
370 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 3, MARCH 1994

A Complement-Based Fast Algorithm to Generate
Universal Test Sets for Multi-Output Functions

Beyin Chen and Chung Len Lee, Senior Member, IEEE

Abstmd-In this paper, a fast universal test set (UTS) gener-
ation algorithm for multi-output functions is presented.

The algorithm first generates the UTS for single-output func-
tions by directly Shannon-expanding and complementing the
function. This significantly reduces the time complexity and
the usage of temporary memory. Also, it stores tests in test
cubes to save the size of memory for test storing. Tw+six
orders of magnitude in computation efficiency improvement and
1-1800 fold for memory saving over the conventional method are
achieved. It then merges the generated test cubes for each single-
output function into a set of mutually disjoint test cubes to be the
UTS for a multi-output function by employing a new compaction
technique. The size of UTS thus obtained is 1-20 times smaller
than that of UTS without compaction.

I. INTRODUCTION
ASED ON THE unate function theory [l], a universal B test set (UTS) for combinational circuits was proposed

by Akers [2] and Reddy [3]. It was shown that the UTS can
be generated from the functional description and can detect
all single and multiple stuck-at faults of the circuit implemen-
tation which satisfies “unate gate network” [3] property for
the function. Also, the UTS can be paired with a universal
initialization set to detect every detectable stuck-open fault in
a “restricted CMOS circuit” [4]. However, the procedure to
generate the UTS involves a process to enumerate the truth
table of the function and it has an exponential complexity.
Also, even the computation can be speeded up, the size of UTS
grows exponentially with the number of binate input variables.
This makes the storage of test patterns a problem. Moreover,
for a multi-output function, the compaction of compatible
tests among the UTSs of the single-output functions is also
a problem which has never been considered by researchers.

This paper first presents a fast algorithm, FUTS, to generate
UTS for single-output functions. The algorithm adopts a
method to find UTS by Shannon-xpanding and comple-
menting the function, hence completely eliminates the truth
table enumeration process. Also, the method treats the test
information in terms of “test cubes” instead of “test patterns,”
and this solves the storage problem for the UTS. Experimental
results show that the algorithm achieves improvements of
102-106 times in the computation efficiency and 1-1800 times
in the storage saving of test sets over the conventional method.

Manuscript received February 18, 1993. This work was supported by The
National Science Council, Republic of China, under Grant NSC82-0404-EOO9-
183. This paper was recommended by Associate Editor K.-T. Cheng.

The authors are with the Department of Electronics Engineering & Institute
of Electronics, National Chiao Tung University, Hsinchu, Taiwan, Republic
of China.

IEEE Log Number 9214057.

Then this paper presents a compaction technique to merge the
generated test cubes into a set of mutually disjoint test cubes
to be the UTS for multi-output functions. Experimental results
show that the size of UTS generated with the technique is
1-20 times smaller than that of UTS without compaction.

11. DENOTATIONS
In this section, some terms and denotations which are used

in this paper are first given.
A logic function F has n input variables X ~ , X Z , . . . , X, and

is represented in the sum-of-products form: F = PI + P2 +
. . . + 9, where Pj is represented by a cube cj 151.

The set of IC cubes defined as above is said to be a
cover of F , denoted as cover(F). For the cover(F), it can be
minimized to be prime and irredundant [5] , which is denoted
as mini-cover(F).

The expanded truth table of a logic function is the truth
table of the input literals of the input variables. In the expanded
truth table, an input vertex X dominates the input vertex Y if
and only if the entry of X is 1 where the corresponding entry
of Y is 1. For example, if X = 1101 and Y = 1001 then X
dominates Y . A minimal true vertex of a logic function is
the input vertex that does not dominate any other true vertex
except itself. A maximal false vertex of a logic function is
the input vertex that is not dominated by any other false vertex
except itself. The UTS of a logic function F is the union of
the minimal true vertex set and the maximal false vertex set
of the expanded truth table of F [2], [3]. It is denoted as:

An example as shown in Fig. 1 is to demonstrate the above,
where the sum-of-products form, cubical representations, and
the expanded truth table of F are shown in Fig. 1 (a), (b), and
(c) respectively. The Vmint(F) and Vm,,f(F) obtained, which
constitute the UTS of F , are shown in Fig. 1 (d).

In the Shannon expansion of the function F , i.e., F =
zi.F,, + C;.Fq, F,, and F c are the one-cofactor and the
zero-cofactor of F with respect to the splitting variable zi
respectively. A cofactor is strict-unate if it is independent of
all the binate input variables of F. A cofactor is tautology
or nil if it is always logic true or false respectively for all its
input combinations. It is seen that tautology and nil are two
special cases of strict-unate cofactors.

The UTS generated by the method of this paper is repre-
sented by test-cubes instead of the conventional test patterns.
A test-cube is a subset of UTS represented by a cube. A
test-cube is said to be true with respect to an output F if it
makes the output logic 1. It is false if it makes the output logic

UTS(F) = Vmint(F) + Vmaxf(F).

CHEN AND LEE COMPLIMENT-BASED FAST ALGORITHM 371

- - --- - - --
F = a b c d + b c d + a c d + a b c d

(a)

cover(F) = {[OlOl], [-000], [0-lo], [OOll]).
mini-cover(F) = ([OlOl], [-OOO], [0-10], [OOI-1).

(b)

1 1 0 0 1 0 1
1 1 0 0 1 1 0

(C)

(d)

Vmint (F) = ([abcd] : [lOOO], [OOlO], [OllO], [OlOI], [OOll]).

Vmax,(F) = ([abcd] : [OlOO], [lolo], [IllO], [OOOI]. [IIOl], [1011], [Olll]).

Fig. 1. An example to demonstrate the conventional method to generate
the universal test set. (a) Sum-of-products form of function F . (b) Cubical
representation of F . (c) Expanded truth table of F. (d) The minimal true
vertex set and maximal false vertex set of F.

!
B 5

0. The test-cover of F, denoted as test-cover(F), contains
all the true and false test-cubes of F, and is the UTS(F).
For example, the UTS(F) in Fig. 1 contains 5 true tests and
7 false tests, which can be represented by 4 true test-cubes
= {[1000], [Ool-1, [OllO], [OlOl]} and 6 false test-cubes =
{[OlOO], [101-1, [1110], [OOOl], [1101], [Olll]}. Note that in
the above, test-cube (001-) represents test patterns (0010) and
(001 1).

111. A FAST ALGORITHM TO GENERATE
UTS FOR SINGLE-OUTPUT FUNCTIONS

To present the algorithm FUTS, a theorem and some
propositions and lemmas are first presented.

Proposition 1: For an input variable x , of function F , if
it is positively (negatively) unate for F , then it is negatively
(positively) unate for F , which is the cEmplement of F . I f x ,
is binate for F , then it is still binate for F .

Applying Proposition 1 to the definition of V,,f(F) and
Vmint (F) , the following proposition holds.

Proposition 2: For afunction F , its maximal false veEex set
is equal to the minimal true vertex set of its complement F , i.e.,

U T S (F) = x ,[UTS(Fzz)] + K[UTS(Fq)] ,
where x , is a binate input variable of F .

Proof: For two row vectors X and Y in the expanded
truth table of F , if there exists a binate input variable for

vmaxf(F) = Vmint(F).
Theorem 1:

which the values of X and Y are different, then X and Y
never dominate each other. So, to find UTS(F), we can divide
the expanded truth table into two for xi to be 0 and 1 and then
find their UTS’s respectively. Based on this and the definition

0
With Theorem 1, a binate function F can be recursively

expanded into two cofactor functions, and this recursion can
be continued until all the cofactor functions are strict-unate.
The UTS of F can be obtained directly by using Theorem 1
by combining the UTS’s of the cofactor functions.

For a cofactor function C which is strict-unate, Lemmas 1,
2, and 3 can be used to obtain its test-cubes.

Lemma 1: If C is tautology, then UTS(C) contains a single
true testnube t and it can be obtained as follows:
for (i := 1 to n)

xi is not split) then
ti = 0 if xi is positively unate w.r.t. F ;
ta = 1 if xi is negatively unute w.r.t. F ;
ta = - i f x i is binate w.r.t. F ,

of Shannon expansion, this theorem holds.

if (

where ti is an entry of the true test-cube t = [t’, . . . , t”].
Lemma 2: I f C is nil, then UTS(C) contains a single false

testnube f and it can be obtained as follows :
for (i : = I to n)

i f (xi is not split) then
f a = 1 if xi is positively unate w.r.t. F ;
f 2 = 0 i f x i is negatively unate w.r.t. F ;
f” = - i fx i is binate w.r.t. F ,

where f is an entry of the false test-cube f = [fl, . . . , f “1.
Lemma 3: If C is strictanate and-is neither tautology nor

nil, and mini-cover(C) andmini-cover(C) have IC cubes c1, . . . , c k

and m cubes bl , . . . , b, respectively, then UTS(C) contains IC true
testnubes tl , . . . , t k and m false test-cubes fl , . . . , fm which can
be obtained as follows :
for (j :=I to k)
for (i := I to n)

xi is not split) then
t’ = e; ifcf = 1 or 0;
t; = 0 if.; = 2 and x, is positively unate w.r.t. F ;
tf = I $2, = 2 and x, is negatively unate w.r.t. F ;
tf = - i f c j = 2 and x, is binate w.r.t. F ,

where tj is an entry of the true test-cube tj = [tj, . . . , t:]; and
for (j := I torn)
for (i := I to n)

x, is not split) then
f l = bf ?
f; = 1 i f b j = 2 and xi is positively unate w.r.t. F ;
fj = 0 if bj = 2 and x, is negatively unate w.r.t. F ;

i f (. .

?

if (
i f b ; = I or 0;

f j = - l f b ; . = 2 and xi is binate w.r.t. F ,
where fj is an entry of the false test-cube fj = [fi,. . ‘, f;].

The proofs of Lemmas 1,2, and 3 can be done by applying
Propositions 1 and 2 and Theorem 1.

For the example function of Fig. 1, the Shannon expansion
process for F to find its test-cubes can be represented by
a binary tree as shown in Fig. 2(a), where T and N are
cofactors which are tautology and nil respectively. After
applying Lemmas 1, 2, and 3 to the CO factors and merging
the test-cubes by setting the splitting variables to either ‘0’
or ‘1’ according to the path values in the binary tree, the

. - . ~ ~ . ~ .

312 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 3, MARCH 1994

i
test-cover(F) 1;
001 -
101 -
0110 1
1110 0
0111 0

(b)

Fig. 2. The demonstration of the algorithm FUTS using the example of
Fig. 1. (a) Shannon expansion process for F to find its test-cubes. (b) The
test-cover of F which constitutes the UTS of F.

test-cubes of F are generated and shown in Fig. 2(b) which
is the test-cover of F.

As demonstrated with this example, the expanded truth table
enumeration and the comparing operations are completely
eliminated. Also, for the conventional method, 12 tests as
shown in Fig. 1 were generated, while here, only 10 test-cubes
are generated. In general, the size of memory for test storing
is largely reduced by using this method.

Finally, it is specially mentioned that to generate the
test-cover of an output function using FUTS, the intersection
of any two test-cubes in the test-cover is empty.

The details of the algorithm FUTS are presented as follows:
Algorithm FUTS(F);
INPUT: F /* a set of cubes. */
OUTPUT: test-cubes /* a set of test-cubes that

constitutes the UTS of F. */
{
Make F a prime cover.
Scan the prime cover, check for every input variable

to determine whether it is positively,
negatively unate, or binate.

testrubes := UTS-GEN (F);

Procedure UTS-GEN(cofactor);

if (cofactor == nil) then
/* Lemma 2 is applied. */

else if (there is a row of all ’- Is in cover(cofactor))
/* Lemma 1 is applied. */

test-cubes := TAUTOLOGY-CASE();
else if (cofactor is strict-unate)
/* Lemma 3 is applied. */

else
/* Theorem 1 is applied. */

/* In general, a most binate variable of cover(cofactor)

1

{

test-cubes := NIL-CASE();

test-cubes := UNATE-CASE(cofactor);

xj := SPLIT-SELECT(cofactor);

is selected. */

one-cofactor := ONE-COF(cofactor, xj);
zero-cofactor := ZERO-COF(cofactor, xj);

/* Compute the one-cofactor and the zero-cofactor
w.r.t. xj respectively. */

test-cubes := MERGE (UTS-GEN(one-cofactor),
UTS -GEN(zero-cofactor) , x j) ;

UTS-GEN(one-cofactor) is set to 1. */

UTS-GEN(zero-cofactor) is set to 0. */

/* The variable xj in test-cubes generated from

/* The variable xj in test-cubes generated from

return (test-cubes);

Procedure UNATE-CASE(cofactor);
1

mini-cover := UNATESIMPLIFY (cofactor);
Generate k true test-cubes corresponding to the k cubes

comp- cover := UNATE-COMPLEMENT (mini- cover);
Generate m false test-cubes corresponding to the m cubes

return (the k true test-cubes + the m false test-cubes);

Note that in the above Procedure UNATE-CASE(),
UNATE-SIMPLIFY() is to make a unate cover prime and
irredundant and UNATE-COMPLEMENT() is to compute the
complement of a unate cover. There are published procedures
[5] which are simple and fast to do the above. In addition, if
UNATE-COMPLEMENT() is used to complement a prime
and irredundant cover, e.g., mini-cover(C), the returned cover,
C, is prime and irredundant too. So, comp-cover is prime and
irredundant and Lemma 3 can be applied.

in mini-cover; /* Lemma 3 */

in comp-cover; /* Lemma 3 */

}

-

Iv. UTs COMPACTION FOR MULIT-~UTPUT FUNCTIONS

To generate tests from a multi-output function, all the
outputs of the circuit of the realized function are assumed to be
independent of one another and every output circuit satisfies
the property of “unate gate network” as proposed in [3]. The
multi-output UTS can be easily obtained by finding the UTS
for every single-output function by using the UTS generation
algorithm FUTS and then combining the UTS for every single-
output function. However, since the test-covers generated for
the single-output functions have compatible test patterns of
one another, it needs to compact the tests among test-covers.
Since the number of patterns of the generated UTS may
increase exponentially to the number of the function inputs,
it is impossible to compact them in a reasonable time if the
conventional compaction method, which can only compact test
patterns, is used. In the following, some denotations are given
and then a procedure is proposed to compact tests directly
from test-cubes.

For a multi-output function, any of its single-output is
usually dependent on a subset of primary inputs. The inputs
that do not belong to an output function are independent
inputs (or don’t care inputs) with respect to the output
function and are represented by X (don’t care) in the gener-
ated test-cubes. For example, consider a function which has
two outputs F and G. Assume that their test-cubes are as

CHEN AND LEE: COMPLIMENT-BASED FAST ALGORITHM 313

(a) (b)

Fig. 3. An example to demonstrate the test-cover representation for
multi-output functions.

test-cover(F) test-cover(G)
(a)

1001 01
01 11 00
XXlO 1 x

test-cover(F) test-cover(G)

(b) (C)

Fig. 4 (a) Karnaugh map representation for test-covers of F and G of Fig
3(b) (b) An optimum compaction performed from the Kamaugh map of (a).
(c) The cubical representation of the compaction result of (b)

shown in Fig. 3(a). Since F and G are independent of { a , b }
and c respectively, test-cover(F) and test-cover(G) can be re-
expressed as shown in Fig. 3(b). The columns correspond to
inputs a, b in test-cover(F) and input c in test-cover(G) are
all X’s. Note that the meaning of the symbol ‘-’ is the same
as mentioned in the previous sections. For example, the false
test-cube (XX - 1) of F as shown in Fig. 3(b) contains two
test patterns (XXO1) and (XX11).

The example of Fig. 3 is used to demonstrate the problem
to compact tests between two test-covers. Fig. 4(a) shows the
Kamaugh map representation of the test-covers of F and G
of Fig. 3(b), where each type of symbols of the entries of the
maps represents a test. For example, test-cover(F) contains
three tests, so there are three types of symbols. Also since
there are two independent inputs, i.e., a and b, for output
function F , there are four choices for a , b for the three tests
respectively. The problem to find the test-cover(F, G) is to
find a minimal set of input patterns to cover all types of
symbols in the Karnaugh maps. In this example, there exist
two optimum solutions for test-cover(F,G), one of which is
shown in Fig. 4(b) and its cubical representation is shown in
Fig. 4(c). It is noted that don’t cares (X ’ s) are preserved for
further compaction if there are more outputs.

Since the test compaction is a problem equivalent to the
minimum coloring problem, which is NP-complete, in the
following, two operations for test-cubes are defined and a
heuristic compaction method is proposed to solve the problem.

It is the order that the test-covers are to be compacted affects
the compaction efficiency. A weight: Essentiality(TC) for a

Fig. 5. The operation rules for test-cube intersection.

test-cover TC, is first defined to guide the ordering to compact
the test-covers.

The number of don’t care inputs of TC
The number of total inputs Essentiality(TC) = 1 -

The value of an essentiality is 1 if the test-cover is a function
of all inputs, and is 0 if the test-cover is independent of all the
inputs. The larger of the essentiality of the test-cover is, the
earlier of the test-cover should be selected to be compacted.

A procedure, TEPACT, is developed to compact
test-covers. TEPACT selects two test-covers at one time,
according to the weights of the test covers, to do compaction.
To do compaction, it invokes a cover compaction operation
to compact every test-cube of a test-cover with the test cubes
of the other test-cover in a one by one order. The cube
compaction operation involves two steps:

Step 1. Perform the intersection operation to obtain a com-
patible cube of the two cubes.

Step 2. Delete the compatible cube from the two cubes
respectively.

The intersection operation (n) of two cubes is to find their
compatible cube. The operation rules are summarized in Fig. 5.
A $ generated during the intersection process for two cubes
means that the two cubes are not compatible and no compatible
cube is generated. In the table, it is noted that Xn- is defined
to be either 0 or 1.

To do the operation of Step 2, the disjoint sharp operation
(*) which was defined in [6] is used. The operation can be
used to delete the compatible cube of a cube from itself and
make the resultant cubes mutually disjoint. It may generate
more than one cubes. For example: (X - -0) * (1000) =
{(Xl - O), (X010)).

The procedure of TEPACT is:
Procedure TEPACT(test-covers)
/* INPUT: the test-covers generated by FUTS. OUTPUT :

Step 1. Compute Essentiality for every test-cover. Determine
test-cover-H */

the order of the test-covers to be compacted according the
Essentiality value;

Step 2. Get two test-covers, testrover-F and test-cover-G;
Step 3. Perform cover compaction : test-cover27 :=

cover-compaction(test-cover-F ,test -cover-G);
Step 4. If there is testrover uncompacted, then let test-cover-F

:= test-cover3 and test-cover-G := next test-cover,
go to Step 3.

Otherwise, return test-cover-H and exit from this procedure.
We use the example of Fig. 3 to demonstrate TEPACT.

-

374

tesl-cover(G) lest-cover(F)
10 x1 x1 * x x - 1 ox
01 x1 xo XX10 1x

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 3, MARCH 1994

compatible
lest-cover(F,G) Comments

0 Initial State.

01 X1 XO XX10 1X
xx11 ox
xxlo lX 0

1001 01 Resultofthefirsttime
of cube compaction.

’Ool Result of the second time
O1 O0 of cube compaction.

lest-cover-H = compatible test-cover(F.G) + test-cover(G) + test-cover(F)

5 ((1001 Ol), (0111 OO), (XX10 IX))

(b)

Fig. 6. The demonstration of the process of TEPACT using the example of
Fig. 3. (a) Test-cover compaction process. (b) The resultant test-cover after
the compaction process of (a).

First, since the essentiality of G is larger, the test-cover(G)
is selected to compact with the test-cover(F). Initially, an
empty cover, compatible test-cover(F,G) is created to store
the compatible cubes of test-covers F and G, as shown in
the first row of Fig. 6(a). The cube (10x1, X1) is intersected
with (XX-1, OX) and the resultant cube (1001,Ol) is put into
compatible test-cover(F,G). (1001,Ol) is then disjoint sharped
with (10x1, Xl) and (XX - 1, OX) respectively. The results
are 0 (empty set) and (XX11, OX) respectively. The old cubes
(10x1, X1) and (XX - 1, OX) are then removed and the new
cube (XX11, OX) is appended to test-cover(F). This result
of cube compaction is shown in the second row of Fig. 6(a).
The same process is repeatedly performed until one of the
two test-covers is empty. The resultant test-cover-H after this
compaction process is shown in Fig. 6(b). It is seen that the
number of tests is reduced from five to three and this is the
optimum compaction result which is shown in Fig. 4(c).

With the above, the procedure, MOUTS, to generate the
UTS for a multi-output function is summarized as follows:

Procedure MOUTS /* To generate the UTS for a
multi-output function */

Step 1. Extract all the single-output functions from
the original multi-output function. Find their
independent input sets respectively.

function using the UTS generation algorithm FUTS.

test-covers to obtain the UTS of the multi-output
function.

Step 2. Generate the test-cover for every single-output

Step 3. Perform procedure TEPACT for the generated

V. EXPERIMENTAL RESULTS

A. Results on FUTS
The above algorithm and the conventional method to find

UTS have been implemented in C language to run on a
sun4/SPARC2 workstation. They are denoted as FUTS and
CUTS respectively and were applied to run on 18 bench-
mark functions [5] , which are represented as sum-of-products
forms, to generate UTS. Since these benchmark functions
are multiple-output functions, for each of them, we randomly
select and extract an output as a single-output function. Table

I gives the results obtained for FUTS and CUTS. In the table,
column 2 is the number of input variables, column 3 is the
number of binate input variables. Column 4 shows the number
of test-cubes obtained with FUTS, column 5 shows the size
of UTS, and column 6, which is obtained by dividing column
5 by column 4, is the memory saving of using “test-cubes” to
store the test patterns. Column 7 and column 8 are the CPU
times spent by FUTS and CUTS to obtain UTS respectively,
and column 9 is the ratio of improvement of FUTS over CUTS
obtained by dividing column 8 by column 7. It can be seen that
lo2-lo6 fold improvement is obtained for these 18 functions.
It is to be specially mentioned that, for the functions: rckl,
x6dn, in4, whose input numbers are larger than 30, more than
230 bytes (= 1000 Mbytes) of temporary memory are needed
for CUTS for truth table enumeration! Yet, for FUTS, for the
largest benchmark function, in4, only 1 s of CPU time was
spent to obtain its UTS and 4K-byte memory was used to
store its test-cubes.

To demonstrate the efficiency of the generated UTS, the
functions in Table I are synthesized by the multi-level logic
synthesizer mis11 [7], and then the fault coverages for these
circuits are simulated for both the generated UTS’s in Table
I and the same number of randomly generated patterns. The
simulation results are shown in Table 11. In the table, column
2 is the number of gates synthesized by misII. Column 3 is
the number of detectable faults (the number in parenthesis is
the number of redundant faults.). Column 4 is the number
of simulated patterns. Column 5 and column 6 show the fault
coverages obtained by simulating the UTS’s and the randomly
generated patterns respectively. The fault coverages in both
the columns are obtained by dividing the number of detected
faults by the number of detectable faults. We can see that
the generated UTS’s reach 100% fault coverages for all the
circuits. But for random patterns, the fault coverages may be
low to 3%.

CHEN AND LEE: COMPLIMENT-BASED FAST ALGORITHM

x7dn
x9dn
Ave.

315

24 104 182 100.00% 99.04%
17 82 74 100.00% 30.49%

100.00% 63.80%

TABLE I1
THE FAULT SIMULATION RESULTS FOR THE GENERATED UTST
IN TABLE I AND THE SAME NUMBER OF RANDOM PATTERNS

Fault Coverages
Fun. #gate #fault #pattern UTS I random

601 (+1)2831 41641 100.OOo/~l 100.00%
in2 I 271 1381 7321 lOO.OO./,I 78.26%

Time (sec.)
1.01 I

1 A

Number of Test-cubes

"test-tubes" of the 18 benchmark functions run by FUTS in Table I.
Fig. 7. The plots of computation times with respect to the numbers of

For the algorithm CUTS to find UTS, it is the number of
the operation of “comparing two vertices to determine whether
they dominate each other,” which costs the computation time.
The number of “comparing” operations is approximately pro-
portional to the square of the number of vertices which need
to be “compared.” So, for CUTS, the time complexity is
0 (2 n) - 0 (2 2 n) for an n-input function. Yet, for the algorithm
FUTS, since no comparing operation is involved, the time
complexity is approximately linear with respect to the number
of “test-cubes”. To demonstrate the relationship between CPU
time spent by FUTS and the number of test-cubes, Fig. 7 is
plotted for the 18 functions in Table I. It is seen that a linear
curve is obtained.

In addition, since the size of UTS grows exponentially
with the number of binate inputs, the number of “comparing”

Time (min.)
80000-

- # i n = 1 9
- # i n = 18

60000- - # i n = 17

40000-

20000-

Number of Binate Inputs

Time (sec.)

- # i n = 18
- # i n = 17
- # i n = 16

O O T 10
0

Number of Binate inputs

Fig. 8. The plots of computation times with respect to the numbers of binate
inputs for the cases : input numbers = 15, 16, 17, 18, and 19 obtained by (a)
CUTS and (b) FUTS respectively.

operations for CUTS to generate UTS increases rapidly with
the number of binate inputs. For FUTS, on the contrary, the
computation time decreases with the number of binate inputs
since it Shannon-expands the function with respect to the
binate input variables. This effectively applies a “divide-and-
conquer” strategy to solve the problem. To demonstrate this,
CUTS and FUTS were applied to several functions, which
were composed of randomly generated but equal numbers of
product terms, to generate their UTS’s. The computation times
to generate UTS’s are plotted in terms of the numbers of binate
inputs in Fig. 8(a) and (b) for CUTS and FUTS respectively. In
Fig. 8, the numbers of input variables for these functions were
from 15 to 19 and the numbers of binate inputs were varied
from 0 to 5, 10, and 15. In Fig. 8(a) and (b), two facts can be
observed : First, the computation times for CUTS are much
much larger than that of FUTS, and, second, the computation
times for CUTS increase exponentially with the numbers of
binate inputs while for FUTS the computation times decrease
with the numbers of binate inputs.

B. Results on MOUTS
The procedure MOUTS has also been implemented in C

language to run on a sun4/SPARC2 workstation. It was applied
to run on the benchmark functions of [5] . The results are
compiled in Table 111. In the table, the numbers of inputs and
outputs of each function are also listed. For comparison, the

316 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTFGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO, 3, MARCH 1994

Function
Characteristics
?ame #in #ou

TABLE III
THE COMPARISON OF UTS SIZE AND CPU TIMES FOR TEST GENERATION PROCEDURES WITH AND WITHOUT TEPAD FOR 56 BENCHMARK FUNCTIONS [5]

Tesl Le@ CPU T i (Sec.)
without with reduction with without increase

TEPACT TEPACT ratio TEPACT TEPACT percent.
add6
adr4
alu 1
ab2
ab3

2:
bca
bcb
bCC
bcd
chkn
CO14
CPS
dcl
dc2
dist
dk17
dk27
dk48
exep
f51m
wry
in0
in1
in2
in3
in4
in5
in6
in7
ibp
misg
mish
mlp4
OPa
radd
rdtl
rd53
rd73
risc
root
sqn
sqr6

ti
tial

mrn
xldn
x2dn
x6dn
x7dn
x9dn

!5xpl

vg2

24

'3%
29%

100%
25%
40%
29%
43%

307%
136%
436%
152%
32%

100%
526%
200%
67%
15%
50%

100%
33%

136%
50%

224%
252%
149%
100%
18%
35%
26%
36%
1 3%
69%
6%

10%
10%
34%
50%
3%

50%
8 YO

3 3 '/o
14%
50%
33%

307%
29%
14%

100%
16%
76%
10%
49%
13%
20%

' 0.67

29
20
14
23
10
57
23
43
8

69
5
7
3

31
5
3

12
72
8

7
6

56
5

15
7
4

3

a

8
12
10
10
10
26
26
26
26
26
29
14
24
4
8
8

10
9

15
30
8

15
15
16
19
35
32
24
33
26
36
56
94
8

17
8

32
5
7
8
8
7
6

47
14
25

4
27
82
39
66
27

7

2699 2119
2163416 2160568

21844 19248
3245 2083
4076 2073
5131 1941

126 41
181 24

1127 256
3458 866
378 256
230 191

79 32

210 50
969 256
260 128
294 64

218901 208981
38790 16384

41 12
137032 134884
131408 131111
115748 114714

2735322 1555481
268140 134884

198 128

326 128

137048 134848

5
8
8
8

12
11
46
39
45
38

7
1

109
7
7
5

11
9

17
63
8

11

7 10
19sym 9 1
Lve.

378 256
46 8

2695 1024
2407 1024
360 143

156320 124529
410217 32992
329085 16733
309750 16698
153711 18669
75920 66355
16384 16384

4461 53 217639
68 16

422 128
1055 256
159 65
44 14

132 48
9846 8552
510 256

1 56156 20924

518 128 4.05
512 512 1.00 0.11 0.10 10%

3.43 81%

1.48
5.75
2.63
2.35
2.52
1.26

12.43
19.67
18.55
8.23
1.14
1 .oo
2.05
4.25
3.30
4.12
2.45
3.t4
2.75
1.15
1.99
2.68
2.68

10.01
1.24
1.27
1 .oo
1.13
1.56
1.97
2.64
3.97
7.54
4.40
3.99
1.48
1.20
2.47
2.55
4.20
3.79
2.03
4.59
1.05
2.37
1.02
3.42
1.02
1 .oo
1.01
1.76
1.99
1.55

0.09
0.02
0.1

0.07
0.09
1.98
8.05
3.7

9.22
2.77
2.1 7
0.04

17.85
0.03
0.05
0.15
0.03
0.02
0.04
0.66
0.03

1.2
1.16
2.81

1
0.53
2.95
0.59
0.3

0.1 7
1.05
0.19
0.1 1
0.1 1
0.71
0.03
0.34
0.03
0.14
0.04
0.08
0.03
0.04
6.8

2.93
0.65
0.02
0.58
0.58
0.74
6.8

0.68
0.06
0.05

0.07
0.01
0.08
0.05
0.07
1.38
1.98
1.57
1.72
1.10
1.65
0.02
2.85
0.01
0.03
0.13
0.02
0.01
0.03
0.28
0.02
0.37
0.33
1.13
0.50
0.45
1.52
0.47
0.22
0.15
0.62
0.18
0.10
0.10
0.53
0.02
0.33
0.02
0.13
0.03
0.07
0.02
0.03
1.67
2.28
0.57
0.01
0.50
0.33
0.67
4.55
0.60
0.05
0.03 67%1

results run by the procedure which includes TEPACT and not
TEPACT are listed. The fault coverages for each implemented
circuit of the function covered by the UTSs generated by the
procedure for two cases are all 100%. It can be seen that
the average reduction ratio on test lengths of UTSs generated
with TEPACT to those generated without TEPACT is 3.4. For
some functions, the reduction ratio is even as high as 20. The
increased CPU times to generate the UTS for each function
with TEPACT is generally small. For these 56 functions, the
average CPU time increase is 81%. Also, it is seen that due
to the fast algorithm FUTS, the CPU times are very small for
each function.

VI. CONCLUSION
In this paper, a fast universal test set (UTS) generation for

multi-output functions is presented.
First, this paper presents a fast algorithm to generate the

UTS for single-output functions. The algorithm generates UTS
from the algebraic representation directly to obtain test-cube
set instead of enumerating the expanded truth table to obtain
test pattern set. This significantly reduces the CPU time and
the requirement of temporary memory and memory storage for
tests. Experimental results show that the algorithm achieves
an improvement of lo2-lo6 fold in the CPU time to compute

CHEN AND LEE COMPLIMENI-BASED FAST ALGORITHM 311

UTS and a saving of 1-1800 fold in memory storage to store [7] R. K. Brayton, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R. -
UTS over the conventional method. Wang, %IS: A multilevel logic opGization system,” IEEE Trans.

Computer-Aided Design, vol. CAD-6, pp. 1062-1081, Nov. 1987. Then this paper presents a fast procedure to generate UTS
for multi-output functions.,It has been shown that the com-
paction technique used in the procedure achieved a reduction
of 1-20 times in test lengths for the benchmark functions. For
the most time-cost function: cps, which has 24 inputs and 109
outputs, of sun4/SPARC2 CPU time is needed to
obtain its UTS. From the experimental results, We could Claim
that the algorithms in this paper make the UTS generation
practical for multi-output functions.

18 Beyin Chen received the B. S. degree in electronics engineering in 1987
from the National Chiao Tung University, Taiwan, Republic of Chna, where
presently she is working towards the Ph. D. degree.

Her research interests include VLSI testing and logic verification.

REFERENCES

[11 R. McNaughton, “Unate truth functions,” IRE Trans. Electron. Compur.,

[2] S. B. Akers, “Universal test sets for logic networks,” IEEE Trans.
Compurers, vol. C-22, pp. 835-839, Sept. 1973.

[3] S. M. Reddy, “Complete test sets for logic functions,’’ IEEE Trans.
Compurers, vol. C-22, pp. 1016-1020, Nov. 1973.

[4] G. Gupta and N. K. h a , “A universal test set for CMOS circuits,” IEEE
Trans. Computer-Aided Design, vol. CAD-7, pp. 590-597, May 1988.

[5] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Hing-
ham, MA: Kluwer Academic, 1984.

[6] S. J. Hong, R. G. Cain, and D. L. Ostapko, ‘‘MINI: A heuristic approach
for logic minimization,” ISM J . Res. Develop., vol. 18, pp. 443-458,
Sept. 1974.

vol. EC-10, pp. 1-6, Mw. 1961. Chung Len Lee (S’7O-M’75SM’92) received the B. S. degree from National
Taiwan University, Taiwan, Republic of China, and the M. S. and Ph. D.
degrees from Camegie-Mellon University, Pittsburgh, PA, all in electrical
engineering, in 1968, 1971, and 1975, respectively.

He joined the Department of Electronics Engineering, National Chiao Tung
University in 1975, where presently he is a Professor. His teaching and
research have beem in the areas of integrated circuits and testing. He has
supervised more than 90 M. S. and Ph. D. students to complete their thesis
and has published more than 140 papers in technical journals and conferences
in the above areas.

Presently, Dr. Lee is a member of the editorial board of Journul of
Electronic Testing, Theory and Application (Kluwer) and the IEEE Asian Test
Technology Committee.

