length of a time slot determines the granularity of user movement patterns in terms of time. Same as in [22], the value of ε

indicates that a movement pattern may re-appear. Thus, the value of ε depends on the periodicity of a user. Table 2 are notations
used in our article. The overall procedure for mining movement patterns is outlined as follows:

3.1.2.1. Execution steps in RUMP

Step 1. (Extracting the aggregationmovement sequence) In this step, call detail records are converted intowmovement sequences,
where w is an adjustable window size for the recent movement sequences being considered. Algorithm LS discovers an
aggregation movement sequence, in which each movement record contains frequent areas that a user appears.

Step 2. (Clustering movement records) According to the aggregation movement sequence derived, we further develop algorithm
TC to cluster movement records whose time slots are close.

Step 3. (Deriving movement functions) We then use regression techniques to derive the corresponding movement functions for
each group in Step 2.

CDRs only reflect the fragmentedmovement behaviors of mobile users. Thus, the RUMP approach uses regression techniques to
derive movement functions which are close to the frequent movement behaviors of mobile users. Due to the nature of regression
techniques, without the proper determination of call detail records, user movement functions derived cannot capture the frequent
movement behaviors of mobile users. On the other hand, call detail records should be fully utilized to mine user movement
patterns since only limited information is available in CDRs. In the following subsections, each algorithm is presented in detail.

3.2. Algorithm LS: extracting the aggregation movement sequence

In this article, a user movement trajectory is represented as a sequence of base station identifications (hereafter, we use “base
station” for short). Hence, call detail records are converted into movement sequences. With a set of movement sequences,
algorithm LS determines an Aggregation Movement Sequence (abbreviated as AMS) and uses it to represent the frequent
movement behaviors of a user. Intuitively, AMS is a sequence of movement records that have frequent base station and their
corresponding counts at each time slot. At each time slot, a frequent base station in this article refers to a base station which a user
appears more than min_freq times among movement sequences. The min_freq is given to quantify frequent base stations. As
pointed out early, counts for frequent base stations should also be determined. Thus, before deriving AMS, a large movement
sequence (abbreviated as LMS) is a sequence of frequent base stations andwe use LMS to compute the similarity between LMS and
each movement sequence. In light of similarity measurements obtained, we are able to identify those movement sequences
capturing the frequent moving behavior of users and aggregate them as AMS.

3.2.1. Definition: large movement record
Given a set of movement sequencesMS1,MS2...,MSw and a thresholdmin_freq, a large movement record at time slot t is denoted

as LMRt and LMRt contains a set of base stations whose occurrence count in the set of movement records at time slot t (i.e., MR1,t,
MR2,t,...,MRw,t) is larger or equal to min_freq.
Given five movement sequences in Table 3, ifmin_freq is set to 2, LMR4 is {D,F} since both D and F have their occurrence count

equal tomin_freq. Large movement records demonstrate the frequentmovement behavior of a user at each specific time slot. After
obtaining large movement records at each time slot, a large movement sequence LMS is thus a sequence of large movement
records, which is denoted as LMS=bLMR1,LMR2,...,LMRεN. Consequently, LMS indicates the frequent moving behavior of users.

Table 3
An example of algorithm LS.

1 2 3 4 5

MS1 A:14 A:2 F:1 I:2
MS2 C:8 C:1, D:1, F:1 H:1, G:4
MS3 A:1 C:1 D:1 H:1
MS4 A:1, B:1 A:1 F:9
MS5 B:4 D:4 H:1 A:1, B:2

LMS {A, B} {A} {D, F} {H, I}
AMS {A:16, B:1} {A:3} ϕ {D:2, F:3} {H:2}
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Once a large movement sequence LMS is determined, we should further formulate the similarity between movement
sequences and LMS to identify whether a movement sequence is the frequent movement behavior of a user or not. The
conventional similarity measurements, such as Cosine similarity [26] and extended Jaccard coefficient [27], cannot be applied for
the similarity measurement because they can only deal with scalar vectors with nomissing values. Movement sequences and LMS
are sequences of sets of base stations, not sequences of scalar values. Moreover, empty sets are allowed in movement sequences
and LMS. As such, we formulate the similarity between a movement sequence (e.g., MSi) and LMS as the closeness between
movement records MRi,j and LMRj, denoted by C(MRi,j,LMRj). C(MRi,j,LMRj) compares the set of base stations in MRi,j with the

frequent base stations in LMRj. C(MRi,j,LMRj) is formulated as
x∈MRi;j∩LMRj
� ��� ��
y∈MRi;j∪LMRj
� ��� ��, and returns the normalized value in 0;1½ �. The larger

the value of C(MRi,j,LMRj), the more closely MRi,j resembles LMRj. For example, assume that LMRj={a,b,c,d}, MRx,j={b,e} and
MRy,j={a,b,c,d,e}. It can be verified that the value of C(MRx,j,LMRj) is

1
5
and the value of C(MRy,j,LMRj) is 4

5
. Therefore, MRy,j is more

similar to LMRj. Based on the similarity between movement records and large movement records, the similarity measure of
movement sequencesMSi and LMS is formulated as sim(MSi,LMS)=∑ j=1

ε |MRi, j| C(MRi, j, LMRj). Given a threshold valuemin_sim,
for each movement sequence MSi, if sim(MSi,LMS)≥min_sim, the movement sequence MSi is identified as a similar movement
sequence. Consider the example in Table 3. It can be verified that sim MS1; LMSð Þ = 1 1

2
+ 1 1

1
+ 0 + 1 1

2
+ 1 0

1
= 2. Further, sim

(MS2,LMS)=3, sim(MS3,LMS)=2, sim(MS4,LMS)=3, and sim(MS5, LMSÞ = 1
2
. Assuming thatmin _sim is 2,MS1,MS2,MS3 andMS4

are recognized as similar movement sequences.
After identifying similar movement sequences, these similar movement sequences are aggregated as one AMS in which

frequent base stations and their associated counts are determined. An aggregation movement sequence is defined as follows:

3.2.2. Definition: aggregation movement sequence
The aggregation movement sequence is denoted as AMS=bAMR1,AMR2,...,AMRεN, where AMRj is an aggregated movement

record that contains frequent base stations, which are the same in large movement record LMRj and their occurring counts
accumulated from movement records at time slot j of similar movement sequences.
Consider the AMR1 of AMS in Table 3 as an example. from those similarmovement sequences, the occurrence count of A in AMR1

is calculated as the sum of the count of A in MR1, 1, that in MR3, 1 and that in MR4, 1 (i.e., 14+1+1=16). Following the same
procedure, we could have AMS=b{A :16,B :1}, {A :3},ϕ, {D :2,F :3}, {H :2}N shown in Table 3.

3.2.3. Time complexity analysis
Given w movement sequences with ε time slots, the complexity of algorithm LS can be expressed as O(εω). The complexity

involved in calculating large movement records is O(εω), while that of extracting frequent movement sequences is ε⁎ω⁎O(1)=
O(εω). As a result, the overall time complexity of algorithm LS is O(εω). Thus, algorithm LS is of polynomial time complexity.

Algorithm 1. Algorithm LS

Input: w movement sequences with length ε,two threshold:min freq and min sim
Output: aggregation movement sequence AMS
1: begin
2: for j←1 to ε do
3: for i←1 to w do
4: begin
5: LMRj← frequent 1-itemset of MRi,j ; //by min freq
6: end
7: for i←1 to w do
8: begin
9: match←0;
10: for j←1 to ε do
11: begin
12: C(MRi,j, LMRj)← |x∈MRi,j∩LMRj | / |y∈MRi,j∪LMRj|;
13: match←match+|MRi,j | C(MRi,j,LMRj);
14: end
15: if match≥min sim then
16: accumulate the occurring counts of items in the aggregation movement sequence;
17: end

3.3. Algorithm TC: clustering aggregation movement records

As pointed out early, the movement trajectories of mobile users generally follow spatio-temporal locality (i.e., if the time
interval between two consecutive calls of a mobile user is small, the mobile user is likely to have moved nearby). Accordingly,
aggregation movement records in AMS could be clustered into several groups if their corresponding time slots are close. To
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facilitate the presentation of this paper, only time information (i.e., time slots) is extracted from AMS. Thus, time projection
sequence of AMS is defined as follows:

3.3.1. Definition: time projection sequence
A time projection sequence of AMS is expressed as TPAMS=bα1,...,αnN, where AMRαj

≠ {} and α1b...bαn.
A time projection sequence is a sequence of time slots in which the correspondingmovement records are not empty. Algorithm

TC then uses the time projection sequence to cluster close time slots. The cluster result of algorithm TC is represented as a clustered
time projection sequence defined as follows:

3.3.2. Definition: clustered time projection sequence
A clustered time projection sequence of TPAMS, denoted by CTPAMS, is represented as bCL1,CL2,...,CLkN, where the i-th group CLi is

the time slots of the clustered movement records, and k is an integer such that 1≤k≤ε.
Given AMS obtained in Step 1, TPAMS is then easily determined. By exploring the feature of spatial-temporal locality, algorithm

TC generates a clustered time projection sequence of AMS (i.e., CTPAMS). Each cluster in CTPAMS contains close time slots. Those
movement recordswith their time slots being clustered preserve the feature of spatio-temporal locality. Therefore, the objective of
clustering is to bound the variance of time slots in each group with a given threshold (i.e., min_var).

The variance of a group CLi is defined as Var CLið Þ = 1
m
∑
m

k=1
ni;k−1

m
∑
m

j=1
ni;j

 !2
, where ni, j represents the j-th time slots of

movement records in CLi and the total number of movement records in CLi ism. Algorithm TC generates a clustered time projection
sequence CTPAMS such that Var(CLi)≤min _var for all clusters CLi.
To achieve the objective of clustering, algorithm TC first starts coarsely clustering TPAMS into several marked clusters using a

value δ. The initial value of δ is set to ε and δ then decreases by one for each round. Thus, in the beginning, there is only one cluster.
Dividing clusters with a variance larger thanmin_var increases the number of clusters. In algorithm TC, unmarked clusters refer to
clusters that do not need to be refined, whereas marked clusters refer to clusters that should be further partitioned. For each
cluster CLi, if Var(CLi) is smaller thanmin_var, the cluster CLi is unmarked. Otherwise, δ decreases by 1 and algorithm TC re-clusters
the time slots in unmarked clusters with the updated value of δ. Algorithm TC partitions TPAMS iteratively until no marked cluster
remain or until δ=1. If there are no marked clusters, CTPAMS is generated. Otherwise, if there are still marked clusters with their
variance values larger thanmin_var, algorithm TC continues to finely partition these marked clusters so that the variance for every
marked cluster is constrained by the threshold value of min_var.
When the value of δ is 1, the time slots of movement records in a marked cluster generally follow a sequence of consecutive

integers such that the variance of marked clusters is still larger than min_var. This situation results in loss of spatio-temporal
locality. For example, givenmovement recordswith a sequence of consecutive time slots 1,2,3,4,5,6, and 7, though the differences of
consecutive time slots are small, the location of a user at time slot 1 and that at time slot 7 are probably far from each other. To deal
with this problem, this cluster must be further partitioned into smaller clusters. The variance of each refined cluster should be
smaller thanmin_var. Moreover, to guarantee that no time slots of each refined clusters are as close as possible, the total variance of
the refined clusters should be minimized. To derive the optimal method for further partitioning, the following Lemma is derived:

Lemma. Given a cluster that has a sequence of consecutive integers 1,2,3,...,n and a positive integer k , the optimal method to minimize
the sum of variance in each cluster and divide this cluster into k clusters is to partition it into k sub-clusters each with a size of n

k
.

Proof. Suppose that b1,2,3,...,nN is divided into k sub-clusters: b1,..., t1N,b t1+1,..., t2N,...,b tk−1+1,...,nN. Let t0=0, tk=n, and

Vari=Var(b ti−1+1,..., tiN). Our goal is to find the cutting points (i.e., t1, t2, ..., and tk−1) to minimize f = ∑
k

i=1
Vari.

The variance remains the same constant for a sequence of consecutive integerswith the same length. For example, consider two
clusters with two sequences of consecutive time slots: b1,2,3,4,5N and b7,8,9,10,11N. It can be verified that Var(b1,2,3,4,5N)=

Var(b7,8,9,10,11N). Since Var b1;2; :::;n Nð Þ = 1
12

n2−1
� �

, we have f = ∑
k

i=1
Vari =

1
12
∑
k

i=1
ti−ti−1ð Þ2−1

� �
.

To minimize f = ∑
k

i=1
Vari, the cutting points t1, t2, ..., tk−1 are derived by letting the first derivatives be zero.

∂f
∂t1
= 4t1−2t2−2t0 = 0

∂f
∂t2
= 4t2−2t3−2t1 = 0

:::
∂f
∂tk−1

= 4tk−1−2tk−2tk−2 = 0

8>>>>>>><
>>>>>>>:
Thus, we can have the following terms:

t1 =
ti0 + t2
2

t2 =
t1 + t3
2

:::

tk−1 =
tk−2 + tk

2

8>>>>>><
>>>>>>:
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Table 4
An execution scenario of algorithm TC.

Run δ min_var Clusters

0 20 1.6 b1,2,3,4,5,9,10,14,17,18,20⁎N
... ... ... ...
1 3 1.6 b1,2,3,4,5N⁎,b9,10N,b14,17,18,20N⁎

2 2 1.6 b1,2,3,4,5N⁎,b9,10N,b14N,b17,18,20N
3 1 1.6 b1,2,3,4,5N⁎,b9,10N,b14N,b17,18,20N
4 0 1.6 b1,2,3,4,5N⁎,b9,10N,b14N,b17,18,20N
5 0 1.6 b1,2,3N,b4,5N⁎,b9,10N,b14N,b17,18,20N

Using substitution, we have

t1 =
1
2
t2

t2 =
2
3
t3

:::

tk−1 =
k−1
k

tk

8>>>>>>><
>>>>>>>:
Therefore, we can get:

t1 =
1
k
n

t2 =
2
k
n

:::

tk−1 =
k−1
k

n

8>>>>>>><
>>>>>>>:

From the derivation above, the optimal way to divide b1,2,3,...,nN into k sub-clusters is to divide b1,2,3,..,nN into k sub-
clusters each with size of n

k
. □

This Lemma provides a guideline for partitioning a marked cluster that has a sequence of consecutive time slots into smaller
clusters. Since the value of k is not known in advance, the value of k is initially set 2, and then increases in each iteration. In each
iteration, a marked cluster is evenly divided into k sub-clusters, each with size of n

k
, and the variance of each sub-cluster is tested. If

the variance of a sub-cluster is smaller thanmin _var, the procedure terminates. Otherwise, the value of k is increased by 1 and the
marked cluster will be further refined into smaller sub-clusters.
Consider the execution scenario in Table 4, where the time projection sequence is TPAMS=b1,2,3,4,5,9,10,14,17,18,20N. The

initial cluster is b1,2,3,4,5,9,10,14,17,18,20N. Given min _var=1.6, algorithm TC first roughly partitions TPAMS into three
clusters. Table 4 shows that two marked clusters (i.e., b1,2,3,4,5N with Var(b1,2,3,4,5N)=2 and b14,17,18,20N with Var
(b14,17,18,20N)=4.69 are determined because the variance values of these two clusters are larger than 1.6. Then, δ is reduced to
2, and these two marked clusters are re-examined. In the following run, the previous cluster b14,17,18,20N is divided into two
clusters, i.e., b14N and b17,18,20N in this run. Since Var(b14N)=0b1.6 and Var(b17,18,20N)=1.56b1.6, these two clusters
remain unmarked. Following the same procedure, algorithm TC partitions marked clusters until δ equals 1. Run 4 in Table 4 shows
that b1,2,3,4,5N is still a marked cluster with Var(b1,2,3,4,5N)=2. Therefore, algorithm TC finely partitions b1,2,3,4,5N. The
value of k is initially set at 1. Since Var(b1,2,3,4,5N)=2.5 is larger thanmin _var (i.e., 1.6), k increases to 2. Then, b1,2,3,4,5N is
divided into b1,2,3Nb4,5N. Of these two clusters (i.e., b1,2,3N and b4,5N), the b1,2,3N cluster has the larger variance and thus
b1,2,3N is compared with the value of min_var. Since the Var(b1,2,3N)=0.67b1.6, algorithm TC stops the clustering process.
Finally, a CTPAMS is generated as b1,2,3N,b4,5N,b9,10N,b14N,b17,18,20N.

3.3.3. Time complexity analysis
Algorithm TC is of polynomial time complexity. Let TPAMS have n numbers. Algorithm TC needsO(n) to divide TPAMS into clusters

from lines 5 to 15. From lines 17 to line 25, assume that there are still s clusters with m numbers to be refined

Algorithm 2. Algorithm TC

Input: time projection sequence:TPAMS, thresholds: min var
Output: clustered time projection sequence:CTPAMS

1: begin
2: δ←ε;
3: CL1←TPAMS;
4: Mark CL1;
5: while there exist marked clusters and δ≥2 do
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6: begin
7: for each marked clusters CLi do
8: if V ar(CLi)≤min var then
9: begin
10: unmark CLi;
11: end
12: δ←δ−1;
13: for all marked clusters CLi do
14: group the numbers whose differences are within δ in CLi;
15: end
16:
17: if there are marked clusters then
18: begin
19: for each marked cluster CLi do
20: k=2;
21: repeat
22: k←k+1;
23: divide CLi into k groups with equal sizes;
24: until the variance of each group≤min var
25: end
26: end

Since k is at mostm, we have s O(m) to run the clustering process. The worst case occurs when estimating the time complexity
of algorithm TC. In the worst case (i.e., m=n), the overall time complexity of algorithm TC is at most O(n).

3.4. Algorithm MF: deriving movement functions

Given the aggregation movement sequence AMS devised by algorithm LS and its clustered time projection sequence CTPAMS

generated by algorithm TC, algorithm MF is able to derive a sequence of movement functions able to estimate the frequent
movement behaviors of mobile users. For each cluster, we need to derive confidence movement functions. Then, linkage movement
functions are determined to link confidence movement functions among clusters. Finally, a movement function F(t) is derived and
represented as bU0(t), E1(t), U1(t), E2(t),..., Ek(t), Uk(t)N, where Ei(t) is the confidence movement function in cluster CLi of CTPAMS

and Ui(t) is the linkage movement function from Ei(t) to Ei+1(t).

3.4.1. Deriving confidence movement functions
For each cluster CLi of CTPAMS, the confidence movement function of a mobile user, expressed as Ei tð Þ = x̂i tð Þ; ŷi tð Þ; TIi

� �
, is

derived. In this case, x̂i tð Þ (respectively, ŷi tð Þ) is a movement function in x-coordinate axis (respectively, in y-coordinate axis) and
the confidence movement function is valid for the time interval indicated in TIi.
Without loss of generality, let CLi be b t1, t2,..., tnN, where tj denotes one of the time slots in CLi for j=1,2,...,n. AMRi contains

frequent base stations with their corresponding counts in the i-th time slot of AMS. To derive movement functions, the location of
base stations should be converted from the symbolic model into the geometric model through a map table that indicates the
coordinates of base stations and is provided by telecompanies. Hence, given AMS and CTPAMS, for each cluster of CTPAMS,
the geometric coordinates of frequent base stations can be derived along with their corresponding counts and represented as
(t1,x1,y1,w1), (t2,x2,y2,w2),..., (tn,xn,yn,wn) where ti is the corresponding time slot, xi (respectively, yi) is the x-coordinate
(respectively, y-coordinate) of the base station, and wi is the number of phone calls a mobile user has made at this base station.
Accordingly, for each cluster of CTPAMS, a weighted regression analysis is able to derive the corresponding confidence
movement function.
Given a set of data points, the goal of regression analysis is to derive the best estimated curve with the minimal sum of least

square errors [28]. One aggregation movement sequence is generated in Step 1, which calculates the appearance counts of base
stations. Thus, based on the appearance counts of base stations, we can derive curves closer to those base stations with larger
appearance counts. This is because themore calls a user makes at a base station, themore confidencewe have that this mobile user
frequently appears in the coverage area of this base station. Another advantage of utilizing weighted regression analysis is that in a
real scenario of mobile computing systems, the base station that serves to a user is not always the nearest base station. This is
because other base stations nearby will cover the nearest base station when it becomes overloaded. However, the scenario above
does not always happen. The appearing counts of other base stations will be fewer than that of the nearest base station. Therefore,
weighted regression analysis makes it possible to derive curves close to base stations with higher appearance counts.
Given data points within a cluster, this article considers the derivation of the x̂ tð Þ: An m-degree polynomial function

x̂ tð Þ = a0 + a1t + ::: + amtm is derived to approximate the movement behavior along x-coordinate axis. Given the data points
(t1,x1,y1,w1), (t2,x2,y2,w2) ,..., (tn,xn,yn,wn), the regression coefficients α0;α1; :::amf g are then selected to minimize the residual
sum of squares �x=∑ i=1

n wiei
2, where ei=(xi−(a0+a1ti+a2(ti)2...+am(ti)m)). The value of m is application dependent, and

must be smaller than the number of data points. The value of m is proportional to the precision of the fitting curve. Since x̂ tð Þ is
obtained by matrix operations, the matrix size is thus the dominant factor in regression performance. However, the impact of
weighted regression analysis on execution time is not significant in this article since themaximal value ofm is usually small. When

Algorithm 2 (continued)
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the value of m is small, the execution time of regression analysis is acceptable. Therefore, according to the number of data points
available, the value of m should be set as large as possible.
For ease of presentation, the following terms are defined:

H =
1 t1 t1ð Þ2 ⋯ t1ð Þm
⋯ ⋯ ⋯ ⋯ ⋯
1 tn t2ð Þ2 ⋯ tnð Þ2

2
4

3
5; a⁎ =

a0
⋯
am

2
4

3
5; b̃x =

x1
⋯
xn

2
4

3
5; e =

e1
⋯
en

2
4

3
5;W =

w1
⋯

wn

2
4

3
5:

By solving the equation
ffiffiffiffiffiffi
W

p
H

� �T ffiffiffiffiffiffi
W

p
H

� �
a⁎ =

ffiffiffiffiffiffi
W

p
H

� �T ffiffiffiffiffiffi
W

p
b̃x, a⁎ can be derived such that the value of �x is minimized.3 This

leads to x̂ tð Þ = a0 + a1t + ::: + amtm. ŷ tð Þ can be derived following the same procedure. As a result, for each cluster of CTPAMS, the
confidence movement function Ei tð Þ = x̂ tð Þ; ŷ tð Þ; t1; tn½ �� �

of a mobile user can be devised.
For example, let AMS=b{A :16,B :1}, {A :1},ϕ, {D :2,F :3}, {H :2}N and the coordinates of A, B, D, F and H be (1, 1), (1, 2), (4, 2),

(3, 3) and (5,3), respectively. Given AMS and CTPAMS=b1,2,4,5N, it is possible to obtain data points with their weights, as Table 5
shows. By setting m to 3, the 3-degree polynomial x̂ tð Þ = a0 + a1t + a2t2 + a3t3 is derived. The coefficients a0, a1, a2 and a3 are
determined by a regression curve that minimize the residual sum error. That is, a⁎= ða0 a1 a2 a3 )T must be determined. Since

there are six data points with their corresponding time slots of 1, 1, 2, 4, 4 and 5, H=

1 1 1ð Þ2 1ð Þ3
1 1 1ð Þ2 1ð Þ3
1 2 2ð Þ2 2ð Þ3
1 4 4ð Þ2 4ð Þ3
1 4 4ð Þ2 4ð Þ3
1 5 5ð Þ2 5ð Þ3

2
66666664

3
77777775
is then calculated. The

weights of the data points are 16, 1, 1, 2, 3 and 2, respectively. Hence,
ffiffiffiffiffiffi
W

p
is a diagonal matrix with the diagonal entries of [

ffiffiffiffiffiffi
16

p
,ffiffiffi

1
p
,
ffiffiffi
1

p
;
ffiffiffi
2

p
;
ffiffiffi
3

p
;
ffiffiffi
2

p
�. Table 5 shows that b̃x = ð1 1 1 4 3 5 )T. By solving the equation

ffiffiffiffiffiffi
W

p
H

� �T ffiffiffiffiffiffi
W

p
H

� �
a⁎=

ffiffiffiffiffiffi
W

p
H

� �T ffiffiffiffiffiffi
W

p
b̃x, we

can get a = ð 2.333 −2.133 0.867 −0.066)T. Therefore, x̂ tð Þ = 2:333−2:133t + 0:867t2−0:066t3 is devised to predict the x-
coordinate axis of themobile user from t=1 to t=5. Similarly, b̃y = ð 1 2 1 2 3 3 )T is then determined from Table 5. By solving the
normal equation

ffiffiffiffiffiffi
W

p
H

� �T ffiffiffiffiffiffi
W

p
H

� �
a⁎ =

ffiffiffiffiffiffi
W

p
H

� �T ffiffiffiffiffiffi
W

p
b̃y, we can get a⁎= ð 2.529 −2.386 1.021 −0.105 )T. We can obtain

ŷ tð Þ = 2:529−2:386t + 1:021t2−0:105t3. Fig. 3 shows that the confidence movement functions, where the circle point indicates
the location of a base station with its corresponding weight and the solid line is the curve derived by algorithmMF. The confidence
movement function closely resembles actual movement behavior, demonstrating the advantage of utilizing regression analysis to
mine user movement patterns.

Algorithm 3. Algorithm MF

Input: AMS and clustered time projection sequence CTPAMS
Output: a list of movement functions F(t)=bE1(t), U1(t),E2(t), ...,Ek(t), Uk(t)N
1: begin
2: F(t)=bN;
3: for i=1 to k−1 do
4: begin
5: doing regression on CLi to generate Ei(t);
6: doing regression on CLi+1 to generate Ei+1(t);
7: t1=the last time slot in CLi;
8: t2=the first time slot in CLi+1;
9: using inner interpolation to generate Ui(t)=(x̂i(t), ŷi(t), (t1, t2));
10: insert Ei(t), Ui(t) and Ei+1(t) in F(t);
11: end
12: if 1∉CL1 then
13: generate U0(t) and Insert U0(t) into the head of F(t);
14: if ε∉CLk then
15: generate Uk(t) and Insert Uk(t) into the tail of F(t);
16: end

3.4.2. Deriving linkage movement functions
Given the AMS and a cluster of CTPAMS=bCL1,CL2,...,CLkN, algorithm MF generates the whole confidence movement function,

denoted as F(t). F(t) is represented as bU0(t), E1(t),U1(t), E2(t), ..., Ek(t),Uk(t)N, where Ei(t) is the confidencemovement function in
cluster CLi of CTPAMS and Ui(t) is the linkage movement function from Ei(t) to Ei+1(t). AlgorithmMF (from lines 5 to 6) shows that
for each cluster of CTPAMS, the corresponding confidence movement functions are derived using the regression method above.
However, the first time slot may not be included in CL1. If t0 is the first time slot of CL1 and t0≠1, the U0(t)={E1(t0), [1, t0)} is
generated for the boundary condition. Otherwise, U0(t) will not be valid in F(t). The same is true for Uk(t). The linkage movement
function is calculated by interpolation (in line 9 of algorithm MF).

3 For the proof, see Appendix A.
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For example, assume that CTPAMS=b1,2,4,5N,b7,9,10N, E1(t)=(2.333−2.133t+0.867t2−0.066t3,2.529−2.386t+1.021t2−
0.105t3, [1,5]) and E2(t)=(6+1.17t−0.16t2,3+0t+0t2, [7,10]). It canbeverified that thefirst time slot of cluster b1,2,4,5N is 1. The
last time slot of b1,2,4,5N is 5 and the first time slot of cluster b7,9,10N is 7. Thus, a linkagemovement function should be generated
by inner interpolation. From E1(t), at the 5th time slot, we can have a data point (x=5.09, y=3). At the 7th time slot, a data point
(x=6.35, y=3) is generated by applying E2(7). By inner interpolation, we could have U1 tð Þ = 1:94 + 6:35−5:09

7−5 t
�

, 3 + 3−3
7−5t, (5,7)).

Similarly, U2(t) can be determined. After obtaining the confidence and linkage functions, the F(t)=bE1(t),U1(t),E2(t),U2(t)N can be
derived. Fig. 4 shows the snapshot of F(t). When using F(t) to predict the location of mobile users, we will only use the confidence
movement function whose time interval includes the given time t. For F(t)=bE1(t),U1(t),E2(t),U2(t)N, when the time is 4, only E1(t)
will be used to predict the location since the given time 4 is within the time interval of E1(t).
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Fig. 3. An illustrative example of deriving confident movement functions.

Table 5
Data points with their corresponding weights.

ti ID xi yi wi

1 A 1 1 16
1 B 1 2 1
2 A 1 1 1
4 D 4 2 2
4 F 3 3 3
5 H 5 3 2
7 K 6 3 4
9 F 3 3 10
10 E 4 3 1
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Fig. 4. A snapshot of a complete movement function F(t).
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3.4.3. Time complexity analysis
AlgorithmMF is of polynomial time complexity. When the maximal size in row/column is n, the time complexity used to solve

the normal equation by Strassen's algorithm is Θ(nlg7) [29]. Moreover, the interpolation by Lagrange's formula requires Θ(m2),
where m represents the number of points involved in the interpolation [29]. Since n is usually larger than m, the value of Θ(nlg7)
dominates the complexity of algorithm MF.

3.5. Estimating a user's location based on a movement function

For many applications, it is necessary to estimate a user's location in the symbolic model. In this case, F(t) represents the
movement behavior of mobile users. Thus, once movement functions F(t) have be obtained, the location of mobile users can be
predicted as (xt,yt), which denotes the coordinates of applying themovement function at time t. Through the estimated coordinate
(xt,yt), this coordinate can be transformed into a symbol which contains (xt,yt). In our example, since each base station is aware of
its location and coverage area, it is easy to transform the geometric location (xt,yt) into the identification of the base station in the
symbolic model.

4. Performance evaluation

This section evaluates the effectiveness and efficiency of mining user movement patterns from call detail records. Section 4.1
presents the models for user behaviors, including movement behavior and calling behavior. Section 4.1 also describes both the
synthetic dataset and the real dataset. Section 4.2 presents experimental results. Finally, the RUMP sensitivity analysis is given in
Section 4.3.

4.1. Modeling user behaviors

User behaviors in a mobile computing environment include movement behaviors and calling behaviors. This section first
describes the synthetic dataset used in this study, in which user movement behaviors are derived according to pre-defined
parameters. To simulate a mobile computing environment, we use a 16×16 mesh network, in which each node represents a base
station. Thus, the simulation model contains 256 base stations [4,30]. Moreover, our simulation considers 10,000 users. As in [31],
this simulation considers threemovement trajectories. For each user, we randomly select onemovement trajectory as his/her own
movement pattern. Then, a user mostly follows his/her own movement pattern. However, users may have some movements that
do not follow their movement patterns. These movements are viewed as biased movements. To prevent users from diverging too
far from their movement patterns due to biased movements, we borrowed the concept in [17] that allows users to move back to
their movement patterns. The number of movements made by mobile users in one time slot is modeled as a uniform distribution
between mf−2 and mf+2. The larger the value of mf is, the more frequently mobile users move. We used the design above to
generate user movements.
However, for a real dataset, it is difficult to obtain real call detail records frommobile service providers due to the privacy issue

of customers. Moreover, the RUMP approach requires the location information of base stations, which is business-related
information for mobile service providers. Thus, for real datasets, we use real movement logs from a GPS-based testbed, CarWeb
[32], and generate simulated CDRs alongwith real movements. In the CarWeb platform, users can obtain their locations from a GPS
device every five seconds and upload their locations to CarWeb servers. Fig. 5 shows one frequent movement behavior, where
every red flag represents a user-uploaded location. By collecting user movement behaviors for four months, we produce roughly
200 movement trajectories for each user. In the CarWeb dataset, the ground truth is known, which is useful to validate our mining
results.4 In the CarWeb dataset, a user has frequent and infrequent movements. To simulate the coverage area of a base station, we
divided the whole space into grids and viewed each grid as the coverage area of one base station. Fig. 5 shows the grids in the
CarWeb datasets, where the frequent movement behaviors of this user occurred within or around 16 girds. Furthermore, since the
traveling times of movement sequences in the CarWeb dataset are not exactly the same, the traveling time for each trajectory is
thus normalized to 24 hours. In both datasets, the time slot is set to 2 hours and the value of ε is 12.
Once user movements have been determined, calling behaviors can be modeled for each user's movements. According to [30],

calling behavior can be modeled as a Poisson distribution. Moreover, a Zeta distribution is used to model burst calling behavior in
this article. In a Poisson distribution, the probability that a user has x calls in a time slot is determined by P xð Þ = e−λλx

x!
, where x is

the number of calls and λ is the expected number of calls in a time slot. Three time slots are grouped and then each time slot is
divided into three subsections, producing a total of 9 subsections in each group. For each user, the probability of having phone calls
in the x-th subsection of a group is Z(x)= x−λ

∑∞
n = 1

1
nλ

, where x indicates the subsection order in a group (i.e., the x-th subsection in a

group) and λ is the value of the exponent feature for a Zeta distribution. In the beginning of subsections in a group, a user will have
more phone calls, but the number of phone calls decays exponentially in the remaining subsections of a group. The speed of decay
is determined by the parameter λ; the larger this parameter is, the faster the decay is. For brevity, CDR(ρ,λ) indicates that the

4 Due to customer privacy issues, it is impossible to get the ground truth of user movement behaviors even if mobile service providers were to release call
detail records.
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calling behavior is modeled as ρ distribution with parameter λ, where the value of ρ is set to P (respectively, Z) if a Poisson
(respectively, Zeta) distribution is used. For example, CDR(P,2) represents the calling behavior of a user under a Poisson
distribution with λ=2.
For comparison purposes, we also implemented the method of mining movement patterns in [4], denoted by UMP. To validate

the quality of movement patterns mined by UMP and RUMP, we could utilize movement patterns to predict next movements of
users. The accuracy of prediction indicates the quality of movement patterns mined. Hence, the hop count (referred to as hn)
represents the number of base stations between the prediction location and the actual location of the mobile user. Intuitively, the
smaller the value of the hop count, the closer the current location and the derived location. Thus, the expected value of hop counts
per call E(hn /call) is defined as total hop counts

number of calls
, where the total _hop _counts is the sum of hop counts per call and number _of _calls

is the total number of calls per user. To evaluate the quality of usermovement patternsmined by UMP and RUMP, the precision ratio
is derived and defined as 1−E hn = callð Þ−1

2n
, where the size of network is n×n and E(hn /call) is the expected value of hop counts per

call. The precision ratio represents the percentage of the average hop counts from the derived cell to the current cell a mobile user
with respect to the network size. Table 6 summarizes the definitions of some primary simulation parameters. In this table, the
default values are optimal values based on following experiments in our experimental environment. Each experimental result was
obtained by an average of twenty experiments.

4.2. Experiments of UMP and RUMP

We first evaluated UMP and RUMP in terms of the data amount, the precision ratio, and the execution time. The data amount
is the number of records stored in a movement log and a CDR log. Fig. 6(a) shows that the data amount of UMP increases with
the value of mf. This is because with a larger mf, a user tends to move frequently, producing a greater amount of data of the
movement log. On the contrary, the data amount in RUMP remains almost constant. Fig. 6(b) shows that the precision ratio of
RUMP is smaller than that of UMP. However, with CDR(P, 4), the precision ratio of RUMP is not far below UMP. Note, however,

Fig. 5. The frequent movement behavior in CarWeb dataset.

Table 6
The parameters used in experiments.

Notation Definition Default value

w Number of movement sequences 50
mf Movement frequency 3
min_freq Threshold used in algorithm LS 0.3
min_sim Threshold used in algorithm LS 0.5
min_var Threshold used in algorithm TC 0.75
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that though UMP performs better than RUMP in terms of the precision ratio, it also incurs a larger amount of data in a movement
log. To investigate the precision ratio gained by having the additional amount of log data, this study defines data utilization as
the ratio between the precision ratio and the amount of log data. Fig. 7 shows the data utilization of UMP and RUMP. With a
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higher mf, the data utilization of UMP drastically decreases. This is because the amount of data in the movement log increases
dramatically as users move frequently. If the value ofmf is smaller, the data utilization of RUMPwith a Zeta distribution is larger
than that of RUMP with a Poisson distribution. On the other hand, when the value of mf increases, the data utilization of RUMP
with a Poisson distribution is larger than that of RUMP with a Zeta distribution. It is primarily because when mf is large, it is
better to have more uniform calling behaviors to allow the call detail records fully reflect user movement behaviors. These
experimental results show that RUMP has a higher data utilization than UMP. By exploring CDRs, RUMP is more cost-effective in
mining user movement patterns.
Fig. 8(a) shows the data amount of UMP and RUMPwith various calling behaviors under the CarWeb dataset. Fig. 8(a) shows

that the data amount of RUMP is much smaller than that of UMP. Furthermore, Fig. 8(b) shows that the precision ratios of UMP
and RUMP, indicating that the difference between UMP and RUMP is not large. This suggests that RUMP is able to achieve
acceptable precision ratios when using a smaller amount of data. However, through performing better than RUMP in terms of
the precision ratio, UMP incurs more amounts of data in the movement log. In Fig. 9, the data utilization of UMP is much
smaller than that of RUMP, showing that with a smaller amount of log data, RUMP can still achieve an acceptable precision
ratio.
Fig. 10 shows the execution time of UMP and RUMP under the synthetic dataset. Fig. 9 shows that the RUMP execution time is

smaller than that of UMP in both the synthetic dataset and the CarWeb dataset. With a larger number of movement sequences, the
UMP execution time significantly increases. With a highermf, the execution time of RUMP becomesmuch slower than that of UMP.
Further, RUMP has better scalability than UMP. In addition, Fig. 9 shows the execution time of UMP and RUMP on the CarWeb
dataset. Similar to the results in the synthetic dataset, the RUMP execution time is much smaller than that of UMP. As the number of
movement sequences increases, UMP takes longer to discover user movement patterns. On the other hand, the RUMP performance
is determined by the data amount generated by calling. Since the data amount generated by calling is usually fewer than that by
movements, RUMP incurs a smaller execution time.
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4.3. Sensitivity analysis of RUMP

This section further investigates the parameters used in RUMP. First, the impact ofw is presented. Then, we examine the impact
of thresholds on the mining results.

4.3.1. Impact of w
Fig. 11 shows the experiments of varying w values for RUMP under both the synthetic dataset and the CarWeb dataset. This

figure indicates that the RUMP precision ratio increases as the value of w increases in both datasets. This is because as the value of
w increases, the number of movement sequences considered in RUMP increases as the value ofw increases. In this case, RUMP can
use more calls to discover user movement patterns. The RUMP precision ratio with a Poisson distribution is larger than that of
RUMP with a Zeta distribution. This is because the calling behavior in a Poisson distribution is much more evenly across user
movements. Thus, RUMP is able to fully capture user movement behaviors when the calling behavior follows a Poisson
distribution. In a Poisson distribution, with a larger value of λ, the precision ratio of RUMP is larger. For a larger value of λ, the
amount of call detail records tends to increase, thereby reflecting the complete movement behaviors of users. For users with a
larger number of calls and non-burst calling behavior, the value of w can be set smaller to quickly obtain movement patterns. In
contrast, for users with a smaller number of calls or burst calling behavior, the value of w should be set larger to improve the
precision ratio of the movement patterns mined by RUMP.

4.3.2. Impact of thresholds in algorithm LS
This section examines the impact of min _ freq and min _sim on the RUMP performance. Algorithm LS uses min _ freq and

min _sim thresholds to extract CDRs representing frequent movement behaviors. Figs. 12 and 13 show RUMP experiments with
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Fig. 12. Precision ratio of RUMP with min_freq varied.
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varying values ofmin _ freq andmin _sim. Fig. 12(a) shows the result of using RUMP on the synthetic dataset. This figure indicates
that the RUMP precision ratio tends to increase when the value of min _ freq increases from 0.1 to 0.3. This figure also shows that
the RUMP precision ratio decreases whenmin _ freq exceeds than 0.3. This is because increasingmin _ freq filters out areas through
which users do not frequentlymove are filtered out. However, a largermin _ freq is too strict for identifyingwhat areas are frequent
and decreases the precision ratio. Fig. 12(b) shows that the same phenomenon for the CarWeb dataset. Selecting the value of
min _ freq should be determined empirically. For example, in this experiment, we set min _ freq at 0.3.
Fig. 13 shows the RUMP precision ratio with various values of min _sim. In both datasets, the RUMP precision ratio tends to

increase whenmin _sim increases from 0.1 to 0.5. However, when the value ofmin _sim exceeds than 0.5, the RUMP precision ratio
decreases. The min _sim threshold is set to identify whether or not a movement sequence is similar to the frequent movement
behavior. With a larger value of min _sim, only a few movement sequences are identified as being similar to frequent user
movement behaviors. This, in this turn, decreases the RUMP precision ratio. Therefore, the value of min _sim should be carefully
set. Experimental results shows that min _ freq should be set to 0.3 and min _sim should be set to be 0.5 to achieve the best
precision ratio performance.

4.3.3. Impact of thresholds in algorithm TC
As described above, the value of min _var for algorithm TC affects the accuracy of the RUMP time clustering results. We

conducted experiments to examine the impact of min _var. For the synthetic dataset, Fig. 14(a) shows that the precision ratio of
RUMP with the values of threshold min _var varied. This figure indicates the RUMP precision ratio significantly increases when
min _var is 0.25. However, the precision ratio of RUMP decreases when min _var exceeds than 0.75. This is because excessively
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Fig. 14. Precision ratio with min_var varied.
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large values ofmin _var result inmost of the call detail records being grouped in the same cluster. Hence, the number of movement
functions is not enough to capture user movement behaviors. Furthermore, with a larger mf, the RUMP precision ratio is smaller
and significantly decreases when min _var is larger. For the CarWeb dataset, Fig. 14(b) shows the similar experimental results.
These results indicate that min _var should be set to be a smaller value for users who move frequently. The value of min _var,
which can be determined empirically, should not set too larger. For example, in Fig. 14(a),min _var should set to 0.75 because the
RUMP precision ratio is the highest.
Fig. 15 depicts the RUMP precision ratio with various calling behaviors. In Fig. 15(a), the results of CDR(P,2) and CDR(P,4) are

similar to the results above. However, it is interesting to note that the precision ratios of CDR(Z,2) and CDR(Z,4) do not decrease
when the value ofmin _var exceeds than 0.75. Since burst calls happen in the beginning of every three time slots, most of the call
detail records in these three time slots can be grouped into one cluster. Fig. 15 shows the similar results in the CarWeb dataset.
Thus, we can set min _var as 0.75 to obtain the highest RUMP precision ratio.

5. Conclusions

User movement patterns can provide a lot of benefits in many mobile design schemes and applications, including designing a
paging area, developing data allocation schemes, conducting querying strategies, or offering navigation services. This article
proposes a regression-based approach called RUMP for mining usermovement patterns from call detail records. To fully exploit the
fragmented spatio-temporal information hidden in such trajectories, the proposed regression-based solution discovers user
movement patterns. The RUMP approach uses three algorithms. First, algorithm LS extracts CDRs that reflect the frequent
movement behaviors of mobile users. By capturing similar movement sequences from call detail records, an aggregation
movement sequence is computed to represent the frequent movement behaviors of mobile users in each time slot. The feature of
spatio-temporal locality states that if the time interval between consecutive calls is small, the mobile user is likely to have moved
nearby. By exploring this feature, algorithm TC is able to determine the number of regression functions properly by clustering
thosemovement recordswhose time of occurrence are very close from an aggregationmovement sequence. For each cluster of the
aggregation movement sequence, algorithm MF generates the movement functions representing user movement patterns of
mobile users. This article evaluates the performance of the proposed algorithms and conducts sensitivity analysis on several design
parameters. Experimental results indicate that RUMP can efficiently and effectively derive user movement patterns that capture
the frequent movement behaviors of mobile users.

Appendix A. Proof of minimizing residual error sum

Following the same notation in Section 3.4, the residual sum of squares (i.e., �x=∑ i=1
n wiei

2) can be expressed as �x = eTWe in
a linear algebra manner. All elements inW are positive and e is able to be formulated as b̃x−Ha⁎
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. Thus, we have:
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let A =
ffiffiffiffiffiffi
W

p
H and B=

ffiffiffiffiffiffi
W

p
b̃x. The main objective is to minimize �x = j jB−Aa⁎ j j : According to the least squares theorem,

B−Aa⁎must be orthogonal to Aa⁎ so as to minimize εx. For the sake of brevity, the description of least squares theorem is omitted
in this article. We can have:

B−Aa⁎∈R Að Þ⊥ = N AT
� �

;

where R Að Þ⊥ represents the orthogonal complement of column space of A
and N AT

� �
represents the kernel space of AT

⇒ AT B−Aa⁎ð Þ = 0
⇒ ATAa⁎ = ATB

ATAa⁎ = ATB is viewed as the normal equation. By substituting A =
ffiffiffiffiffiffi
W

p
H and B=

ffiffiffiffiffiffi
W

p
b̃x, we have

ffiffiffiffiffiffi
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� �T ffiffiffiffiffiffi
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� �
a⁎ =ffiffiffiffiffiffi
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H
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b̃x. By solving the normal equation, a can be derived tominimize the value of �x. □
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