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The wavelet transform method originated by Wei et al. [Phys. Rev. Lett. 89, 284103.4
(2002)] was proved [Juang and Li, J. Math. Phys. 47, 072704.16 (2006); Juang
et al., J. Math. Phys. 47, 122702.11 (2006); Shieh et al., J. Math. Phys. 47, 082701.10
(2006)] to be an effective tool to reduce the order of coupling strength for coupled
chaotic systems to acquire the synchrony regardless the size of oscillators. In Juang
et al., [IEEE Trans. Circuits Syst., I: Regul. Pap. 56, 840 (2009)] such method was
applied to coupled map lattices (CMLs). It was demonstrated that by adjusting the
wavelet constant of the method can greatly increase the applicable range of coupling
strengths, the parameters, range of the individual oscillator, and the number of nodes
for local synchronization of CMLs. No analytical proof is given there. In this paper,
the optimal or near optimal wavelet constant can be explicitly identified. As a result,
the above described scenario can be rigorously verified. C© 2011 American Institute
of Physics. [doi:10.1063/1.3525802]

I. INTRODUCTION

Simulation of natural phenomena is one of the most important research fields, and coupled map
lattices (CMLs) are a paradigm for studying fundamental questions in spatially extended dynamical
systems. This is because of their wide range of applications such as in turbulence, pattern formation
in natural systems, and solitons. They also exhibit a very rich phenomenology, including a wide
variety of both spatial and temporal periodic structures, intermittence, chaos, domain walls, kink
dynamics, etc. As a matter of fact, one of the most interesting aspects of CMLs is the presence
of attracting manifolds. Such attracting manifolds lead to notions such as partial synchronization,8

weak and strong synchronization,16, 19 and (complete) synchronization.13, 14, 17, 21–23

As to the study of local synchronization in CMLs, the notion of master stability functions (MSFs)
that allows one to isolate the contribution of the network structure in terms of the eigenvalues of
the coupling matrix was introduced in Refs. 1, 4, 9, 15, and 25 to determine the possible range of
coupling strength. This function then defines a region of stably synchronous state in terms of the
coupling strength and the eigenvalues of the coupling matrix. Most of the work done in finding such
a region of stability of the synchronous state is numerical. In a few certain cases, such as when the
coupling matrix is symmetric, the MSFs can be further reduced to a number of inequalities2, 5–7

Lmax + ln |1 + dλi | < 0, i = 2, ..., m.

Here Lmax is the largest Lyapunov exponent of the individual map, λi are the nonzero eigenvalues
of the m × m coupling matrix, and d is the coupling strength. The Gershgorin disk theory is then
applied to obtain some sufficient conditions2 on the coupling strength for local synchronization.

In Ref. 12, the optimal synchronization interval for coupling strengths of CMLs with symmetric
coupling was analytically obtained. In particular, they also identified the best choice of coupling

a)Electronic mail: chinlungli@mail.nhcue.edu.tw.
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strength in the sense that such a coupling strength gives the fastest convergence rate of initial
values toward the synchronous manifold. Furthermore, it was shown that such a coupling strength
is independent of the choice of the individual chaotic map. Those results described above were
also generalized13 to the case that the coupling topology is allowed to be nonsymmetric. Due
to the nonlinear coupling between oscillators for CMLs, both the second largest and the smallest
eigenvalues of the coupling matrix play a role in determining the synchronization interval as opposed
to linear coupling between those of coupled chaotic systems, which results in only the second largest
eigenvalue being relevant in determining its synchronization interval. Such nonlinear coupling of
CMLs also produces size instability. For instance, assume the dynamics of the individual oscillator
is governed by the quadratic equations fμ(x) = μx(1 − x). Fixed μ = 3.5708 > μ∞ = 3.5699456,
the corresponding CMLs loses its synchronization provided that the number of oscillators grows
larger than 20.12 To improve on such size instability phenomenon, the wavelet transform method
initiated in Ref. 20 was applied. The associated system remains synchronized when the number of
oscillators reaches is doubled.12 It was also demonstrated there that by adjusting the wavelet constant
of the method can greatly increase the applicable range of coupling strengths, the parameters, and
the number of nodes for local synchronization of CMLs.

In this paper, the optimal or near optimal wavelet constant can be explicitly identified. As a
result, the above described scenario can be rigorously verified. We shall begin with describing the
model of CMLs and briefly mention the wavelet transform method. The dynamic of CMLs with a
symmetric coupling network can be described in the following vector form:17, 21

X (n + 1) = (I + ε A)F(X (n)), (1.1)

where X (n) = (x1(n), x2(n), · · · , xN (n))T ; I is the identity matrix; ε is the coupling strength; A
is a symmetric coupling matrix having zero row sums with zero being a simple eigenvalue; and
F(x1, x2, · · · , xN ) = ( f (x1), · · · f (xN ))T . Here, f (x) describes the chaotic dynamics of an individual
oscillator.

The wavelet transform method is a way24 of reconstructing the network topology so as to affect
the stability of synchronous manifold of (1.1). For more details, see Refs. 12 and 18. Here, we only
described the needed formulation for our purpose. Let N = 2n. Write A as

A =

⎛⎜⎝ A11 · · · A1n
...

. . .
...

An1 · · · Ann

⎞⎟⎠
n×n

,

where the dimension of each block matrix Akl is 2 × 2. By an i-scale wavelet operator W ,3, 20 the
matrix A is transformed into W (A) of the form

W (A) =

⎛⎜⎝ Ã11 · · · Ã1n
...

. . .
...

Ãn1 · · · Ãnn

⎞⎟⎠
n×n

,

where each entry of Ãkl is the average of entries of Akl, 1 ≤ k, l ≤ n. After reconstruction,18 the
coupling matrix A becomes A + αW (A). Here α is a wavelet constant.

In this paper, we consider the nearest neighbor coupling with mixed boundary conditions, which
is given as follows:

A = A(β) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 − β 1 0 · · · 0 β

1 −2 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 −2 1
β 0 · · · 0 1 −1 − β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
N×N

.
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Note that β = 1 corresponds to periodic boundary conditions, while β = 0 is
associated with Neumann boundary conditions. The newly constructed coupling matrix
A(β) + αW (A(β)) =: C(α, β) is then of the following form.

C(α, β) = A(β) + α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ã1(β) Ã2(1) 0 · · · 0 Ã2(β)

Ã2(1) Ã1(1)
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . Ã1(1) Ã2(1)

Ã2(β) 0 · · · 0 Ã2(1) Ã1(β)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (1.2a)

where

0 =
(

0 0
0 0

)
, Ã1(β) =

⎛⎜⎝
−1 − β

4

−1 − β

4
−1 − β

4

−1 − β

4

⎞⎟⎠ , and Ã2(β) =

⎛⎜⎝
β

4

β

4
β

4

β

4

⎞⎟⎠ .

The eigenvalues of C(α, β) are denoted by λi (α, β) with

0 = λ1(α, β) ≥ λ2(α, β) ≥ · · · ≥ λN (α, β). (1.2b)

For fixed β, the graphs of λi (α, β) are called the eigencurves of C(α, β).
We conclude this introductory section by recording some of needed theorems derived in

Refs. 10 and 12. Let 0 = λ1 > λ2 ≥ · · · ≥ λN be the eigenvalues of the coupling matrix A. It
was shown, e.g., Ref. 17, that if

Lmax + ln |1 + ελi | < 0 i = 2, . . . , N . (1.3)

for all the nonzero eigenvalues λi . Note that the second largest eigenvalue alone is not enough to
ensure that all other eigenvalues satisfied (1.3). To achieve synchronization of CMLs, we need to
find ε so that the maximum of |1 + ελi |, i = 2, · · · , N , is a minimum. Specifically, we need to solve
a min–max problem of the form

min
ε∈R

max
2≤i≤N

|1 + ελi |. (1.4)

The min–max problem (1.3) was solved in Ref. 12. For ease of reference, we record their result in
the following.

Theorem 1.1: (Theorem 1 of Ref. 12) The min–max problem (1.3) can be achieved when
ε = ε2,N = −2

λ2+λN
. Let

ti, j :=
∣∣∣∣λi − λ j

λi + λ j

∣∣∣∣ . (1.5)

Then

min
ε∈R

max
2≤i≤N

|1 + ελi | = t2,N . (1.6)

Consequently, system (1.1) is (locally) synchronized if and only if

Lmax + ln |t2,N | =: δN , f < 0. (1.7)

If (1.6) holds, then there exists an optimal neighborhood NN , f , the synchronization interval, of
ε2,N so that (1.1) is (locally) synchronized whenever ε ∈ NN , f . Here

NN , f =
(

1 − e−Lmax

−λ2
,

1 + e−Lmax

−λN

)
. (1.8)
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The interval NN , f (if it exists) is optimal in the sense that if ε is not in NN , f , then system (1.1)
will not acquire (local) synchronization. Moreover, ε2,N , which is independent of the choice of the
individual chaotic map, is the best choice of coupling strength for local synchronization of 1.1 in
the sense that such a coupling strength gives the fastest convergence rate of initial values toward the
synchronous manifold.

Clearly, Theorem 1.1 is still valid for newly constructed coupling matrix C(α, β). Note that the
corresponding δN , f , ε2,N , NN , f , and t2,N now depend on the wavelet constant α and the boundary
constant β as well. To emphasize such dependence, we may write δN , f , ε2,N , NN , f , and t2,N as
δN , f (α, β), ε2,N (α, β), NN , f (α, β), and t2,N (α, β), respectively.

Theorem 1.2: (Theorem 2.1 of Ref. 10) Let N × N , N = 2n, n ∈ N, be the dimension of the
matrix C(α, 1). Let dimension of each block matrix in C(α, 1) be 2 × 2. Then the eigenvalues λ±

m(α, 1)
of C(α, 1) are of the following form:

λ±
m(α, 1) = 1

2

(
α cos

2mπ

n
− α − 4

)
± 1

2

[(
α cos

2mπ

n
− α − 4

)2

+ 4

(
α cos2 2mπ

n

+2(α + 1) cos
2mπ

n
− 2 − 3α

)]1/2

, m = 0, 1, 2, · · · , n − 1.

Likewise, treating α as a parameter, the graphs of λ±
m(α, 1) are to be termed eigencurves of

C(α, 1).

Proposition 1.1: (Proposition 2.4 of Ref. 10) If n
2 is not a positive integer, then the eigen-

curves λ±
m(α, 1), m = 1, 2, · · · , n − 1, are strictly decreasing in α ∈ (0,∞). If n

2 (> 1) is a positive
integer, then λ±

m(α, 1), m = 1, 2, n
2 − 1, n

2 + 1, · · · , n − 1, and λ−
n
2
(α, 1) are strictly decreasing in

α ∈ (0,∞).

Theorem 1.3: (Theorem 2.2 of Ref. 10) Let N be any positive even integer. The dimension of
each block matrix in C(α, 1) is 2 × 2. Then

(i) suppose N is a multiple of four and N > 4. For each α > 0, let λ2(α, 1) be the second largest
eigenvalue of C(α, 1). Then λ2(α, 1) = λ+

1 (α, 1), for 0 ≤ α ≤ 1
sin2( π

n ) =: α1; and λ2(α, 1)

= λ+
n
2
(α, 1) = −2 for all α ∈ [α1,∞).

(ii) Suppose N is not a multiple of four. Then there exists a α̃c such that λ2(α, 1) = λ+
[ n

2 ](α, 1) for

all α ≥ α̃c. Here [ n
2 ] = the largest positive integer that is less than or equal to n

2 . Moreover,
λ2(α, 1) < −2 whenever α > α1.

Proposition 1.2: (Proposition 2.5 of Ref. 10) (i) In the α − λ plane, λ+
t (α, 1) intersect with

λ = −2 + k at αt,k , where

αt,k = 2(1 + t) − k2

(1 − t)(1 + t + k)
.

(ii) For −1 ≤ t < 1, lim
α→∞ λ+

t (α, 1) = −(t + 3).

Theorem 1.4: (Theorem 3.1 of Ref. 10) Let N be any positive even integer. The dimension of
each block matrix in C(α, 0) is 2 × 2. Let λ±

m(α, 0) be defined as follows:

λ±
m(α, 0) = 1

2

(
α cos

mπ

n
− α − 4

)
± 1

2

[(
α cos

mπ

n
− α − 4

)2

+ 4
(
α cos2 mπ

n
+ 2(α + 1) cos

mπ

n
− 2 − 3α

)] 1
2

Then λ±
m(α, 0), m = 1, 2, · · · , n − 1, λ+

0 (α, 0) = 0 and λ+
n (α, 0) = −2 are eigenvalues of C(α, 0)

for each α > 0.
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Theorem 1.5: (Theorem 3.2 of Ref. 10) For each α, let λ2(α, 0) be the second largest eigenvalue
of C(α, 0). Then λ2(α, 0) = λ+

1 (α, 0), for 0 ≤ α ≤ 1
sin2( π

2n ) =: α1; and λ2(α, 0) = λ+
n (α, 0) = −2 for

all α ∈ [α1,∞).

For the wavelet transform method applying on the coupled chaotic systems, the theoretical
verification of its effectiveness was provided in Refs. 10,11, and 18 It should be noted that in deter-
mining the synchronization interval of coupled chaotic systems only the second largest eigenvalue
of the coupling matrix is involved.

II. MAIN RESULTS FOR C(α, 1)

In this section, we shall verify the effectiveness of the wavelet transform method applying on
(1.1) for A being the nearest neighbor coupling with periodic boundary conditions. To this end,
in addition to study the least eigencurve λN (α, β) of C(α, 1), we need to further explore some
additional properties of its second eigencurve λ2(α, β), which were not studied in Ref. 10. We begin

with letting t = cos(
2mπ

n
). Then we have

λ±
m(α, 1) = 1

2

{
α(t − 1) − 4 ± [

(t − 1)2α2 + 4(t2 − 1)α + 8(1 + t)
]1/2

}
=: λ±

t (α, 1).

It should be noted that λ+
i (α, β) (respectively, λ−

i (α, β)) may intersect with λ+
j (α, β) (re-

spectively, λ−
j (α, β)) for i �= j . Hence, λi (α, β) may consist of pieces from various λ+

m(α, β) or
λ−

m(α, β), m = 0, 1, 2, . . . , n − 1. See Theorem 1.3, for example. This disorder structure of λ±
m(α, β),

m = 0, 1, 2, . . . , n − 1, makes the analytical identification of λi (α, β) a nontrivial matter. The proof
of the following proposition is elementary and thus skipped.

Proposition 2.1: Let α > 0 and λN (α, 1), λ2(α, 1) ≤ 0, then the following statements are equiv-
alent.

(1)
λN (α, 1) − λ2(α, 1)

λN (α, 1) + λ2(α, 1)
attains its minimum at αmin.

(2)
λN (α, 1)

λ2(α, 1)
attains its minimum at αmin.

Some new information concerning the eigencurve λ2(α, 1) for N is not a multiple of four are
obtained in the following theorem.

Theorem 2.1: Let N be any positive even integer and N is not a multiple of four. Then there
exists a α̃c such that

λ2(α, 1) =
⎧⎨⎩λ+

1 (α, 1), for 0 ≤ α ≤ α1 := 1

sin2(π
n )

;

λ+
[ n

2 ](α, 1), for α ≥ α̃c(≥ α1).

Here [ n
2 ] = the largest positive integer that is less than or equal to

n

2
. Moreover, λ2(α, 1) < −2

whenever α > α1.

Proof: For αt,k to be positive in Proposition 1.2, we must have

2(1 + t) > k2.

Now,

(1 − t)2(1 + t + k)2 dαt,k

dt
= 2(t + 1)2 − k3 + 4k − 2tk2 > (1 + t)k2 − k3 + 4k − 2tk2

= −k(k2 + (t − 1)k − 4) = −k(k − t+)(k − t−),
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where t± = (1 − t ±
√

16 + (1 − t)2)/2. Note that we have used 2(1 + t) > k2 to justify the above
inequality. Moreover t− < 0 and t+ ≥ 2. Thus, dαt,k

dt > 0 whenever 0 ≤ k < 2, and λ = λ+
t (α, 1)

have the intersections intersect at the positive αt,k . Upon using Proposition 1.1, we conclude that for
0 ≤ m ≤ n − 1, the portion of the graphs of λ+

m(α, 1) lying above the line λ = −2 do not intersect

each other. For N is not a multiple of four, we have n is an odd number. Since α1 ·
(

cos
2π

n
− 1

)
= −2, we have that

λ+
1 (α1, 1) = 1

2

{
α1 ·

(
cos

2π

n
− 1

)
− 4 +

[
α2

1 ·
(

cos
2π

n
− 1

)2

+4α1 ·
(

cos
2π

n
− 1

)(
cos

2π

n
+ 1

)
+ 8

(
1 + cos

2π

n

)]1/2
}

= 1

2

{
(−2) − 4 +

[
(−2)2 − 8 ·

(
cos

2π

n
+ 1

)
+ 8

(
1 + cos

2π

n

)]1/2
}

= −2.

Hence λ2(α, 1) equal to λ+
1 (α, 1) for 0 ≤ α ≤ α1 := 1

sin2(π
n )

as asserted.

By using Proposition 1.2(ii), there exists a α̃c such that λ2(α, 1) = λ+
[ n

2 ](α, 1) for all α1 ≤ α̃c ≤ α.
And, we obtain the following inequality:

α1 ·
(

cos
2[ n

2 ]π

n
− 1

)
= − 1

2 sin2 π
2n

≤ −2,

for n ≥ 3 is an odd number. Consequently,

λ+
[ n

2 ](α1, 1) ≤ 1

2

{
(−2) − 4 +

[
(−2)2 − 8 ·

(
cos

2[ n
2 ]π

n
+ 1

)
+ 8

(
1 + cos

2[ n
2 ]π

n

)]1/2
}

= −2 = λ+
1 (α1, 1).

Hence, λ2(α, 1) < −2 whenever α > α1. �
We next study some properties of the least eigencurve λN (α, 1) of C(α, 1). Some direct calcu-

lations would yield the following proposition.

Proposition 2.2: (i) In the α − λ plane, λ−
t (α, 1) intersect with λ = −4 + k at α∗

t,k , where

α∗
t,k = 2 − 2t + k2 − 4k

(1 − t)(1 − t − k)
> 0 for k < 0.

(ii) For −1 ≤ t < 1, (m = 1, 2, · · · , n − 1).

lim
α→∞ λ−

t (α, 1) = lim
α→∞ λ−

m(α, 1) = −∞.

Theorem 2.2: Let N be any positive even integer. Then

λN (α, 1) =
⎧⎨⎩λ−

0 (α, 1) = −4, for 0 ≤ α ≤ 2

1 − cos( 2
n [ n

2 ]π )
:= α∗

1 ;

λ−
[ n

2 ](α, 1), for α ≥ α∗
1 .

In particular, if N is a multiple of four, α∗
1 = 1 and λ−

[ n
2 ](α, 1) = −2α − 2.
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FIG. 1. (Color online) (a) All eigenvalues of C(α, 1) for N = 8 which is multiple of four. (b) The second and least eigenvalues
for N = 8. (c) All eigenvalues of C(α, 1) for N = 10 which is not multiple of four. (d) The second and least eigenvalues for
N = 10.

Proof: First, we note that λ−
0 (α, 1) = −4 for all α by Theorem 1.2. Furthermore, let k < 0, we

consider the following inequality:

(1 − t)2(1 − t − k)2 dα∗
t,k

dt
= 2(1 − t)2 − 8k(1 − t) + 6k2 − 2tk2 − k3

> 2(1 − t)2 − 8k(1 − t) + 2k2(1 − t) − k3 > 0.

Thus,
dα∗

t,k

dt
> 0, whenever λ = −4 + k, k < 0. Upon using the Proposition 2.2, we conclude that

for 0 < m ≤ n − 1, the portion of the graphs of λ−
m(α, 1) lying below the line λ = −4 does not

intersect each other. Moreover, let k = 0, t = cos( 2
n [ n

2 ]π ) in α∗
t,k , we have

α∗
1 := 2

1 − cos( 2
n [ n

2 ]π )
.

Thus, λN (α, 1) is given as asserted.
The least assertion of the theorem is obvious. We have just completed the proof of the theorem. �

Figures 1(a)–1(d) show the calculated eigenvalues λ2(α, 1) and λN (α, 1) of the coupling matrix
C(α, 1) as a function of wavelet parameter α. The critical wavelet parameter α1 and α∗

1 are also
marked to distinguish the indices m of the eigencurves λ+

m(α, 1) and λ−
m(α, 1) in Theorems 2.1

and 2.2.
We are now in a position to state one of our main results, which are to identify

the “optimal” wavelet constant. To this end, we begin with letting f (α) := λN (α, 1)

λ2(α, 1)
and
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g(α) := λN (α, 1) − λ2(α, 1)

λN (α, 1) + λ2(α, 1)
for the wavelet parameter α and defining mi to be tan2 π

in
for

each positive integer i .

Theorem 2.3 Let N = 2n be a multiple of four. The best choice of the wavelet constant α for
local synchronization of (1.1) is

(1) α = αmin = 1 for n = 2.

(2) α = αmin = − tan4 π
n + 4 tan2 π

n + 4

2 tan2 π
n (tan2 π

n + 2)
for n ≥ 4.

Moreover, αmin ∈ [α∗
1 , α1] = [

1, 1
sin2 π

n

]
. Such wavelet constant αmin gives the fastest convergence

rate of initial values toward the synchronous manifold. Furthermore, its corresponding synchroniza-
tion interval NN , f (αmin) can be explicitly obtained as follows:

NN , f (αmin) =
(

1 − e−Lmax

λ2(αmin)
,

1 + e−Lmax

λN (αmin)

)
.

Proof: To prove the theorem, it is sufficient to show that the minimum of g(α) occurs at αmin.
By the Proposition 2.1, it is equivalent to showing that the minimum of f (α) occurs at αmin.

(1) From Theorems 1.3, and 2.2, we have the second and the least eigencurves for n = 2 are

λ2(α, 1) = −2 for α ≥ 0.

λN (α, 1) =
{

λ−
0 (α, 1) = −4, 0 ≤ α ≤ α∗

1 ;

λ−
n
2
(α, 1) = −2α − 2, α ∈ [α∗

1 ,∞).

Obviously, the minimum of f (α) occurs at αmin = α∗
1 = 1.

(2) Clearly, the minimums of f (α) on [0, α∗
1 ] and [α1,∞) occur at α = α∗

1 and α = α1, respec-
tively. To complete the proof of the theorem, we need to calculate the minimum of f (α) on
[α∗

1 , α1]. Using the notation mi , we rewrite f (α) as follows:

f (α) = 2(m1 + 1)(α + 1)

αm1 + 2m1 + 2 −
√

(αm1 − 2)2 + 4m1

.

To find the critical point of f is equivalent to solving the following equation:

(αm1 + 2m1 + 2)
√

(αm1 − 2)2 + 4m1

−(αm1 − 2)2 − 4m1 − (α + 1)m1

[√
(αm1 − 2)2 + 4m1 − (αm1 − 2)

]
= 0.

Some calculations would yield that

(m1 + 2)2[(αm1 − 2)2 + 4m1] = [4m1 − (αm1 − 2)(m1 + 2)]2

2(αm1 − 2)(m1 + 2) = −m2
1 − 4.

Hence, the critical point of f is

α = −m2
1 + 4m1 + 4

2m1(m1 + 2)
=: αmin.

It is easy to check that αmin ∈ (α∗
1 , α1) is indeed the minimizer of f (α) on (0,∞). �

The ratio curves for the second and least eigencurve with N = 8 are shown in Fig. 2. Here, we note
that the theoretically predicted synchronization intervals which are in agreement with numerically
produced synchronization intervals, see Figs. 3(a)–3(b) for N = 8.

Next, we consider the case that the number of the oscillators is not a multiple of four.
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FIG. 2. (Color online) The ratio curves for the second and least eigencurve with N = 8.

Theorem 2.4: Let N = 2n be not a multiple of four. The best choice of the wavelet constant

αmin for local synchronization of (1.1) lies in the interval
[

2
1−cos( 2

n [ n
2 ]π)

, α̃c

]
= [α∗

1 , α̃c], where α̃c is

defined in Theorem 2.1. Moreover, its corresponding synchronization interval NN , f (αmin) can be
explicitly obtained as follows:

NN , f (αmin) =
(

1 − e−Lmax

λ2(αmin)
,

1 + e−Lmax

λN (αmin)

)
.

Proof: From Theorems 2.1, and 2.2, the minimum of f (α) on [0, α∗
1 ] obviously occurs at

α = α∗
1 . Next, we find the minimum of the function ln g(α) on [̃αc,∞). Some direct calculations

yield that

d ln g(α)

dα
= g

′
(α)

g(α)
= (1 + 2m2) α − 4m2(

(α − 2m2)2 + 4m2
)

(α + 2 + 2m2)
.

FIG. 3. Two typical synchronization intervals for coupled logistic map with μ = 3.65 and 3.9 are shown. Solid (bold) lines
are synchronization intervals obtained by computer simulation. Gray lines are synchronization intervals predicted by our
theorems. All are scaled for clear visualization.
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FIG. 4. (Color online) The ratio curves for the second and least eigencurve with N = 10.

Consequently, the critical point α
( = 4m2

1+2m2

)
satisfies the following inequalities:

α ≤ 1 ≤ (1 + m2)2

4m2
= 1

sin2 π
n

= α1 ≤ α1.

Hence, we have
d ln g(α)

dα
≥ 0, for α ≥ α̃c. And, the minimum of the function g(α) on α ≥ α̃c occurs

at α = α̃c. Thus, the assertion of the theorem now follows. �
Remark 2.1: Since the behavior of g(α) on [α1, α̃c] is complicated, we are unable to identify

the minimum point of g on [α1, α̃c]. In Fig. 5, we pick α = α1 as our choice of the wavelet constant.
And, its corresponding synchronization interval is NN , f (α1).

The ratio curves for the second and least eigencurve with N = 10 are shown in Fig. 4. Note that
the theoretically predicted synchronization intervals are in agreement with numerically produced
synchronization intervals, see Figs. 5(a)–5(b) for N = 10.

FIG. 5. Two typical synchronization intervals for coupled logistic map with μ = 3.6 and 3.9 are shown. Solid (bold) lines
are synchronization intervals obtained by computer simulation. Gray lines are synchronization intervals predicted by our
theorems. All are scaled for clear visualization.
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FIG. 6. (Color online) All eigenvalues of C(α, 0) for N = 8. The second and least eigenvalues for N = 8.

III. MAIN RESULTS FOR C(α, 0)

In this section, we shall verify the effectiveness of the wavelet transform method applying on
(1.1) for A being the nearest neighbor coupling with Neumann boundary conditions. To this end,
in addition to study the least eigencurve λN (α, β) of C(α, 0), we need to further explore some
additional properties of its second eigencurve λ2(α, β), which were not studied in Ref. 10. We begin

with noting t = cos(
mπ

n
), then we have

λ±
m(α, 0) = 1

2

{
α(t − 1) − 4 ± [(t − 1)2α2 + 4(t2 − 1)α + 8(1 + t)]1/2

}
= : λ±

t (α, 0).

It should be noted that λ+
i (α, β) (respectively, λ−

i (α, β)) may intersect with λ+
j (α, β) (respectively,

λ−
j (α, β)) for i �= j . Hence, λi (α, β) may consist of pieces from various λ+

m(α, β) or λ−
m(α, β),

m = 0, 1, 2, . . . , n − 1. See Theorem 1.3, for example. This disorder structure of λ±
m(α, β), m =

0, 1, 2, . . . , n − 1, makes the analytical identification of λi (α, β) a nontrivial matter. We study some
properties of the least eigencurve λN (α, 0) of C(α, 0). Some direct calculations would yield the
following proposition.

Proposition 3.1: (i) In the α − λ plane, λ−
t (α, 0) intersect with λ = −4 + k at α∗

t,k , where

α∗
t,k = 2 − 2t + k2 − 4k

(1 − t)(1 − t − k)
> 0 for k ≤ 0.

(ii) For −1 ≤ t < 1, (m = 1, 2, · · · , n − 1).

lim
α→∞ λ−

t (α, 0) = lim
α→∞ λ−

m(α, 0) = −∞.

To better understand the interwining properties of the second largest and the least eigenvalues of
C(α, 0), we compute numerically all eigenvalues of C(α, 0) for 0 ≤ α ≤ 8 with N = 8, and identify
their corresponding λ2(λ, 0) and λ8(α, 0). Such computation results are illustrated in Fig. 6.

Theorem 3.1: Let N = 2n be any positive even integer. The dimension of each block matrix
in C(α, 0) is 2 × 2. Let λN (α, 0) be the least eigenvalue of C(λ, 0) then λN (α, 0) = λ−

n−1(α, 0) for

α ≥ 1

cos2( π
2n )

=: α∗
1.

Proof: For k ≤ 0, we consider the following inequality:

(1 − t)2(1 − t − k)2 dα∗
t,k

dt
= 2(1 − t)2 − 8k(1 − t) + 6k2 − 2tk2 − k3

> 2(1 − t)2 − 8k(1 − t) + 2k2(1 − t) − k3 > 0.
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FIG. 7. (Color online) The ratio curves for the second and least eigencurve with N = 8.

Thus,
dα∗

t,k

dt
> 0, whenever λ = −4 + k, k ≤ 0. Upon using Proposition 3.1, we conclude that for

1 < m ≤ n − 1, the portion of the graphs of λ−
m(α, 0) lying below the line λ = −4 do not intersect

each other. Moreover, let k = 0, t = cos( (n−1)π
n ) in α∗

t,k , we have

α∗
1 := 1

cos2( π
2n )

Thus, λN (α, 0) is given as asserted.
We are now in a position to state one of our main results, which are to identify the

“optimal” wavelet constant. To this end, we begin with letting f (α) := λN (α, 0)

λ2(α, 0)
and g(α)

:= λN (α, 0) − λ2(α, 0)

λN (α, 0) + λ2(α, 0)
for the wavelet parameter α.

FIG. 8. Two typical synchronization intervals for coupled logistic map with μ = 3.65 and 3.9 are shown. Solid (bold) lines
are synchronization intervals obtained by computer simulation. Gray lines are synchronization intervals predicted by our
theorems. All are scaled for clear visualization.
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Theorem 3.2: Let N = 2n be any even number and N ≥ 4 where N × N , (N = 2n, n ∈ N) is
the dimension of the matrix C(α, 0). The best choice of coupling strength for local synchronization
of (1.1) via wavelet transform method exists at αmin ∈ [

0, 1
sin2( π

2n )

] = [0, α1]. In the sense that such

αmin make a coupling strength to give the fastest convergence rate of initial values toward the
synchronous manifold. Moreover, its corresponding synchronization interval NN , f (αmin) can be
explicitly obtained as follows:

NN , f (αmin) =
(

1 − e−Lmax

λ2(αmin)
,

1 + e−Lmax

λN (αmin)

)
.

Proof: To prove the theorem, it is sufficient to show that there exists αmin ∈ [
0, 1

sin2( π
2n )

]
such

that g(α) attains its minimum. By Proposition 2.1, we may show that α = αmin attains the minimum
of f (α). From Theorems 1.5 and 3.1, we have the second and the least eigencurves are

λ2(α, 0) =
⎧⎨⎩λ+

1 (α, 0), 0 ≤ α ≤ α1 := 1

sin2( π
2n )

;

λ+
n (α, 0) = −2, α ∈ [α1,∞ ).

λN (α, 0) = λ−
1 (α, 0) for α ≥ α1.

Obviously, the minimum of f (α) on [α1,∞) occurs at α = α1. Thus, the assertion of the theorem
now follows.

Remark 3.1: Since the behavior of g(α) on [0, α1] is complicated, we are unable to identify the
minimum point of g on [0, α1]. In Fig. 6, we pick α = α1 as our choice of the wavelet constant. And,
its corresponding synchronization interval is NN , f (α1).

The ratio curves for the second and least eigencurve with N = 8 are shown in Fig. 7. Finally,
it should be noted that the theoretically predicted synchronization intervals are in agreement with
numerically produced synchronization intervals, see Figs. 8(a)–8(b) for N = 8.

IV. CONCLUSIONS

By adjusting the wavelet constant of the wavelet transform method, its was reported in Ref. 12
that the method can greatly increase the applicable ranges of coupling strengths, the parameters of
the individual chaotic map, and the number of nodes for local synchronization of CMLs. The theory
of wavelet transform method on chaotic synchronization of coupled map lattices was analytically
studied in this paper. In particular, we are able to find explicitly the optimal or near optimal wavelet
constant. Consequently, rigorous proof for the work done in Ref. 12 is established in this paper.
We conclude our paper for suggesting some possible future work. It is of interest to develop
new techniques to find the explicit eigenvalue formula for C(α, β), where β �= 0 or 1. Note that
our techniques given in Ref. 11 fail to carry over to Robin boundary conditions. It is also very
worthwhile to pursue the cases when the coupling matrix A of the CMLs or coupled chaotic systems
is nonsymmetric.
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