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A Complement-Based Fast Algorithm to Generate 
Universal Test Sets for Multi-Output Functions 

Beyin Chen and Chung Len Lee, Senior Member, IEEE 

Abstmd-In this paper, a fast universal test set (UTS) gener- 
ation algorithm for multi-output functions is presented. 

The algorithm first generates the UTS for single-output func- 
tions by directly Shannon-expanding and complementing the 
function. This significantly reduces the time complexity and 
the usage of temporary memory. Also, it stores tests in test 
cubes to save the size of memory for test storing. Tw+six 
orders of magnitude in computation efficiency improvement and 
1-1800 fold for memory saving over the conventional method are 
achieved. It then merges the generated test cubes for each single- 
output function into a set of mutually disjoint test cubes to be the 
UTS for a multi-output function by employing a new compaction 
technique. The size of UTS thus obtained is 1-20 times smaller 
than that of UTS without compaction. 

I. INTRODUCTION 
ASED ON THE unate function theory [l], a universal B test set (UTS) for combinational circuits was proposed 

by Akers [2] and Reddy [3]. It was shown that the UTS can 
be generated from the functional description and can detect 
all single and multiple stuck-at faults of the circuit implemen- 
tation which satisfies “unate gate network” [3] property for 
the function. Also, the UTS can be paired with a universal 
initialization set to detect every detectable stuck-open fault in 
a “restricted CMOS circuit” [4]. However, the procedure to 
generate the UTS involves a process to enumerate the truth 
table of the function and it has an exponential complexity. 
Also, even the computation can be speeded up, the size of UTS 
grows exponentially with the number of binate input variables. 
This makes the storage of test patterns a problem. Moreover, 
for a multi-output function, the compaction of compatible 
tests among the UTSs of the single-output functions is also 
a problem which has never been considered by researchers. 

This paper first presents a fast algorithm, FUTS, to generate 
UTS for single-output functions. The algorithm adopts a 
method to find UTS by Shannon-xpanding and comple- 
menting the function, hence completely eliminates the truth 
table enumeration process. Also, the method treats the test 
information in terms of “test cubes” instead of “test patterns,” 
and this solves the storage problem for the UTS. Experimental 
results show that the algorithm achieves improvements of 
102-106 times in the computation efficiency and 1-1800 times 
in the storage saving of test sets over the conventional method. 
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Then this paper presents a compaction technique to merge the 
generated test cubes into a set of mutually disjoint test cubes 
to be the UTS for multi-output functions. Experimental results 
show that the size of UTS generated with the technique is 
1-20 times smaller than that of UTS without compaction. 

11. DENOTATIONS 
In this section, some terms and denotations which are used 

in this paper are first given. 
A logic function F has n input variables X ~ , X Z ,  . . . , X, and 

is represented in the sum-of-products form: F = PI + P2 + 
. . . + 9, where Pj is represented by a cube cj 151. 

The set of IC cubes defined as above is said to be a 
cover of F ,  denoted as cover(F). For the cover(F), it can be 
minimized to be prime and irredundant [ 5 ] ,  which is denoted 
as mini-cover(F). 

The expanded truth table of a logic function is the truth 
table of the input literals of the input variables. In the expanded 
truth table, an input vertex X dominates the input vertex Y if 
and only if the entry of X is 1 where the corresponding entry 
of Y is 1. For example, if X = 1101 and Y = 1001 then X 
dominates Y .  A minimal true vertex of a logic function is 
the input vertex that does not dominate any other true vertex 
except itself. A maximal false vertex of a logic function is 
the input vertex that is not dominated by any other false vertex 
except itself. The UTS of a logic function F is the union of 
the minimal true vertex set and the maximal false vertex set 
of the expanded truth table of F [2], [3]. It is denoted as: 

An example as shown in Fig. 1 is to demonstrate the above, 
where the sum-of-products form, cubical representations, and 
the expanded truth table of F are shown in Fig. 1 (a), (b), and 
(c) respectively. The Vmint(F) and Vm,,f(F) obtained, which 
constitute the UTS of F ,  are shown in Fig. 1 (d). 

In the Shannon expansion of the function F ,  i.e., F = 
zi.F,, + C;.Fq, F,, and F c  are the one-cofactor and the 
zero-cofactor of F with respect to the splitting variable zi 
respectively. A cofactor is strict-unate if it is independent of 
all the binate input variables of F. A cofactor is tautology 
or nil if it is always logic true or false respectively for all its 
input combinations. It is seen that tautology and nil are two 
special cases of strict-unate cofactors. 

The UTS generated by the method of this paper is repre- 
sented by test-cubes instead of the conventional test patterns. 
A test-cube is a subset of UTS represented by a cube. A 
test-cube is said to be true with respect to an output F if it 
makes the output logic 1. It is false if it makes the output logic 

UTS(F) = Vmint(F) + Vmaxf(F). 
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- - --- - - -- 
F = a b c d + b c d + a c d + a b c d  

(a) 

cover(F) = {[OlOl], [-000], [0-lo], [OOll]). 
mini-cover(F) = ([OlOl], [-OOO], [0-10], [OOI-1). 

(b) 

1 1 0 0 1 0 1  
1 1  0 0 1 1 0  

(C) 

(d) 

Vmint (F) = ([abcd] : [lOOO], [OOlO], [OllO], [OlOI], [OOll]). 

Vmax,(F) = ([abcd] : [OlOO], [lolo], [IllO], [OOOI]. [IIOl], [1011], [Olll]). 

Fig. 1. An example to demonstrate the conventional method to generate 
the universal test set. (a) Sum-of-products form of function F .  (b) Cubical 
representation of F .  (c) Expanded truth table of F.  (d) The minimal true 
vertex set and maximal false vertex set of F. 

! 
B 5 

0. The test-cover of F, denoted as test-cover(F), contains 
all the true and false test-cubes of F, and is the UTS(F). 
For example, the UTS(F) in Fig. 1 contains 5 true tests and 
7 false tests, which can be represented by 4 true test-cubes 
= {[1000], [Ool-1, [OllO], [OlOl]} and 6 false test-cubes = 
{[OlOO], [101-1, [1110], [OOOl], [1101], [Olll]}. Note that in 
the above, test-cube (001-) represents test patterns (0010) and 
(001 1). 

111. A FAST ALGORITHM TO GENERATE 
UTS FOR SINGLE-OUTPUT FUNCTIONS 

To present the algorithm FUTS, a theorem and some 
propositions and lemmas are first presented. 

Proposition 1: For an input variable x ,  of function F ,  if 
it is positively (negatively) unate for F ,  then it is negatively 
(positively) unate for F , which is the cEmplement of F .  I f x ,  
is binate for F ,  then it is still binate for F .  

Applying Proposition 1 to the definition of V,,f(F) and 
Vmint (F) ,  the following proposition holds. 

Proposition 2: For afunction F ,  its maximal false veEex set 
is equal to the minimal true vertex set of its complement F ,  i.e., 

U T S ( F )  = x ,[UTS(Fzz)]  + K[UTS(Fq)] ,  
where x ,  is a binate input variable of F .  

Proof: For two row vectors X and Y in the expanded 
truth table of F ,  if there exists a binate input variable for 

vmaxf(F) = Vmint(F). 
Theorem 1: 

which the values of X and Y are different, then X and Y 
never dominate each other. So, to find UTS(F), we can divide 
the expanded truth table into two for xi to be 0 and 1 and then 
find their UTS’s respectively. Based on this and the definition 

0 
With Theorem 1, a binate function F can be recursively 

expanded into two cofactor functions, and this recursion can 
be continued until all the cofactor functions are strict-unate. 
The UTS of F can be obtained directly by using Theorem 1 
by combining the UTS’s of the cofactor functions. 

For a cofactor function C which is strict-unate, Lemmas 1, 
2, and 3 can be used to obtain its test-cubes. 

Lemma 1: If C is tautology, then UTS(C) contains a single 
true testnube t and it can be obtained as follows: 
for ( i := 1 to n) 

xi is not split ) then 
ti = 0 if xi is positively unate w.r.t. F ;  
ta = 1 if xi is negatively unute w.r.t. F ;  
ta = - i f x i  is binate w.r.t. F ,  

of Shannon expansion, this theorem holds. 

if ( 

where ti is an entry of the true test-cube t = [t’, . . . , t”]. 
Lemma 2: I f  C is nil, then UTS(C) contains a single false 

testnube f and it can be obtained as follows : 
for ( i : = I  to n) 

i f (  xi is not split ) then 
f a  = 1 if xi is positively unate w.r.t. F ;  
f 2 = 0 i f x i  is negatively unate w.r.t. F ;  
f” = - i fx i  is binate w.r.t. F ,  

where f is an entry of the false test-cube f = [ fl, . . . , f “1. 
Lemma 3: If C is strictanate and-is neither tautology nor 

nil, and mini-cover(C) andmini-cover(C) have IC cubes c1, . . . , c k  

and m cubes bl , . . . , b, respectively, then UTS(C) contains IC true 
testnubes tl , . . . , t k  and m false test-cubes fl , . . . , fm which can 
be obtained as follows : 
for ( j :=I to k ) 
for ( i := I to n ) 

xi is not split ) then 
t’ = e; ifcf = 1 or 0; 
t; = 0 if.; = 2 and x, is positively unate w.r.t. F ;  
tf = I $2, = 2 and x, is negatively unate w.r.t. F ;  
tf = - i f c j  = 2 and x, is binate w.r.t. F ,  

where tj is an entry of the true test-cube tj = [tj, . . . , t:]; and 
for (j := I torn) 
for (i := I to n )  

x, is not split) then 
f l  = bf ? 
f; = 1 i f b j  = 2 and xi is positively unate w.r.t. F ;  
fj = 0 if bj = 2 and x, is negatively unate w.r.t. F ;  

i f (  . .  

? 

if ( 
i f b ;  = I or 0; 

f j = -  l f b ;  . = 2 and xi is binate w.r.t. F ,  
where fj is an entry of the false test-cube fj = [fi,. . ‘, f;]. 

The proofs of Lemmas 1,2,  and 3 can be done by applying 
Propositions 1 and 2 and Theorem 1. 

For the example function of Fig. 1, the Shannon expansion 
process for F to find its test-cubes can be represented by 
a binary tree as shown in Fig. 2(a), where T and N are 
cofactors which are tautology and nil respectively. After 
applying Lemmas 1, 2, and 3 to the CO factors and merging 
the test-cubes by setting the splitting variables to either ‘0’ 
or ‘1’ according to the path values in the binary tree, the 

. . .. ... .. . ... - . ~ ~ . ~ .  
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i 
test-cover( F) 1; 
001 - 
101 - 
0110 1 
1110 0 
0111 0 

(b) 

Fig. 2. The demonstration of the algorithm FUTS using the example of 
Fig. 1. (a) Shannon expansion process for F to find its test-cubes. (b) The 
test-cover of F which constitutes the UTS of F. 

test-cubes of F are generated and shown in Fig. 2(b) which 
is the test-cover of F. 

As demonstrated with this example, the expanded truth table 
enumeration and the comparing operations are completely 
eliminated. Also, for the conventional method, 12 tests as 
shown in Fig. 1 were generated, while here, only 10 test-cubes 
are generated. In general, the size of memory for test storing 
is largely reduced by using this method. 

Finally, it is specially mentioned that to generate the 
test-cover of an output function using FUTS, the intersection 
of any two test-cubes in the test-cover is empty. 

The details of the algorithm FUTS are presented as follows: 
Algorithm FUTS(F); 
INPUT: F /* a set of cubes. */ 
OUTPUT: test-cubes /* a set of test-cubes that 

constitutes the UTS of F. */ 
{ 
Make F a prime cover. 
Scan the prime cover, check for every input variable 

to determine whether it is positively, 
negatively unate, or binate. 

testrubes := UTS-GEN (F); 

Procedure UTS-GEN(cofactor); 

if (cofactor == nil) then 
/* Lemma 2 is applied. */ 

else if (there is a row of all ’- Is in cover(cofactor)) 
/* Lemma 1 is applied. */ 

test-cubes := TAUTOLOGY-CASE( ); 
else if (cofactor is strict-unate) 
/* Lemma 3 is applied. */ 

else 
/* Theorem 1 is applied. */ 

/* In general, a most binate variable of cover(cofactor) 

1 

{ 

test-cubes := NIL-CASE( ); 

test-cubes := UNATE-CASE(cofactor); 

xj := SPLIT-SELECT(cofactor); 

is selected. */ 

one-cofactor := ONE-COF(cofactor, xj); 
zero-cofactor := ZERO-COF(cofactor, xj); 

/* Compute the one-cofactor and the zero-cofactor 
w.r.t. xj respectively. */ 

test-cubes := MERGE (UTS-GEN(one-cofactor), 
UTS -GEN( zero-cofactor) , x j ) ; 

UTS-GEN(one-cofactor) is set to 1. */ 

UTS-GEN(zero-cofactor) is set to 0. */ 

/* The variable xj in test-cubes generated from 

/* The variable xj in test-cubes generated from 

return (test-cubes); 

Procedure UNATE-CASE(cofactor); 
1 

mini-cover := UNATESIMPLIFY (cofactor); 
Generate k true test-cubes corresponding to the k cubes 

comp- cover := UNATE-COMPLEMENT (mini- cover); 
Generate m false test-cubes corresponding to the m cubes 

return (the k true test-cubes + the m false test-cubes); 

Note that in the above Procedure UNATE-CASE( ), 
UNATE-SIMPLIFY( ) is to make a unate cover prime and 
irredundant and UNATE-COMPLEMENT( ) is to compute the 
complement of a unate cover. There are published procedures 
[5] which are simple and fast to do the above. In addition, if 
UNATE-COMPLEMENT( ) is used to complement a prime 
and irredundant cover, e.g., mini-cover(C), the returned cover, 
C, is prime and irredundant too. So, comp-cover is prime and 
irredundant and Lemma 3 can be applied. 

in mini-cover; /* Lemma 3 */ 

in comp-cover; /* Lemma 3 */ 

} 

- 

Iv. UTs COMPACTION FOR MULIT-~UTPUT FUNCTIONS 

To generate tests from a multi-output function, all the 
outputs of the circuit of the realized function are assumed to be 
independent of one another and every output circuit satisfies 
the property of “unate gate network” as proposed in [3]. The 
multi-output UTS can be easily obtained by finding the UTS 
for every single-output function by using the UTS generation 
algorithm FUTS and then combining the UTS for every single- 
output function. However, since the test-covers generated for 
the single-output functions have compatible test patterns of 
one another, it needs to compact the tests among test-covers. 
Since the number of patterns of the generated UTS may 
increase exponentially to the number of the function inputs, 
it is impossible to compact them in a reasonable time if the 
conventional compaction method, which can only compact test 
patterns, is used. In the following, some denotations are given 
and then a procedure is proposed to compact tests directly 
from test-cubes. 

For a multi-output function, any of its single-output is 
usually dependent on a subset of primary inputs. The inputs 
that do not belong to an output function are independent 
inputs (or don’t care inputs) with respect to the output 
function and are represented by X (don’t care) in the gener- 
ated test-cubes. For example, consider a function which has 
two outputs F and G. Assume that their test-cubes are as 
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(a) (b) 

Fig. 3. An example to demonstrate the test-cover representation for 
multi-output functions. 

test-cover( F) test-cover( G) 
(a) 

1001 01 
01 11 00 
XXlO 1 x  

test-cover( F) test-cover(G) 

(b) (C) 

Fig. 4 (a) Karnaugh map representation for test-covers of F and G of Fig 
3(b) (b) An optimum compaction performed from the Kamaugh map of (a). 
(c) The cubical representation of the compaction result of (b) 

shown in Fig. 3(a). Since F and G are independent of { a ,  b }  
and c respectively, test-cover(F) and test-cover(G) can be re- 
expressed as shown in Fig. 3(b). The columns correspond to 
inputs a, b in test-cover(F) and input c in test-cover(G) are 
all X’s. Note that the meaning of the symbol ‘-’ is the same 
as mentioned in the previous sections. For example, the false 
test-cube (XX - 1) of F as shown in Fig. 3(b) contains two 
test patterns (XXO1) and (XX11). 

The example of Fig. 3 is used to demonstrate the problem 
to compact tests between two test-covers. Fig. 4(a) shows the 
Kamaugh map representation of the test-covers of F and G 
of Fig. 3(b), where each type of symbols of the entries of the 
maps represents a test. For example, test-cover(F) contains 
three tests, so there are three types of symbols. Also since 
there are two independent inputs, i.e., a and b, for output 
function F ,  there are four choices for a ,  b for the three tests 
respectively. The problem to find the test-cover(F, G) is to 
find a minimal set of input patterns to cover all types of 
symbols in the Karnaugh maps. In this example, there exist 
two optimum solutions for test-cover( F,G), one of which is 
shown in Fig. 4(b) and its cubical representation is shown in 
Fig. 4(c). It is noted that don’t cares ( X ’ s )  are preserved for 
further compaction if there are more outputs. 

Since the test compaction is a problem equivalent to the 
minimum coloring problem, which is NP-complete, in the 
following, two operations for test-cubes are defined and a 
heuristic compaction method is proposed to solve the problem. 

It is the order that the test-covers are to be compacted affects 
the compaction efficiency. A weight: Essentiality(TC) for a 

Fig. 5. The operation rules for test-cube intersection. 

test-cover TC, is first defined to guide the ordering to compact 
the test-covers. 

The number of don’t care inputs of TC 
The number of total inputs Essentiality(TC) = 1 - 

The value of an essentiality is 1 if the test-cover is a function 
of all inputs, and is 0 if the test-cover is independent of all the 
inputs. The larger of the essentiality of the test-cover is, the 
earlier of the test-cover should be selected to be compacted. 

A procedure, TEPACT, is developed to compact 
test-covers. TEPACT selects two test-covers at one time, 
according to the weights of the test covers, to do compaction. 
To do compaction, it invokes a cover compaction operation 
to compact every test-cube of a test-cover with the test cubes 
of the other test-cover in a one by one order. The cube 
compaction operation involves two steps: 

Step 1. Perform the intersection operation to obtain a com- 
patible cube of the two cubes. 

Step 2. Delete the compatible cube from the two cubes 
respectively. 

The intersection operation (n) of two cubes is to find their 
compatible cube. The operation rules are summarized in Fig. 5. 
A $ generated during the intersection process for two cubes 
means that the two cubes are not compatible and no compatible 
cube is generated. In the table, it is noted that Xn- is defined 
to be either 0 or 1. 

To do the operation of Step 2, the disjoint sharp operation 
(*) which was defined in [6]  is used. The operation can be 
used to delete the compatible cube of a cube from itself and 
make the resultant cubes mutually disjoint. It may generate 
more than one cubes. For example: (X - -0) * (1000) = 
{(Xl - O),  (X010)). 

The procedure of TEPACT is: 
Procedure TEPACT(test-covers) 
/* INPUT: the test-covers generated by FUTS. OUTPUT : 

Step 1. Compute Essentiality for every test-cover. Determine 
test-cover-H */ 

the order of the test-covers to be compacted according the 
Essentiality value; 

Step 2. Get two test-covers, testrover-F and test-cover-G; 
Step 3. Perform cover compaction : test-cover27 := 

cover-compaction( test-cover-F ,test -cover-G); 
Step 4. If there is testrover uncompacted, then let test-cover-F 

:= test-cover3 and test-cover-G := next test-cover, 
go to Step 3. 

Otherwise, return test-cover-H and exit from this procedure. 
We use the example of Fig. 3 to demonstrate TEPACT. 
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tesl-cover(G) lest-cover(F) 
10 x1 x1 * x x - 1  ox 
01 x1 xo XX10 1x 
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compatible 
lest-cover(F,G) Comments 

0 Initial State. 

01 X1 XO XX10 1X 
xx11 ox 
xxlo lX 0 

1001 01 Resultofthefirsttime 
of cube compaction. 

’Ool Result of the second time 
O1 O0 of cube compaction. 

lest-cover-H = compatible test-cover(F.G) + test-cover(G) + test-cover(F) 

5 ((1001 Ol), (0111 OO), (XX10 IX)) 

(b) 

Fig. 6. The demonstration of the process of TEPACT using the example of 
Fig. 3. (a) Test-cover compaction process. (b) The resultant test-cover after 
the compaction process of (a). 

First, since the essentiality of G is larger, the test-cover(G) 
is selected to compact with the test-cover(F). Initially, an 
empty cover, compatible test-cover(F,G) is created to store 
the compatible cubes of test-covers F and G, as shown in 
the first row of Fig. 6(a). The cube (10x1, X1) is intersected 
with (XX-1, OX) and the resultant cube (1001,Ol) is put into 
compatible test-cover(F,G). (1001,Ol) is then disjoint sharped 
with (10x1, Xl) and (XX - 1, OX) respectively. The results 
are 0 (empty set) and (XX11, OX) respectively. The old cubes 
(10x1, X1) and (XX - 1, OX) are then removed and the new 
cube (XX11, OX) is appended to test-cover(F). This result 
of cube compaction is shown in the second row of Fig. 6(a). 
The same process is repeatedly performed until one of the 
two test-covers is empty. The resultant test-cover-H after this 
compaction process is shown in Fig. 6(b). It is seen that the 
number of tests is reduced from five to three and this is the 
optimum compaction result which is shown in Fig. 4(c). 

With the above, the procedure, MOUTS, to generate the 
UTS for a multi-output function is summarized as follows: 

Procedure MOUTS /* To generate the UTS for a 
multi-output function */ 

Step 1. Extract all the single-output functions from 
the original multi-output function. Find their 
independent input sets respectively. 

function using the UTS generation algorithm FUTS. 

test-covers to obtain the UTS of the multi-output 
function. 

Step 2. Generate the test-cover for every single-output 

Step 3. Perform procedure TEPACT for the generated 

V. EXPERIMENTAL RESULTS 

A.  Results on FUTS 
The above algorithm and the conventional method to find 

UTS have been implemented in C language to run on a 
sun4/SPARC2 workstation. They are denoted as FUTS and 
CUTS respectively and were applied to run on 18 bench- 
mark functions [ 5 ] ,  which are represented as sum-of-products 
forms, to generate UTS. Since these benchmark functions 
are multiple-output functions, for each of them, we randomly 
select and extract an output as a single-output function. Table 

I gives the results obtained for FUTS and CUTS. In the table, 
column 2 is the number of input variables, column 3 is the 
number of binate input variables. Column 4 shows the number 
of test-cubes obtained with FUTS, column 5 shows the size 
of UTS, and column 6, which is obtained by dividing column 
5 by column 4, is the memory saving of using “test-cubes” to 
store the test patterns. Column 7 and column 8 are the CPU 
times spent by FUTS and CUTS to obtain UTS respectively, 
and column 9 is the ratio of improvement of FUTS over CUTS 
obtained by dividing column 8 by column 7. It can be seen that 
lo2-lo6 fold improvement is obtained for these 18 functions. 
It is to be specially mentioned that, for the functions: rckl, 
x6dn, in4, whose input numbers are larger than 30, more than 
230 bytes ( = 1000 Mbytes) of temporary memory are needed 
for CUTS for truth table enumeration! Yet, for FUTS, for the 
largest benchmark function, in4, only 1 s of CPU time was 
spent to obtain its UTS and 4K-byte memory was used to 
store its test-cubes. 

To demonstrate the efficiency of the generated UTS, the 
functions in Table I are synthesized by the multi-level logic 
synthesizer mis11 [7], and then the fault coverages for these 
circuits are simulated for both the generated UTS’s in Table 
I and the same number of randomly generated patterns. The 
simulation results are shown in Table 11. In the table, column 
2 is the number of gates synthesized by misII. Column 3 is 
the number of detectable faults (the number in parenthesis is 
the number of redundant faults.). Column 4 is the number 
of simulated patterns. Column 5 and column 6 show the fault 
coverages obtained by simulating the UTS’s and the randomly 
generated patterns respectively. The fault coverages in both 
the columns are obtained by dividing the number of detected 
faults by the number of detectable faults. We can see that 
the generated UTS’s reach 100% fault coverages for all the 
circuits. But for random patterns, the fault coverages may be 
low to 3%. 
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x7dn 
x9dn 
Ave. 

315 

24 104 182 100.00% 99.04% 
17 82 74 100.00% 30.49% 

100.00% 63.80% 

TABLE I1 
THE FAULT SIMULATION RESULTS FOR THE GENERATED UTST 
IN TABLE I AND THE SAME NUMBER OF RANDOM PATTERNS 

Fault Coverages 
Fun. #gate #fault #pattern UTS I random 

601 (+1)2831 41641 100.OOo/~l 100.00% 
in2 I 271 1381 7321 lOO.OO./,I 78.26% 

Time (sec.) 
1.01 I 

1 A 

Number of Test-cubes 

"test-tubes" of the 18 benchmark functions run by FUTS in Table I. 
Fig. 7. The plots of computation times with respect to the numbers of 

For the algorithm CUTS to find UTS, it is the number of 
the operation of “comparing two vertices to determine whether 
they dominate each other,” which costs the computation time. 
The number of “comparing” operations is approximately pro- 
portional to the square of the number of vertices which need 
to be “compared.” So, for CUTS, the time complexity is 
0 ( 2 n ) - 0 ( 2 2 n )  for an n-input function. Yet, for the algorithm 
FUTS, since no comparing operation is involved, the time 
complexity is approximately linear with respect to the number 
of “test-cubes”. To demonstrate the relationship between CPU 
time spent by FUTS and the number of test-cubes, Fig. 7 is 
plotted for the 18 functions in Table I. It is seen that a linear 
curve is obtained. 

In addition, since the size of UTS grows exponentially 
with the number of binate inputs, the number of “comparing” 

Time (min.) 
80000- 

- # i n = 1 9  
- # i n  = 18 

60000- - # i n  = 17 

40000- 

20000- 

Number of Binate Inputs 

Time (sec.) 

- # i n  = 18 
- # i n  = 17 
- # i n  = 16 

O O  T 10 
0 

Number of Binate inputs 

Fig. 8. The plots of computation times with respect to the numbers of binate 
inputs for the cases : input numbers = 15, 16, 17, 18, and 19 obtained by (a) 
CUTS and (b) FUTS respectively. 

operations for CUTS to generate UTS increases rapidly with 
the number of binate inputs. For FUTS, on the contrary, the 
computation time decreases with the number of binate inputs 
since it Shannon-expands the function with respect to the 
binate input variables. This effectively applies a “divide-and- 
conquer” strategy to solve the problem. To demonstrate this, 
CUTS and FUTS were applied to several functions, which 
were composed of randomly generated but equal numbers of 
product terms, to generate their UTS’s. The computation times 
to generate UTS’s are plotted in terms of the numbers of binate 
inputs in Fig. 8(a) and (b) for CUTS and FUTS respectively. In 
Fig. 8, the numbers of input variables for these functions were 
from 15 to 19 and the numbers of binate inputs were varied 
from 0 to 5, 10, and 15. In Fig. 8(a) and (b), two facts can be 
observed : First, the computation times for CUTS are much 
much larger than that of FUTS, and, second, the computation 
times for CUTS increase exponentially with the numbers of 
binate inputs while for FUTS the computation times decrease 
with the numbers of binate inputs. 

B. Results on MOUTS 
The procedure MOUTS has also been implemented in C 

language to run on a sun4/SPARC2 workstation. It was applied 
to run on the benchmark functions of [ 5 ] .  The results are 
compiled in Table 111. In the table, the numbers of inputs and 
outputs of each function are also listed. For comparison, the 
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Function 
Characteristics 
?ame #in #ou 

TABLE III 
THE COMPARISON OF UTS SIZE AND CPU TIMES FOR TEST GENERATION PROCEDURES WITH AND WITHOUT TEPAD FOR 56 BENCHMARK FUNCTIONS [5] 

Tesl Le@ CPU T i  (Sec.) 
without with reduction with without increase 

TEPACT TEPACT ratio TEPACT TEPACT percent. 
add6 
adr4 
alu 1 
ab2 
ab3 

2: 
bca 
bcb 
bCC 
bcd 
chkn 
CO14 
CPS 
dcl  
dc2 
dist 
dk17 
dk27 
dk48 
exep 
f51m 
wry 
in0 
in1 
in2 
in3 
in4 
in5 
in6 
in7 
ibp 
misg 
mish 
mlp4 
OPa 
radd 
rdtl 
rd53 
rd73 
risc 
root 
sqn 
sqr6 

ti 
tial 

mrn 
xldn 
x2dn 
x6dn 
x7dn 
x9dn 

!5xpl 

vg2 

24 

'3% 
29% 

100% 
25% 
40% 
29% 
43% 

307% 
136% 
436% 
152% 
32% 

100% 
526% 
200% 
67% 
15% 
50% 

100% 
33% 

136% 
50% 

224% 
252% 
149% 
100% 
18% 
35% 
26% 
36% 
1 3% 
69% 
6% 

10% 
10% 
34% 
50% 
3% 

50% 
8 YO 

3 3 '/o 
14% 
50% 
33% 

307% 
29% 
14% 

100% 
16% 
76% 
10% 
49% 
13% 
20% 

' 0.67 

29 
20 
14 
23 
10 
57 
23 
43 
8 

69 
5 
7 
3 

31 
5 
3 

12 
72 
8 

7 
6 

56 
5 

15 
7 
4 

3 

a 

8 
12 
10 
10 
10 
26 
26 
26 
26 
26 
29 
14 
24 
4 
8 
8 

10 
9 

15 
30 
8 

15 
15 
16 
19 
35 
32 
24 
33 
26 
36 
56 
94 
8 

17 
8 

32 
5 
7 
8 
8 
7 
6 

47 
14 
25 

4 
27 
82 
39 
66 
27 

7 

2699 2119 
2163416 2160568 

21844 19248 
3245 2083 
4076 2073 
5131 1941 

126 41 
181 24 

1127 256 
3458 866 
378 256 
230 191 

79 32 

210 50 
969 256 
260 128 
294 64 

218901 208981 
38790 16384 

41 12 
137032 134884 
131408 131111 
115748 114714 

2735322 1555481 
268140 134884 

198 128 

326 128 

137048 134848 

5 
8 
8 
8 

12 
11 
46 
39 
45 
38 

7 
1 

109 
7 
7 
5 

11 
9 

17 
63 
8 

11 

7 10 
19sym 9 1 
Lve. 

378 256 
46 8 

2695 1024 
2407 1024 
360 143 

156320 124529 
410217 32992 
329085 16733 
309750 16698 
153711 18669 
75920 66355 
16384 16384 

4461 53 217639 
68 16 

422 128 
1055 256 
159 65 
44 14 

132 48 
9846 8552 
510 256 

1 56156 20924 

518 128 4.05 
512 512 1.00 0.11 0.10 10% 

3.43 81% 

1.48 
5.75 
2.63 
2.35 
2.52 
1.26 

12.43 
19.67 
18.55 
8.23 
1.14 
1 .oo 
2.05 
4.25 
3.30 
4.12 
2.45 
3.t4 
2.75 
1.15 
1.99 
2.68 
2.68 

10.01 
1.24 
1.27 
1 .oo 
1.13 
1.56 
1.97 
2.64 
3.97 
7.54 
4.40 
3.99 
1.48 
1.20 
2.47 
2.55 
4.20 
3.79 
2.03 
4.59 
1.05 
2.37 
1.02 
3.42 
1.02 
1 .oo 
1.01 
1.76 
1.99 
1.55 

0.09 
0.02 
0.1 

0.07 
0.09 
1.98 
8.05 
3.7 

9.22 
2.77 
2.1 7 
0.04 

17.85 
0.03 
0.05 
0.15 
0.03 
0.02 
0.04 
0.66 
0.03 

1.2 
1.16 
2.81 

1 
0.53 
2.95 
0.59 
0.3 

0.1 7 
1.05 
0.19 
0.1 1 
0.1 1 
0.71 
0.03 
0.34 
0.03 
0.14 
0.04 
0.08 
0.03 
0.04 
6.8 

2.93 
0.65 
0.02 
0.58 
0.58 
0.74 
6.8 

0.68 
0.06 
0.05 

0.07 
0.01 
0.08 
0.05 
0.07 
1.38 
1.98 
1.57 
1.72 
1.10 
1.65 
0.02 
2.85 
0.01 
0.03 
0.13 
0.02 
0.01 
0.03 
0.28 
0.02 
0.37 
0.33 
1.13 
0.50 
0.45 
1.52 
0.47 
0.22 
0.15 
0.62 
0.18 
0.10 
0.10 
0.53 
0.02 
0.33 
0.02 
0.13 
0.03 
0.07 
0.02 
0.03 
1.67 
2.28 
0.57 
0.01 
0.50 
0.33 
0.67 
4.55 
0.60 
0.05 
0.03 67%1 

results run by the procedure which includes TEPACT and not 
TEPACT are listed. The fault coverages for each implemented 
circuit of the function covered by the UTSs generated by the 
procedure for two cases are all 100%. It can be seen that 
the average reduction ratio on test lengths of UTSs generated 
with TEPACT to those generated without TEPACT is 3.4. For 
some functions, the reduction ratio is even as high as 20. The 
increased CPU times to generate the UTS for each function 
with TEPACT is generally small. For these 56 functions, the 
average CPU time increase is 81%. Also, it is seen that due 
to the fast algorithm FUTS, the CPU times are very small for 
each function. 

VI. CONCLUSION 
In this paper, a fast universal test set (UTS) generation for 

multi-output functions is presented. 
First, this paper presents a fast algorithm to generate the 

UTS for single-output functions. The algorithm generates UTS 
from the algebraic representation directly to obtain test-cube 
set instead of enumerating the expanded truth table to obtain 
test pattern set. This significantly reduces the CPU time and 
the requirement of temporary memory and memory storage for 
tests. Experimental results show that the algorithm achieves 
an improvement of lo2-lo6 fold in the CPU time to compute 
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UTS and a saving of 1-1800 fold in memory storage to store [7] R. K. Brayton, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R. - 
UTS over the conventional method. Wang, %IS: A multilevel logic opGization system,” IEEE Trans. 

Computer-Aided Design, vol. CAD-6, pp. 1062-1081, Nov. 1987. Then this paper presents a fast procedure to generate UTS 
for multi-output functions.,It has been shown that the com- 
paction technique used in the procedure achieved a reduction 
of 1-20 times in test lengths for the benchmark functions. For 
the most time-cost function: cps, which has 24 inputs and 109 
outputs, of sun4/SPARC2 CPU time is needed to 
obtain its UTS. From the experimental results, We could Claim 
that the algorithms in this paper make the UTS generation 
practical for multi-output functions. 
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