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In an organization, knowledge is the most important resource in the creation of core competitive advantages.
It is circulated and accumulated by knowledge flows (KFs) in the organization to support workers' task needs.
Because workers accumulate knowledge of different domains, they may cooperate and participate in several
task-based groups to satisfy their needs. In this paper, we propose algorithms that integrate information
retrieval and data mining techniques to mine and construct group-based KFs (GKFs) for task-based groups. A
GKF is expressed as a directed knowledge graph which represents the knowledge referencing behavior, or
knowledge flow, of a group of workers with similar task needs. Task-related knowledge topics and their
relationships (flows) can be identified from the knowledge graph so as to fulfill workers' task needs and
promote knowledge sharing for collaboration of group members. Moreover, the frequent knowledge
referencing path can be identified from the knowledge graph to indicate the frequent knowledge flow of the
workers. To demonstrate the efficacy of the proposed methods, we implement a prototype of the GKF mining
system. Our GKFminingmethods can enhance organizational learning and facilitate knowledgemanagement,
sharing, and reuse in an environment where collaboration and teamwork are essential.
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1. Introduction

In an organization, knowledge is themost important resource used
to create core competitive advantages. Generally, knowledge and
expertise in an organization are codified in textual documents, e.g.,
papers, manuals and reports, and preserved in a knowledge database.
Large amounts of such codified knowledge are circulated and
accumulated in an organization to support knowledge workers
engaged in diverse tasks and activities. To preserve, share and reuse
these valuable assets, organizations need to adopt appropriate
knowledge management strategies to support knowledge workers
intelligently [26,28]. Knowledge management, which is widely
utilized in organizations, is important for preserving and sharing
knowledge efficiently [14,36].

Knowledge management systems (KMS) facilitate the preserva-
tion, reuse and sharing of knowledge, and also support collaboration
among workers. Based on a task's specifications and the process-
context of the task, the KnowMore system [1] provides context-aware
knowledge retrieval and delivery functions to support the procedural
activities of workers. The task-based K-support system [23,24,38]
provides knowledge support adaptively to meet a worker's dynamic
information needs by analyzing his/her access behavior. Moreover,
knowledge workers may cooperate with each other to accomplish
their tasks. Task knowledge can be transmitted, shared and
accumulated from one team member/process to another. Therefore,
working knowledge flows between workers in an organization, while
process knowledge flows between various tasks [39,41]. Zhuge [39]
proposed a management mechanism for knowledge sharing, and
integrated the knowledge flow with the workflow to assist workers.
Furthermore, knowledge flows (KFs) can be used to represent the
long-term evolution of workers' information needs [22]. Based on
those needs, the knowledge flow-based document recommendation
method proactively delivers task-relevant topics and documents to
the workers.

To work more efficiently, workers conducting similar (relevant)
tasks or cooperative tasks generally have similar task-related
information needs, and can form a group to facilitate knowledge
reuse, cooperation and sharing. A group of workers can be identified
explicitly by specifying which tasks are similar or cooperative tasks so
that the knowledge workers conducting those tasks can form a group.
Alternatively, a group of workers can be identified implicitly based on
their referencing behavior as proposed in this work. Under this
approach, it is assumed that workers with similar knowledge flows
work on similar or cooperative tasks, and thus have similar task-
related information needs. Workers in the same group may not have
exactly the same knowledge flows, but they may adopt similar
referencing behavior when performing tasks. Common or frequently
referenced task-related knowledge items in group members' knowl-
edge flows represent the core knowledge that the workers require to
perform their tasks. Since such knowledge is implicit in the
knowledge flows of a group of workers, it cannot be represented
solely by an individual's personal knowledge flow. To facilitate
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knowledge reuse, cooperation and sharing, discovering such com-
mon/frequently accessed knowledge is important for workers who
perform similar tasks and have similar referencing behavior patterns.
Accordingly, we propose group-based knowledge flow mining
algorithms that model a group's frequent referencing behavior by
identifying frequent topics of interest, major referencing behavior
patterns, and the long-term evolution of the group's information
needs.

Because the information needs of workers or groups may change
over time, it is difficult to model their knowledge referencing
behavior. Obviously, recognizing those needs, delivering the required
task-related knowledge, and facilitating knowledge sharing/reuse are
important issues that must be addressed in a knowledge intensive
organization. However, to the best of our knowledge, there is no
appropriate approach for analyzing and constructing KFs from the
perspective of a group's information needs; and very little research
effort has been expended on KF mining for task-based groups.

To address the above research gaps, we propose algorithms that
integrate information retrieval and datamining techniques for mining
and constructing the KFs of groups. In our previous work [22], we
presented a KF mining approach that identifies each knowledge
worker's KF. Here, we extend that approach and focus on discovering
group-based knowledge flows (GKFs). From the group-based knowl-
edge flow, workers can discover the knowledge frequently accessed
by group members. They can also share their own knowledge with
others to facilitate knowledge reuse, cooperation and sharing. From
the perspective of a task's execution, a group-based knowledge flow
will be an important knowledge asset when conducting a task similar
or relevant to the performance of those tasks from which the group-
based knowledge flow was derived. For example, a group-based
knowledge flow derived from the knowledge flows of several
researchers working on Social Network Analysis (SNA) related tasks
would be helpful to a new researcher who has just started working on
an SNA-related research task.

Specifically, we discover a group's KF from the KFs of workers who
exhibit similar knowledge referencing behavior patterns. First, based
on the workers' logs, we analyze each worker's referencing behavior
when acquiring task-related knowledge, and then construct his/her
KF as described in [22]. We then use a clustering method to identify a
group of workers with similar task-related information needs based
on the workers' KF similarities. Workers in the same group generally
need similar codified knowledge to perform their tasks. In addition,
workers in the same group may adopt different behavior when
referencing task-related knowledge. Therefore, we propose GKF
mining algorithms to discover the referencing behavior patterns of a
group of workers. Second, we apply the concepts of graph theory to
visualize the GKF as a knowledge graph in which a vertex and an edge
indicate, respectively, a topic domain and a direct flow relation
between two topic domains. Task-related knowledge topics and their
relationships (flows) can be identified from the knowledge graph to
fulfill workers' task needs when they reference task-relevant
knowledge.

Frequent knowledge referencing paths (patterns) can also be
identified based on the edgeweights in the graph. The paths represent
the workers' frequent knowledge referencing behavior and important
knowledge flows in the group. Finally, to demonstrate the efficacy of
the proposed method, we implement a prototype system for mining
the GKF of a group of workers. The system provides useful functions
that allow users to simplify the KF mining process and visualize KFs
graphically.

The remainder of this paper is organized as follows. Section 2
provides a brief overview of related works. In Sections 3 and 4, we
introduce our proposed algorithms for mining a group knowledge
flow (GKF), which is then used to construct a knowledge graph based
on the workers' referencing behavior. Section 5 describes a prototype
system that we implement based on the proposed algorithms. Then,
in Section 6, we summarize our conclusions and consider future
research directions.

2. Background and related work

In this section, we consider the related work of our research,
including the concepts of knowledge flow, information retrieval and
task-based knowledge support, document clustering and process
mining.

2.1. Knowledge flow

Knowledge flows among people and processes to facilitate
knowledge sharing and reuse. The concept of knowledge flow has
been applied in various domains, e.g., scientific research, communities
of practice, teamwork, industry, and organizations [5,21,40]. Scholarly
articles represent the major medium for disseminating knowledge
among scientists to inspire new ideas [40]. A citation implies that
there is a knowledge flow between the citing article and the cited
article. Such citations form a knowledge flow network that enables
knowledge to flow between different scientific projects to promote
interdisciplinary research and scientific development.

A knowledge flow model enhances the effectiveness of teamwork
by accumulating and sharing knowledge among team members to
facilitate peer-to-peer knowledge sharing [39]. To improve the
efficiency of teamwork, Zhuge [41] proposed a pattern-based
approach that combines codification and personalization strategies
in order to design an effective knowledge flow network. Kim et al. [21]
proposed a knowledge flowmodel combined with a process-oriented
approach to capture, store, and transfer knowledge. Knowledge flows
in communities of practice help members share their knowledge and
experience about a specific domain to complete certain tasks [29]. Luo
et al. [25] propose the discovery of textual knowledge flow based on
the semantic link network. A context-based knowledge flow is
proposed to reflect the major characteristics of a knowledge flow
[13]. In an organization, knowledge workers normally have various
information needs over time when performing tasks. Thus, a
knowledge flow is defined from the perspective of a worker's
information needs to represent the evolution of referencing behavior
and the knowledge accumulated for a specific task [22].

2.2. Information retrieval and task-based knowledge support

Information retrieval (IR) facilitates access to specific items of
information [7]. The vector space model [30] is typically used to
represent documents as vectors of index terms, where the weights of
the terms are measured by the tf-idf approach; tf denotes the
occurrence frequency of a particular term in the document, while idf
denotes the term's inverse document frequency. Terms with higher tf-
idf weights are used as discriminating terms to filter out common
terms. The weight of a term i in a document j, denoted by wi,j, is
expressed as follows:

wi;j = tfi;j × idfi = tfi;j × log2
N
n

+ 1
� �

; ð1Þ

where tfi,j is the frequency of term i in document j, idfi is measured by
(log2 N/n)+1, N is the total number of documents in the collection,
and n is the number of documents in which term i occurs.

Information retrieval techniques coupled with workflow manage-
ment systems (WfMS) have been used to support proactive delivery
of task-specific knowledge based on the context of tasks within a
process [2]. For example, the KnowMore system [1] provides context-
aware delivery of task-specific knowledge; while the Kabiria system
considers the operational context of task-associated procedures to
help knowledge workers retrieve knowledge-based documents [6].
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Information filtering with a similarity-based approach is often
used to locate knowledge items relevant to the task-at-hand. The
discriminating terms of a task are usually extracted from a knowledge
item/task to form a task profile, which is then used to model a
worker's information needs. Holz et al. [15] proposed a similarity-
based approach that organizes desktop documents and proactively
delivers task-specific information to the user; and Liu et al. [23,24]
presented a K-Support system to provide effective task support in a
task-based work environment.

2.3. Hierarchical document clustering and CLIQUE clustering methods

Document clustering or unsupervised document classification is
used in many applications. Most document clustering methods apply
pre-processing steps to the document set and represent each
document as a vector of index terms. To cluster similar documents,
the similarity between documents is usually measured by the cosine
measure [7,35], which computes the cosine of the angle between the
documents' corresponding feature vectors. Two documents are
considered similar if the cosine similarity value is high. The cosine
similarity of two documents, X and Y, is simcos X;Yð Þ = ⇀X⋅⇀Y

k⇀Xkk⇀Yk, where
⇀X and ⇀Y are the respective feature vectors of X and Y.

Agglomerative hierarchical clustering [18,20] is a popular docu-
ment clustering method. In this work, we use the single-link
clustering method [17] to cluster codified knowledge (documents)
into topic domains. The single-link method computes the similarity
between two clusters, which is equal to the greatest similarity
between any document in one cluster and any document in the other
cluster.

We also apply the CLIQUE clustering method [3,17] to derive
worker groups. CLIQUE starts with the definition of a unit-elementary
rectangular cell in a subspace and uses a bottom-up approach to find
units whose densities exceed a threshold. All the subspaces are sorted
by their coverage and those with less coverage are pruned. Therefore,
a cluster is defined as a maximal set of connected dense units.

2.4. Process mining

In a workflow system, a process mining technique is used to
extract the description of a structural process from a set of real process
executions [33]. It then infers the relations between the tasks/
activities and generates a process model from event-based data (log
data) automatically [4,32,34]. The relations between processes (tasks/
activities) are defined as causal relations and parallel relations [31],
and are modeled by a directed graph [4,12] or an instance graph [34].
Because a workflow log contains information about workflow
processes, a loop may occur in a process. Most process mining
algorithms assume that loops do not exist [12,34]. However, some
algorithms have been proposed to handle the problem of process
loops [4,11,33]. For example, Agrawal et al.'s algorithm [4] builds a
general directed graph with cycles for mining process models from
the logs of executed processes. The algorithm labels multiple
instances of the same activity with different identifiers to differentiate
them in the workflow graph. Vertices with different instances of the
same activity form an equivalent set and can be merged to form one
vertex. A directed edge is added if there is an edge between two
vertices of different equivalent sets.

Process mining is used in various applications. Discovering
frequently occurring temporal patterns in process instances facilitates
intelligent and automatic extraction of useful knowledge to support
business decision-making [16]. Similarly, data mining techniques are
exploited in workflow management contexts to mine frequent
workflow execution patterns [12]. The sequence of activities within
a process, the execution cost and the reliability of the process can be
predicted by using the process path mining technique [8]. Based on
the process patterns and process paths, unexpected and useful
knowledge about the process is extracted to help the user make
appropriate decisions. In addition, a formal approach is proposed to
discover process models from business policies [37].

3. Group-based knowledge flow mining

A knowledge flow (KF) represents a knowledge worker's long-
term information needs and accumulated task-related knowledge
when he/she performs a task. In a previous work, we proposed a KF
mining method to obtain each worker's KF from his/her work log
[22]. We also presented document recommendation methods to
support workers' in the execution of tasks and facilitate knowledge
sharing in an organization. In the context of collaboration, workers
usually have similar referencing behavior patterns, in which they
share common topics or documents they find useful, or they
reference task-related knowledge in a similar order. To model the
common referencing behavior of a group, we propose a method for
mining a group-based knowledge flow (GKF) from the KFs of a
group of workers.

Fig. 1 provides an overview of the proposed method for mining
GKFs. Based on the workers' KFs, workers with similar topic-level KFs
are clustered together to form a task-based group. Members of the
group have task-related knowledge or similar referencing behavior in
terms of the topics of interest and the order the topics were
referenced in their KFs. To identify similar referencing behavior
from the KFs, we propose KF mining algorithms based on process
mining and graph theory to discover a group's knowledge flow. The
algorithms identify common information needs and referencing
patterns from the KFs of a group of workers, and then build a
group-based knowledge flow (GKF) model. Then, a frequent knowl-
edge path is identified from the model to represent the referencing
(learning) patterns of the group and to support group members,
especially the novices, in accessing and learning a group's knowledge.
In this work, we focus on two issues: 1) how to construct a group-
based knowledge flow (GKF)model for a group of knowledge workers
with similar KFs; and 2) how to identify frequent referencing patterns
(paths) from the GKF model.

A group-based knowledge flow (GKF) is derived from the
knowledge flows (KFs) of the group members. Mining and construct-
ing the GKF is the main focus of this work. As such, it extends our
previous work on mining an individual's knowledge flows [22]. To
ensure that the explanation of our proposed GKF mining method is
clear, we provide some fundamental definitions and concepts
involved in generating knowledge flows. Thus, we provide a summary
of the fundamental definitions and methods used to generate a
worker's codified level and topic-level KFs in Section 3.1. In
Section 3.2, we cluster workers with similar KFs into groups, based
on the KFs described in Section 3.1. The information in Sections 3.1
and 3.2 is a summary of the fundamental concepts of knowledge flow
mining discussed in our previous paper [22]. The concepts provide the
basis for this work. Readers may refer to our previous publication for
further details. In Section 3.3, we describe the steps of the proposed
group-based KF mining. Moreover, several important concepts and
features used in the GKF mining algorithms are presented.

3.1. Knowledge flow mining

From the perspective of information needs, a worker's knowledge
flow (KF) represents the evolution of his/her information needs and
preferences during a task's execution. Workers' KFs are identified by
analyzing their knowledge referencing behavior based on their
historical work logs, which contain information about previously
executed tasks, task-related documents and when the documents
were accessed.

A KF consists of two levels: a codified level and a topic level. The
knowledge in the codified-level indicates the knowledge flow
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between documents based on the access time. In most situations, the
knowledge obtained from one document prompts a knowledge
worker to access the next relevant document (codified knowledge).
Hence, the task-related documents are sorted by their access time to
obtain a document sequence as the codified-level KF. Documents are
clustered into topic domains by using the agglomerative hierarchical
clustering method described in Section 2.3. Each topic may contain
several task-related documents. The codified-level KF can be
abstracted to form a topic-level KF, which represents the transitions
between various topics. Formally, we define the knowledge flows as
follows.

Definition 1. Knowledge flow (KF).

Let the knowledge flow of a worker, w, for a specific task be
KFloww={TKFw, CKFw}, where TKFw

v is the worker's topic-level KF and
CKFw is his/her codified-level KF.

Definition 2. Codified-level KF.

A codified-level KF is a time-ordered sequence arranged according
to the access times of the documents it contains. Formally, it is defined
as

CKFw = bdt1w;;d
t2
w ; ⋯;d

tf
w N and t1bt2b⋯btf ;

where dw
tj denotes the document that the workerw accessed at time tj

for a specific task. Each document can be represented by a document
profile, which is an n-dimensional vector containing weighted terms
that indicate the key content of the document described in
Section 2.2.
Definition 3. Topic-level KF.

A topic-level KF is a time-ordered topic sequence derived by
mapping documents in the codified-level KF to corresponding topics.
Formally, it is defined as

TKFw = bTPt1
w ; TP

t2
w ; ⋯; TP

tf
w N ; t1bt2b⋯btf ;

where TPw
tj denotes the corresponding topic of the document that

worker w accessed at time tj for a specific task. Each topic is
represented by a topic profile, which is an n-dimensional vector
containing weighted terms that indicate the key content of the topic.
The topic profile of a topic is derived from the document profiles of
documents contained in that topic by using the centroid approach.

By analyzing a worker's referencing behavior for a specific task, the
corresponding knowledge flow is derived by the knowledge flow
extraction method. The codified-level KF is extracted from the
documents recorded in the worker's work log. The documents are
arranged according to the times they were accessed to obtain a
document sequence. The topic-level KF, which is derived by mapping
documents in the codified-level KF of a specific task into
corresponding clusters, is represented by a topic sequence.

3.2. Clustering similar workers based on their knowledge flows

To find a target worker's neighbors, his/her topic-level KF is
compared with those of other workers to compute the similarity of
their KFs. The resulting similarity measure indicates whether the KF
referencing behavior of two workers is similar. Since the KFs are
sequences, the sequence alignment method [9,27], which computes
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the cost of aligning two sequences, can be used to measure the
similarity of two KF sequences. Based on this concept, we use a hybrid
similarity measure, comprised of the KF alignment similarity and the
aggregated profile similarity, to evaluate the similarity of two
workers' KFs, as shown in Eq. (2).

sim TKFi; TKFj
� �

= α × sima TKFi; TKFj
� �

+ 1−αð Þ × simP APi;APj
� �

;

ð2Þ

where sima(TKFi, TKFj) represents the KF alignment similarity, simp

(APi, APj) represents the aggregated profile similarity, and α is a
parameter used to adjust the relative importance of the two types of
similarity. Here, we give a brief explanation. Further details are
provided in [22].

The KF alignment similarity is comprised of two parts: the KF
alignment score, which measures the topics in the sequence; and the
join coefficient, which estimates the topic's coverage in two compared
topic-level KFs. We modify the sequence alignment method [9] to
derive the KF alignment score. We also estimate the overlap of the
topics in two compared topic-level KFs by using Dice's coefficient [35].
The rationale is that if the topic overlap is high, the KF alignment
similarity of the two compared KFs will also be high. The KF alignment
similarity, sima(TKFi, TKFj), is defined as follows:

sima TKFi; TKFj
� �

= Norm ηð Þ × 2 × jTi∩Tjj
jTij + jTjj

; ð3Þ

where TKFi and TKFj are the topic-level KFs of workers i and j
respectively; η is the KF alignment score; Norm is a normalization
function used to transform the value of η into a number between 0
and 1; Ti and Tj are the sets of topics in TKFi and TKFj respectively; and
Ti∩Tj is the intersection of topics common to TKFi and TKFj.

The aggregated profile similarity, defined as simp(APi, APj),
computes the similarity of twoworkers' KFs based on their aggregated
profiles; APi and APj are the vectors of the aggregated profiles of
workers i and j respectively. We use the cosine formula to calculate
the similarity between two aggregated profiles. The aggregated
profile of a worker i is defined as Eq. (4).

APi = ∑
T

t=1
twt;T × DPt ; ð4Þ

where twt,T is the time weight of a document referenced at time t in
the KF; T is the index of the time the worker accessed the most recent
Fig. 2. The procedure of the pro
documents in his KF; and DPt is the profile of the document referenced
by worker i at time t. The aggregation considers the time decay effect
of the documents. Hence, if a document was referenced in the recent
past, it is given a higher time weight. The time weight of each
document profile is defined as twt;T = t−St

T−St, where St is the start time
of the worker's KF.

In this paper, we use the CLIQUE clustering method [3,17] as
described in Section 2.3 to cluster knowledge workers based on a
similarity matrix of their KFs. Each entry in a similarity matrix
represents the degree of KF similarity between two workers, derived
by Eq. (2). Workers in the same cluster are highly connected with
each other because they have similar referencing behavior and
information needs in topic domains. To identify each group's GKF,
we apply our group-based knowledge mining method to process the
clustering results.
3.3. The group-based knowledge flow mining process

The proposed method comprises three phases: worker clustering,
group-based knowledge flow (GKF) mining, and identifying knowl-
edge-referencing paths, as shown in Fig. 2. Based on the extracted KFs
(Section 3.1), the worker clustering step (Section 3.2) is used to
cluster workers with similar KFs as an interest group because they
have similar information needs and task-related knowledge to fulfill
their tasks. Given the KFs of the workers, we formalize the GKF model
to represent the group's information needs by applying the proposed
GKF mining algorithms, as described in Section 4. The group-based
knowledge flow (GKF) represents the information needs and common
referencing behavior of a group of workers. Based on GKF, workers
can share their task knowledge to complete the target task. Moreover,
managers can comprehend the information needs of workers and
groups to provide knowledge support adaptively.

The GKF is represented by a directed acyclic graph comprised of
vertices and edges. Each vertex denotes a topic in a KF, while each
directed edge represents the referencing order of two topics. We use
graph theory tomodel a GKF. A GKF graphmodels the relations between
topics, the direction of the knowledge flow and the frequent knowledge
paths to describe a group's information needs and referencing behavior.
Moreover, a GKF contains several knowledge referencing paths, which
indicate the referencing behavior patterns of the group of workers. In
addition, frequent referencing behavior patterns of the group ofworkers,
i.e., the paths with scores higher than a user-specified threshold, can be
identified from the GKF. Before describing the details of the GKF mining
posed GKF mining method.
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algorithms, we first define several important concepts and features used
in the algorithms as follows.

Definition 4. Knowledge graph.

A knowledge graph is defined as G=(V, E), where V is a finite set of
vertices, and E is a finite set of directed edges connecting two topics.
Each vertex in V denotes a topic in the knowledge domain, and each
edge in E denotes the knowledge flow from one topic to the other topic.

Example. Given a directed knowledge graph comprised of two vertices
(topics) vx and vy and an edge ex,y, the edge is used to connect vertices vx
to vy directly. In addition, vx is said to be an adjacent predecessor of vy,
while vy is said to be an adjacent successor of vx.

Definition 5. Knowledge sub-graph.

Given a knowledge graph G=(V, E), a knowledge sub-graph of G is
a graph G'=(V', E'), where V' and E' are subsets of V and E respectively,
i.e., V′⊂V and E′⊂E.

A GKF graph represents the referencing behavior of a group of
workers as a directed knowledge graph, which consists of a finite set
of vertices and edges, defined as follows.

Definition 6. Group-based knowledge flow (GKF).

Asmentioned earlier, a GKF is derived from theKFs ofworkerswho are
in the same cluster and therefore have similar information needs. A GKF is
defined as GKF={G, W, TKF}, where G is a directed knowledge graph;
W={wi|∀ i,i=1⋯n} is a set of n workers who have similar KFs; and
TKFS={TKFj|∀j, j=1⋯n} is a set of topic-level KFs of the workers in W.

The properties of TKF and the directed knowledge graph G are
defined as follows.

Definition 7. Flow relation and direct flow relation.

In a flow relation of a topic-level KF (TKF), topic x is followed by
topic y, denoted by xNy, if topic x was accessed before topic y in the
TKF. A topic x is followed directly by another topic y if there does not
exist a distinct topic such that x is followed by z and z is followed by y.
Thus, the relation between topics x and y is a direct flow relation,
defined as x→y.

Definition 8. Path.

Given a directed graph G, if there is a path from a vertex vx to
another vertex vy, the path is denoted as vx~Nvy.

Definition 9. Topic cycle.

Let a flow relation xNy appear in a TKF and a flow relation yNx also
appear in another TKF. The relations are represented by their
corresponding paths, vx~Nvy and vy~Nvx, on the graph of the GKF.
Such relations form a topic cycle between the vertices of vx (topic x)
and vy (topic y) in the GKF.

Definition 10. Topic loop.

Let x be a duplicate topic in a TKF and let two flow relations xNy
and yNx appear in the TKF. These relations are represented by their
corresponding paths, vx~Nvy and vy~Nvx, on the graph of GKF. Such
relations form a topic loop between the vertices of vx (topic x) and vy
(topic y) in the GKF.

Definition 11. Strongly connected component (SCC).

A strongly connected component is a maximal strongly connected
sub-graph in which every vertex is reachable from every other vertex
in the sub-graph.
Definition 12. Knowledge referencing path.

Given a directed graph G=(V, E) of a GKF, if there is a path from a
start vertex to an end vertex, it is a knowledge referencing path. Such
a path is defined as p={s, d, Vp, Ep}, where s is a start vertex, d is an
end vertex, and Vp is a set of topics on the path p. Ep is a set of edges,
where each edge is an ordered pair (vi, vj); vi and vj∈Vp, vi≠vj and vi
is an adjacent predecessor of vj.

Definition 13. Frequent referencing path.

Given a set of referencing paths derived from the graph of the GKF,
a path p is said to be frequent if its path score, which is derived based
on the frequency count of edges on the path, is greater than a certain
threshold. A frequent referencing path indicates that workers
accessed task-related knowledge in a particular topic order
frequently.

Problem Statement: Given the TKFs of a group of workers, the GKF
mining algorithms finds the GKF from the TKFs. The GKF is
represented by a directed graph, which is used to model the
referencing behavior of a group of workers.

4. GKF mining algorithm

To derive a GKF model from a set of TKFs, we propose two
algorithms: one for cases where there are no duplicate topics in a TKF;
and the other for cases where there are duplicate topics. Both
algorithms model a group's information needs as a group-based
knowledge flow. The referencing path of a GKF details the order in
which topics are accessed when workers search for task-related
knowledge. In Section 4.1, we present a GKF mining algorithm for
cases without duplicate topics. The GKF mining algorithm for dealing
with duplicate topics is presented in Section 4.2.

4.1. GKF mining algorithm without considering duplicate topics

We assume that a topic in a TKF appears just once in this algorithm.
That is, there is no duplicate topic in each TKF; hence, there will not be
a topic loop in the GKF. However, the order of topics in different TKFs
may vary, so topic cycles, which form strongly connected compo-
nents, may appear in the graph G.

In a strongly connected component (SCC), where each vertex is
reachable from every other vertex, it is difficult to determine the
ordering relation among the vertices. To resolve the problem, the
algorithm applies the Topic_Relation_Identification procedure to
identify the vertex relation in the SCC. The relation, which can be
classified as either a parallel relation or a sequential relation to
characterize the topic relations in the GKF, represents part of the topic
ordering in workers' referencing behavior.

The GKF mining algorithm discovers frequent referencing of topics
from the TKFs of a group of workers. To discover frequent referencing
behavior patterns, which are modeled as frequent edges or frequent
referencing paths on the GKF graph, the algorithm use the edge
deletion procedure to remove infrequent edges whose weights are
lower than a user specified threshold. A start vertex and an end vertex
are added to the discovered graph to indicate the start and end of the
referencing behavior paths of the workers. Note that a topic is
represented as a vertex on the graph. It would be odd to generate a
GKF in which topic references were incomplete; that is, where a topic
reference does not originate at the start vertex or reach the end
vertex. The algorithm ensures that every topic can be referenced
successfully from the start vertex to the end vertex. Thus, an
infrequent edge can only be deleted if its removal does not make
any vertex unreachable from the start vertex or to the end vertex.

Several knowledge paths may exist on a GKF graph. The paths
represent the group's frequent referencing behavior when learning/



Table 1
Five workers and their TKFs.

Worker Topic-level KF (TKF)

John bA, B, C, D, EN
Mary bA, C, G, F, D, EN
Lisa bB, A, C, EN
Tom bA, B, C, DN
Bob bC, B, G, F, DN
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referencing knowledge. Thus, the discovered graph can be used to
inform a group of workers about topics of interest and the referencing
behavior related to those topics.

The steps of the proposed algorithm are shown in Fig. 3. To
generate a GKF model for a specific group (task), a set of TKFs is taken
as the algorithm's input, and the graph of the GKF is the output result.
In the GKF graph, a topic domain in a TKF is represented as a
knowledge vertex, and each flow that directly orders the knowledge
between two topics is represented as an edge. For example, given a
TKF bA, B, E, CN, the four topics A, B, E and C are represented as four
knowledge vertices, i.e., vA, vB, vE and vC, respectively; and the direct
flows between two knowledge vertices are represented as three
directed edges, i.e., eA,B, eB,E, and eE,C, in the graph of G. Note that an
edge is used to order the flow between two topics directly, e.g., the
edge eA,B orders the flow from topic A to topic B. In contrast, if two
topics have no direct flow relation, no edge exists between them. In
the same example, there is no flow relation between topic A and topic
E , so an edge eA,E does not exist.

The algorithm for building the GKF model involves several steps.
First, a start vertex s and an end vertex d are added to the directed
graph. Second, each topic in a TKF is regarded as a vertex and is added to
a vertex set V if it does not exist in V already. Then, to connect the
vertices in V, the edges related to the inserted vertex are added to the
edge set E as follows. Let x→y be a direct flow relation from topic x to
topic y, which denotes that topic x is followed immediately by topic y in
a TKFw. When adding the edge ex,y to E, the algorithm has to check two
additional conditions for the edge to connect the start/end vertex with
other vertices. First, if the vertex y is the first topic in a TKF, the edge es,y
from the start vertex s to the vertex y is added to E; then, if the vertex y
is the last topic in the TKF, the edge ey,d from the vertex y to the end
vertex d is added to E. When adding an edge to E, the algorithm counts
the frequency of the edge. Adding all the vertices and their related
edges to V and E respectively yields the initial graph of the GKF model.

Example. This example illustrates how to build a GKF graph by using
the GKF algorithm without considering duplicate topics in a TKF. Five
workers who have similar TKFs form a group. Their topic-level KFs are
listed in Table 1.

The topic domains in each topic-level KF (TKF) are arranged as a
topic sequence according to the times they were referenced. Based on
the TKF of each worker, the proposed algorithm derives the group's
GKF, which is represented by a directed graph, as shown in Fig. 4. The
Fig. 3. The algorithm for mining a GKF whe
topic domains, including the start and end vertices are represented by
circles; an edge is represented by an arrow, which indicates the
direction of knowledge flow from one knowledge vertex to another;
and the number on each edge is the edge's frequency count.

In the initial graph, a strongly connected component (SCC) may be
evident when some vertices appear in reverse order in any two TKFs.
A strongly connected component Gs is a maximal strongly connected
sub-graph that contains a path from each vertex to every other vertex
in Gs. Because the vertices in a connected component are strongly
connected, it is difficult to determine the ordering relationships
between them. Even so, such relationships can be used to represent
the characteristics of a TKF and they are important for modeling
workers' referencing behavior. Thus, we use a procedure called
Topic_Relation_Identification to determine the relationships among
vertices in any strongly connected component.

In an SCC, two kinds of relations can be identified, namely, parallel
and sequential relations. Any two vertices in an SCC indicate that two
topics, x and y, may be referenced by different TKFs with the ordering
xNy and yNx. This ordering is an example of a parallel relation, where
either vx~Nvy or vy~Nvx would be appropriate; thus, there is no strict
ordering between vx and vy. The referencing order of the vertices is not
obvious, and the knowledge items represented by the vertices may be
referenced simultaneously. As the vertices in an SCC are not in a
specific order, conventional workflow mining methods consider the
association between the vertices as a parallel relation. However, in
contrast to such methods, a sequential relation pattern (SRP) rather
than a parallel relation pattern (PRP) may be extracted if most of the
referencing behavior in the SCC fits the SRP. That is, the SRP represents
the most frequent knowledge referencing pattern in the SCC.

We explain how to recognize the above relations in Section 4.1.1,
and how to evaluate, the weight of each edge when measuring the
importance of a flow in the GKF in Section 4.1.2. Then, we transform
n TKFs do not contain duplicate topics.



Fig. 4. The initial graph of the GKF model.
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the initial graph of the GKF into a new directed acyclic graph GN in
which a strongly connected component Gs is regarded as a vertex.

After graph transformation, the topological sorting and edge
deletion procedures are applied on GN to remove any infrequent
edges. An infrequent edge indicates that only a few workers in the
group adopt a particular reference behavior pattern. Since such
patterns are not representative of the group's general referencing
behavior, they can be removed. The topological sorting procedure is
used to sort all vertices in VN in topological order, as discussed in
Section 4.1.3. Based on the sorting result, the edge deletion procedure
(described in Section 4.1.4) checks all the edges and removes
Fig. 5. The topic relation id
infrequent and unqualified edges from EN and E. After edge deletion,
the graph G represents the group-based knowledge flow.

4.1.1. Topic relation identification
The topic relation identification procedure determines the rela-

tions between vertices in a strongly connected component, as shown
in Fig. 5. Let the strongly connected component Gs=(Vs, Es), where Vs

is a vertex set and Es is an edge set. Parallel and sequential relations
can be discovered from a strongly connected component Gs=(Vs, Es)
based on the frequency count of knowledge flow sequences (KFSs). To
determine and rebuild the relationships between vertices in Vs, all
entification procedure.
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possible non-duplicate KFSs of length |Vs|, which contain all vertices in
Vs, are identified from Gs. The derived KFSs are then compared with a
non-duplicate sequence, i.e., SQw, in a TKFw, which contains a set of
vertices that are common to both Vs and the vertex set of V(TKFw), i.e.,
V(SQw)=Vs\V(TKFw). V(SQw)/V(TKFw) denotes the set of vertices in
the sequence SQw/TKFw. When the sequence SQw is a subsequence of a
KFS, the frequency count of the KFS is increased. Next, all the KFSs are
sorted in descending order of their frequencies and the top-2 frequent
KFSs are selected to elicit the relations of vertices in Vs. The preceding
pseudo node vγ and the succeeding pseudo node vρ of Gs are also
added to V.

If the difference in the frequency counts of the selected KFSs is
lower than a user-specified threshold ε, the order of the vertices in Vs

is not significant. In this case, the vertex relation is defined as parallel.
For example, let us consider a strongly connected component where
vertex vx, vertex vy and vertex vz are in Vs; and let the user-specified
threshold ε=2. When the frequency counts of two KFSs bvx, vy, vzN
and bvz, vy, vxN are 7 and 6 respectively, the relation between vertex
vx, vertex vy and vertex vz is parallel because the difference in their
frequency counts is lower than the threshold. However, if the
difference is greater than a user-specified threshold, the KFS with
the largest frequency count can be used to represent the relationship
of vertices in Vs based on the majority principle. The ordering of these
vertices is defined as a sequential relation. Next, we explain how to
identify the order of vertices in a strongly connected component, i.e.,
parallel relations and sequential relations.

4.1.1.1. Identifying parallel relations in a SCC. For parallel relations, the
order of the vertices in Vs is not important. The Topic_Relation_Identi-
fication procedure checks each edge in Es for each TKF. Let ei,j be an
edge in Es that connects vertex vi to vertex vj directly. If this direct flow
relation vi→vj appears in a TKF and a flow relation vjNvi exists in
another TKF, the edge ei,j is removed from E and Es, and the relation
between vertex vi and vertex vj is regarded as parallel. That is, there is
no specific ordering between vertex vi and vertex vj, and their
corresponding topics can be referenced in any order.

After adding a preceding pseudo node vγ and a succeeding pseudo
node vρ to G, the edges connected to the vertices in Vs are redirected
through the pseudo nodes. To connect a vertex in V to the pseudo
nodes, each adjacent predecessor vk of vi, where vk∉Vs and vi∈Vs, and
each adjacent successor vl of vi, where vl∉Vs and vi∈Vs, are examined.
For vertex vk, if edge ek,i , which connects vertex vk to vertex vi , exists
in E, it is removed. Then, the edges ek,γ and eγ,i are added to E and their
frequency counts are calculated. If the two edges already exist in E,
their frequency counts are simply updated. Briefly, the edge ek,i is
replaced by edges ek,γ and eγ,i to make a connection with vertex vk and
vertex vi through the pseudo node vγ. Similarly, for a vertex vl, if edge
ei,l exists in E, it is removed. Then, the edges ei,ρ and eρ,l, are added to E
and their frequency counts are calculated. If the edges already exist in
E, their frequency counts are simply updated.

Example. In Fig. 4, there is a strongly connected component Gs

comprised of Vs={A, B, C} and Es={eA,B, eB,A, eB,C, eC,B, eA,C}. Let the
Fig. 6. A parallel relatio
threshold ε be 1. The graph of the GKF after topic relation
identification is shown in Fig. 6. Based on the Topic_Relation_Identi-
fication procedure, two pseudo nodes, vγ and vρ, are added to G. Then,
the edges in Es are examined to determine which ones should be
removed. Two non-duplicate sequences are discovered in Gs, i.e., bA,
B, CN, bC, BN and bB, A, CN; their frequency counts are 2, 1 and 2
respectively. Because the difference in the frequency counts of the
top-2 sequences is equal to 1, the relation between vertex vA, vertex
vC, and vertex vB is regarded as parallel, and the edges eA,B, eB,A, eB,C and
eC,B are removed from the graph.

Meanwhile, the relation between vertex vA and vC is regarded as
sequence because A→C exists in one TKF, but there is no CNA in any
other TKF. Thus, eA,C is not removed from the graph. The incoming
edges of vertex vA, vertex vB and vertex vC are changed to make
connections through pseudo node vγ. Similarly, the outgoing edges of
vertex vA, vertex vB and vertex vC are changed to make connections
through pseudo node vρ. Then, the frequency counts of these edges
are updated (Fig. 6).

4.1.1.2. Identifying sequential relations in a SCC. If the difference
between the frequency-counts of the selected top-2 KFSs is greater
than a user-specified threshold, the ordering of the vertices in the
KFSs is regarded as a sequential relation. That is, based on themajority
principle w.r.t. knowledge referencing behavior discussed earlier, the
vertices in Vs follow the ordering of the KFS with the highest
frequency. Let KFSy be the knowledge flow sequence with the highest
frequency count; and let vi and vj be, respectively, the first and last
vertices in the sequential order of KFSy. All the edges in Es are removed
from Es and E. Then, for each direct flow relation vg→vh in KFSy, an
edge eg,h is added to Es and E. Similarly, the edges connected to the
vertices in Vs are redirected through the pseudo nodes.

For each adjacent predecessor vk of vf , where vk∈V, vk∉Vs, and
vf∈Vs, the edges ek,γ and eγ,i are added to E, and their frequency counts
are calculated. If the edges already exist in E, their frequency counts
are simply updated. The edge ek,f , which connects vertex vk to vertex
vf , is removed from E and replaced by the connections from vk to vγ
and from vγ to vi, the first vertex of KFSx. That is, the edge ek,f is
replaced by edges ek,γ and eγ,i, which connect with vertex vk and
vertex vi respectively through the pseudo node vγ. Similarly, for each
adjacent successor vl of vf , where vl∈V and vl∉Vs, and vf∈Vs, we use
the same method to establish connections from the last vertex in KFSx
to the vertex vl through the pseudo node vρ. The connection from vf to
vl is replaced by the connections from the last vertex of KFSx, i.e., vj, to
the pseudo node vρ and from vρ to vl.

Example. Table 2 lists the knowledge flows of a group of seven
workers. The GKF mining algorithm, described in Section 4.1, is used
to generate the graph of the group-based KF and a strongly connected
component with vertices vB, vC, and vD is identified from the GKF
graph. Then, the Topic_Relation_Identification procedure is applied to
determine the relation between those vertices. As shown in Fig. 7, the
relation is sequential with the ordering vB, vC, and vD. In addition, the
edges connected to any vertex in Vs are changed. For example, the
n in a GKF graph.

image of Fig.�6


Table 2
The TKFs of seven knowledge workers.

Worker Topic-level KF (TKF)

W1 bA, F, B, C, D, HN
W2 bA, G, B, C, D, IN
W3 bF, B, C, D, HN
W4 bA, F, C, D, B, K, HN
W5 bF, C, D, B, K, HN
W6 bA, G, B, C, K, HN
W7 b F, B, C, DN
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edge eB,K is changed to edge eD,ρ and edge eρ,K such that there is a path
from vertex vB to vertex vK via the pseudo node vρ.

4.1.2. Measuring the importance of an edge
Our objective is to derive the referencing behavior of a group of

workers by constructing a frequent knowledge path in a GKF graph.
However, some infrequent edges in the graph may not be suitable for
building the path. To measure the importance of each edge in a graph,
the frequency count of each edge is normalized by themaximum edge
frequency in E. The weighting function measures the importance of an
edge in a GKF model, as defined in Eq. (5).

wex;y =
fx;y

maxffi;j j∀i; j; ei;j∈Eg ; ð5Þ

where wex,y, which ranges from 0 to 1, is the weight of the edge ex,y
that represents a direct flow from vertex vx to vertex vy; fx,y is the
frequency of the edge ex,y; E is the edge set of the graph; and the
denominator is a maximum function that derives the frequency count
of the most frequent edge in the graph. The more frequently an edge
occurs, themore important it is deemed to be. Themost frequent edge
represents the frequent referencing behavior of most members of the
group. Thus, it is suitable for describing the group's referencing
behavior.

Example. The weight of each edge in Fig. 6 is calculated by using the
edge weighting method. The edge is then labeled with the weight to
indicate its importance in the graph, as shown in Fig. 8.

4.1.3. Graph transformation
To simplify a strongly connected component in a graph, the

proposed algorithm transforms the original GKF graph into a new
graph GN. After the transformation, the graph Gs is regarded as a
vertex vGs in GN. We create two pseudo nodes, vγ and vρ , to represent,
respectively, the split operator and the join operator of Gs. In addition,
the incoming/outgoing edges of Gs, which connect to the pseudo
nodes vγ (the split operator)/vρ (the join operator), are merged to
form a new edge whose weight is also updated. The weight of the
incoming edge of vGs, which combines the incoming edges of Gs, is
derived by combining the edge weights of the incoming edges of the
Fig. 7. A sequential relation in a GKF graph.
node vγ. Similarly, the weight of the outgoing edge of vGs is derived by
combining the edge weights of the outgoing edges of the node vρ.

Example. We transform the graph Gs in Fig. 8 into a new graph for
further analysis, as shown in Fig. 9. To simplify the strongly connected
component, all the vertices in Gs are wrapped as a vertex vGs in the
new graph. The incoming edges and outgoing edges of any vertex in Gs

and the weights of those edges are adjusted. In Fig. 8, edge eγ,A and
edge eγ,B are merged to form a new edge eγ,Gs in Fig. 9 and their edge
frequencies are combined as 1. In the same way, edge eC,ρ and edge
eB,ρ are combined to form an edge eGs,ρ.

4.1.4. Topological sorting
The frequent referencing behavior of a group of workers is derived

bymining the group's knowledge flow from a GKF graph. The workers
may reference topics in a different order when performing tasks, but
some referencing behavior is more frequent because the majority of
workers in the group reference topics in the same order. In the GKF
graph, a frequent knowledge path from the start vertex to the end
vertex represents the workers' frequent referencing behavior. For any
vertex vi on the path, vertex vi is reachable from the start vertex and
the end vertex is reachable from vertex vi. Note that a path with
infrequent edges denotes an infrequent referencing behavior pattern.

To derive a group's frequent referencing behavior, a topological
sorting procedure is used to sort all vertices in the graph, after which
infrequent edges whose weights are lower than a specified threshold
are deleted. In graph theory, topological sorting [10,19] is a very
efficient way to arrange the vertices of a directed acyclic graph in
topological order in linear time. The key property of the topological
order is that, for any two vertices x and y, if x is a predecessor of y in
the graph then x precedes y in the topological order.

In this work, we use topological sorting to arrange all vertices in
GN, which is a directed acyclic graph before the edge deletion
procedure is applied. Then, the edge-deletion procedure examines the
vertices in topological order to identify the infrequent incoming edges
of each vertex that should be removed. However, before removing an
infrequent edge, the procedure needs to ensure that each vertex in the
GKF satisfies two criteria. First, any vertex vi on a knowledge path
must be reachable from the start vertex and the end vertex must be
reachable from vertex vi. Second, removing the edges of a vertex vi
does not affect the path from the start vertex to the preceding vertices
of vi in the topological order. In other words, topological ordering
guarantees that 1) a predecessor will be processed before a successor;
and 2) the predecessor's reachability (i.e., from the start vertex to vi)
will not be affected by its successors. Thus, when an infrequent edge of
any vertex vi in G is removed, there is no need to verify the
reachability of the predecessors of vertex vi from the start vertex. On
the other hand, the path from the predecessors of vertex vi to the end
vertexwill be affected by removing an infrequent edge of vi; therefore,
the predecessors should be examined again to ensure that they can
still reach the end vertex.



Fig. 8. The edge weights in a GKF graph.
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Example. In Fig. 9, all the vertices are sorted in topological order, and
the resulting list is bs, γ, Gs, ρ, G, F, D, E, dN. According to the list, vs is
the first vertex to be checked, vGs is the second vertex and so on. The
algorithm examines all the vertices in topological order and removes
infrequent edges from the graph GN via the edge deletion procedure.
4.1.5. Using the edge deletion procedure to remove infrequent edges
Based on the results of topological sorting of VN, the edge deletion

procedure examines the vertices and determines which incoming
edges should be removed from them. It then removes infrequent
edges whose weight is lower than a user-specified threshold, as
shown in Fig. 10. The inputs of this procedure are the sorted list L
derived by topological sorting and the edge set EN of the GKF graph.
The algorithm checks the incoming edges of each vertex in ascending
order of their weights, and those whose weights are lower than a
user-specified threshold η are candidates for removal. If an edge is
removed, it means that the knowledge referencing behavior between
two vertices (topics) is infrequent among the group of workers.

However, an infrequent edge should only be deleted from the
graph if removing it would not make any vertex unreachable. Let Q be
the set of vertices that have been checked in topological order to
remove their infrequent incoming edges. For a vertex vy, if one of its
incoming edges is removed and there is no other path from the start
vertex to vy, the removed edge should be returned to the edge sets E
and EN. In addition, the vertices checked before vy should be
reexamined to ensure that there is a path from a checked vertex vi
in Q to the end vertex. If removing an edge violates the above
condition, the edge should be returned to the edge sets E and EN.

Because of the characteristics of topological sorting, the edge
deletion procedure ensures that 1) any vertex in the graph GN can be
reached from the start vertex; and 2) removing an edge of a vertex
does not affect any path from the start vertex to the predecessors of
the vertex. In other words, there exists at least one path from each
vertex to the end vertex. Moreover, we can obtain several frequent
knowledge paths from the GKF graph to help workers learn the
group's knowledge. The following example explains how to remove
an edge from the GKF graph.
Fig. 9. The result of gra
Example. In Fig. 9, let vertex vE be the examined vertex and let the
user-specified threshold be 0.3. The vertex vE has two incoming edges:
eρ,E withweight 0.2 and eD,Ewithweight 0.4. The edge eρ,E qualifies for
removal, because its weight is lower than 0.3 and removing it would
not make any vertex unreachable. Fig. 11 shows the resulting graph,
which represents the GKF of the group. The graph is used to visualize
the knowledge flows among the frequent topics and model the
referencing behavior of the group.
4.1.6. Properties of the GKF
The generated knowledge graph has several properties. We define

and prove the associated lemmas below.

Lemma 1. Let vs be the start vertex in a graph, GN, of a group-based
knowledge flow. For any vertex vh in GN, there exists a path Ps,h from
vertex vs to vh.

Proof. In the edge deletion procedure, removal of an incoming edge
from a vertex vh depends on the weight of the edge. All vertices in GN

are visited in topological order and their incoming edges are
examined. For any vertex vh, an incoming edge should be removed
if its weight is lower than a user-specified threshold. However, if
removing an edge from vh also removes the path Ps,h from GN, that
edge should be returned to the vertex.

When deleting an incoming edge of a vertex, the edge deletion
procedure ensures that 1) there is a path Ps,h from the start vertex vs to
vertex vh; and 2) removing an incoming edge from a successor of vh
does not affect the path Ps,h . The proof is as follows. Let a vertex vk be a
succeeding vertex of vh in the topological order. Based on
the topological order, the edge deletion procedure processes the
vertex vh before vertex vk and there exists a path Ps,h. Assume that a
path Ps,h does not exist from vs to vh, because an incoming edge of vk
has been deleted. Thus, a path must have existed from vertex vs
through vk to vh before the edge was deleted. Consequently, vk must
be a predecessor of vh. However, this statement contradicts the
algorithm's processing of vertices in topological order. That is, vk is a
succeeding vertex of vh and the path Ps,h exists in GN. Thus, removing
ph transformation.



Fig. 10. The edge deletion procedure.
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an incoming edge from a succeeding vertex of vh does not affect the
path Ps,h. According to the algorithm and the above explanation, for
any vertex vh in GN, there exists a path Ps,h from vertex vs to vh.

Lemma 2. Let vd be an end vertex in the graph of the group-based
knowledge flow GN. For any vertex vh in GN, there exists a path Ph,d from
vertex vh to vd.

Proof. Let vertex vk be the succeeding vertex of the vertex vh.
Removing an incoming edge of vertex vk will affect the reachability of
the end vertex vd from vertex vh. When the edge deletion procedure
removes an incoming edge of vertex vk, it has to check whether the
path Ph,d from vertex vh to the end vertex vd exists. If it does not exist,
the incoming edge should not be removed. Therefore, the procedure
ensures that a path Ph,d exists from vertex vh to the end vertex vd.

Lemma 3. Let GN={VN, EN} be the directed graph of a group-based
knowledge flow. All vertices in VN can be visited by traversing vertices
from the start vertex vs to the end vertex vd. Then, for any vertex vh in V,
there exists a path from vs to vd through vh.

Proof. According to Lemmas 2 and 3, for any vertex vh in VN, there
exists a path Ps,h from the start vertex vs to vh and a path Pv,d from vh to
end vertex vd. Therefore, there exists a path from vs to vd through vh.

Lemma 4. For any infrequent edge eh,k on an infrequent path of GN,
either the path from the start vertex vs to vertex vk or the path from the
vertex vh to the end vertex vd must pass through the edge eh,k.

Proof. Let vertex vh be a predecessor of vertex vk in the topological
order, and let eh,k be an infrequent edge from vertex vh to vertex vk in
GN. Assume that there exist two paths, one from start vertex vs to
vertex vk and the other from vertex vh to the end vertex vd, neither of
which passes through the edge eh,k. Our algorithm removes any
infrequent edge if doing so will not make any vertex unreachable.
Thus, the algorithm will remove the edge eh,k. However, this
contradicts the statement that eh,k exists in GN. Consequently, for
any infrequent edge eh,k of an infrequent path of GN, either the path
Fig. 11. The final graph G
from the start vertex vs to vertex vk or the path from the vertex vh to
the end vertex vd must pass through the edge eh,k.

The vertex VGS in graph GN represents a corresponding strongly
connected component GS in G. All vertices in GS with parallel relations
or sequential relations are reachable. Lemmas 2–5 also hold for G.
4.2. The GKF mining algorithm for dealing with topic loops

The GKF mining algorithm for dealing with topic loops (GKF-TL)
is based on the GKF algorithm introduced in Section 4.1, which
assumes there are no topic loops in workers' KFs when it generates
the graph of the group-based KF. A topic loop means that a specific
topic appears repeatedly in a TKF because it is referenced by a
worker several times. This may happen because the worker needs
the knowledge at different times during a task's execution. For
example, given a worker's topic-level KF bA, B, A, C, DN, if topic A is
referenced twice, it is appears as a topic loop in the corresponding
graph of the TKF. Because the loop problem in a workflow mining
domain is difficult to resolve, no matter what the application
domain, many researchers ignore the problem [12,34]. Agrawal et
al. [4] proposed an algorithm for workflow systems that builds a
general directed graph with cycles for mining process models from
workflow logs. The algorithm gives activities different labels to
differentiate them in a workflow instance. The problem of dealing
with topic loops in TKFs is analogous to that of workflow systems.
Thus, we adopt the above approach to solve the loop problem.
Specifically, we propose an algorithm that considers duplicate topics
(topic loops) in each TKF to build a directed graph for modeling the
referencing behavior of a group of workers.

Different from our knowledge flow mining approach, the workflow
mining approach [4] does not consider strongly connected components
(SCC) for differentiating the sequential and parallel relations. That is, it
didnot consider the issueof handling loops involving strongly connected
components.We resolve the loopproblems involving the vertices in SCC.
N of the GKF model.
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The GKF-TL algorithm differs from the GKF algorithm. First, it
identifies duplicated topics in a TKF and gives them different labels in
order to solve the loop problem. For example, given a KF bB, A, B, C, BN,
because topic B appears three times, it is transformed into three
instances, i.e., B1, B2 and B3, such that the original KF becomes bB1, A,
B2, C, B3N.

After infrequent edges have been removed from the graph G, it is
transformed into a new graph GT as follows. The vertices with
different instances of the same topic form an equivalent set and can be
merged to make one vertex. For a topic TP in a TKF, each vertex in the
equivalent set of TP is an instance of the topic. Then, a directed edge is
added to the new graph GT if there is an edge between two vertices of
different equivalent sets in graph G. Initially, the merging process is
applied to vertices of each equivalent set in G when a strongly
connected component is not involved. To merge vertices involving a
strongly connected component Gs, the steps are as follows.

Let vertices vi/vj be instances in the equivalent sets Qa/Qb, and let vk
be an another instance in Qa as well as a vertex in a strongly connected
component, i.e., vk∈Gs, where vγ and vρ are two pseudo nodes of Gs.
Note that because vk and vi are instances of the same topic, they are in
the same equivalent set and are thus merged to form one vertex. In
addition, vi is in Gs, since vk is in Gs. Generally, the vertices of an
equivalent set Qa in G are combined as a vertex va in the new graph GT,
while the vertices of an equivalent set Qb are merged to form one
vertex vb. For a strongly connected component Gs with pseudo nodes
vγ and vρ, if a directed edge ei,j between vi and vj exists in G, a directed
edge eρ,b is added to the new graph GT. Similarly, if a directed edge ej,i
exists in G, a directed edge eb,γ is added to GT.

Next, we consider how to combine vertices involving two strongly
connected components. Let vk/vl be vertices in strongly connected
components Ga/Gb; vγa and vρa be pseudo vertices that connect with
graph Ga; vγb and vρb be pseudo vertices that connect with Gb; and Qa/
Qb be the corresponding equivalent sets of vertices in Ga/Gb. In
addition, let vertex vi and vk (resp. vj and vl) be instances of the
equivalent sets Qa (resp. Qb). Vertices in Qa/Qb are merged as vertex
va/vb. Because vk/vl is in Ga/Gb, vi/vj also belongs to Ga/Gb; however,
some edges need to be adjusted. If there is a directed edge ei,j from vi
to vj in graph G, an edge eρa,γb with the same direction as edge ei,j is
added to the new graph GT. Similarly, if a directed edge ej,i exists in
graph G, a directed edge eρb,γa is added to GT. These new added edges
are used to merge two equivalent sets in different strongly connected
components and make a connection between them. Note that the
weights of the edges are updated during the merging process.

Note that we assume the instances of a topic exist in at most one
strongly connected component after the vertices of each equivalent
set have been merged to form one vertex. We defer consideration of
the case where the same topic belongs to more than one strongly
connected component to a future work. Next, we provide an example
of implementing the GKF-TL algorithm.
4.2.1. Example of applying GKF-TL mining algorithm
The following example considers a group of four workers with

similar KFs. Their topic-level KFs (TKFs) are listed in Table 3. Each
element in a TKF is used to represent a topic domain. Thus, the
elements in a TKF are arranged as a topic sequence based on the times
they were referenced. As a topic may appear more than once in a
Table 3
The TKFs of four workers.

Worker Topic-level KF (TKF) TKF'

John bA, B, A, C, D, FN bA1, B1, A2, C, D, FN
Mary bB, A, B, C, DN bB1, A1, B2, C, DN
Lisa bB, A, D, FN bB1, A1, D, FN
Tom bA, B, A, E, G, DN bA1, B1, A2, E, G, DN
specific KF, because the worker needs the knowledge at different
times, we apply the GKF-TL mining algorithm to deal with topic loops.

A topic that appears more than once in a TKF is labeled as a
different instance of the topic, and a TKF with duplicate topics is
transformed into a TKF'. Then, the algorithm uses TKF' to build the
initial graph of the GKF model. In this example, we set the user-
specified thresholds for topic relation identification and edge deletion
as ε=1 and θ=0.3 respectively. The initial graph derived before
graph transformation is shown in Fig. 12. A strongly connected
component is discovered in the initial graph. To resolve the vertex
relation problem in the strongly connected component, the algorithm
applies the topic relation identification procedure detailed in Fig. 5.
The vertex relation in the strongly connected component is shown in
Gs in Fig. 12. The number on each edge represents the edge's weight.
Recall that the weight is derived by Eq. (5) to indicate the importance
of the edge.

Fig. 13 shows the result of removing the infrequent edges from the
graph in Fig. 12. The sub-graph Gs in the initial graph is transformed
into a vertex vGs; and the edge that connects a vertex in Gs with
another vertex, i.e., eρ,D, is removed because its weight is less than 0.3.

Finally, the algorithm merges vertices that are different instances
of the same topic into one vertex. For example, in Fig. 12, vertices vB1
and vB2 are different instances of the same topic, so they aremerged to
form the vertex vB. Moreover, the edge eρ,B2 is replaced by an edge
connecting vρ to vγ; and the edge eB2,C is changed to edge eρ,c. The
vertices vA1 and vA2 are two instances of topic A; hence they are
merged to form vertex vA, and their edges are changed accordingly.
Fig. 14 shows the final GKF graph, which considers the duplicate
topics in each worker's TKF. To illustrate all knowledge paths in the
graph, the vertex vGs is converted into the original graph Gs.

4.3. Identifying knowledge referencing paths in a GKF graph

We have developed a method for identifying frequent knowledge
paths from the GKF graph to describe the information needs of a group
of workers, i.e. their knowledge referencing behavior. A knowledge
path, which represents the knowledge referencing behavior of a group
of workers, consists of several vertices and edges that can be traversed
from the start vertex to the end vertex. To identify a frequent
knowledge path, a path score derived from the weights of the edges
on a path is used to evaluate each path. Paths with scores higher than
a user-specified threshold are regarded as frequent knowledge paths
in the GKF and are selected for the group. Specifically, such knowledge
paths (patterns) are used to represent the frequent knowledge
referencing behavior and important knowledge flows. The paths can
also be provided to help group member access and learn group-
related knowledge.

We are interested in finding frequent knowledge paths because
they represent the frequent referencing behavior patterns of a group
of workers. The discovered paths will be important references for
workers, especially for novices in the group. A path's score indicates
its importance and is based on the weights of the edges on the path, as
defined in Eq. (6).

psi = Minfwex;y j∀ex;y∈pathig; ð6Þ

where psi is the path score of the path i; andwex,y is the weight of edge
ex,y, which belongs to the path i and represents a direct flow relation
between vertex x and vertex y. Based on the weights of all the edges
on a specific path, a path score is derived from the minimal weight
among the edges to indicate the path's level of importance. Note that
the edge weight derived by Eq. (5) denotes the importance of the
direct flow in a GKF. A large edge weight means that the referencing
flow between topics is highly significant for the group of workers.



Fig. 12. The initial graph of the GKF model with topic loops.
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5. The prototype system for mining group-based knowledge flows

In this section, we develop a prototype system to demonstrate the
proposed methods for mining group-based knowledge flows (GKFs),
which are generally difficult to formalize. To address the problem, our
system provides a mining function and modules to identify GKFs. The
referencing paths with scores higher than a user-specified threshold
are identified to represent the frequent knowledge referencing
patterns of the group.

We use a dataset from a research laboratory in a research institute.
It contains information about 14 knowledge workers, 424 research
documents, and a usage log that records the time documents were
accessed and the workers' document needs. Each worker may
perform a number of tasks, e.g., conducting a research project and
writing research papers.

5.1. System implementation

To implement our prototype system for group-based KF mining,
we use Microsoft Visual Studio 2005 (with C#) to develop the
system and Microsoft SQL Server 2005 as the database system to
store the dataset. Because the dataset contains workers' logs, it
should be preprocessed to generate each worker's codified-level KF
and topic-level KF. To obtain the KF, documents in the dataset are
grouped into eight clusters by using the agglomerative hierarchical
clustering method described in Section 2.3. Based on the clustering
results, a topic-level KF is generated by mapping the codified
knowledge into its corresponding clusters for each knowledge
worker, as described in Section 3.1. Then, the two types of KF, the
topic-level KF and the codified-level KF, are derived to describe the
information needs of a worker. We use such KFs to build a
prototype system to demonstrate the method for mining the
knowledge flows of a group of workers.

Our system has twomajor functions: worker clustering and group-
based knowledge flow mining. The former identifies a group of
workers based on the similarities of their knowledge flows, as
Fig. 13. The graph of the GKF
described in Section 3.2. The latter identifies a group's knowledge
flow and uses a directed graph to present the mining results, as
described in Section 4. An interface that can visualize the KF is
necessary. Note that our system can be applied in any knowledge
intensive organization to help workers obtain and learn knowledge.
Next, we describe the system in detail.

The knowledge flow mining system is comprised of three
modules: the main module, the worker clustering module and the
GKF model. Each module has functions to help the user (a manager/
worker) build a knowledge flow easily. The system provides essential
functions for building the GKF model, e.g., the system settings, the KF
alignment similarity and clustering functions. The system setting is
used to initialize the system environment, e.g., database selection. The
KF similarity function calculates the similarity between two workers'
knowledge preferences based on their knowledge flows and creates a
similarity matrix of the workers. Then, the worker clustering method
uses the similarity matrix to cluster workers who have similar KFs.
The system also provides an interface to show the topic-level KFs of all
workers and the results of worker clustering. To simplify the
presentation of the KFs, we use a number to represent a topic domain
that consists of topic-related terms.

Next, using the proposed algorithm, the system builds a group-
based knowledge flow (GKF) for a group of workers, as shown in
Fig. 15. All the workers in a cluster have similar KFs, which are used to
generate a GKF graph to characterize the referencing behavior of the
group. In the graph, each circle is a topic domain represented by a
number, while each directed edge indicates the flow of knowledge
between two topics. The topic domain contains a topic profile, which
consists of several representative terms and their term weights.
Fig. 15 shows the profile of topic domain 53 in a small window. The
listed terms represent the knowledge of the topic.

In addition, the number on an arrow indicates the importance of a
flow relation in this group's topics. From the GKF graph, we observe
that 6 topics, i.e., 4, 17, 19, 21, 27, and 29, in a strongly connected
component can be referenced in parallel. That is, there is no specific
order among the topics accessed by this group of workers. Moreover,
model with topic loops.



Fig. 14. The final GKF graph, which considers the duplicate topics in each worker's TKF.
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the following topics of these parallel topics are topic 53 and topic 36.
Such two topics represent two different knowledge domains. Thus,
the task-related knowledge may flow through 2 paths from the start
vertex to the end vertex. In Fig. 15, the listed paths, which consist of
several relevant topics and directed edges, are the knowledge
referencing paths of this group. The paths with scores larger than a
user-specified threshold are frequent referencing behavior patterns.
The paths can be regarded as knowledge references for group
members to share needed task knowledge.

5.2. Discussion

GKF mining by task-based groups has several advantages in a
knowledge intensive organization. The group-based knowledge flow
(GKF) is derived from the knowledge flows of group members and
represents the core knowledge required to perform their tasks.
Identifying the frequent topics of interest and major referencing
behavior patterns of group members can facilitate knowledge reuse,
cooperation and sharing among workers who perform similar or
relevant tasks and have similar referencing behavior patterns.
Fig. 15. The GKF graph and knowledge re
The GKF, which represents frequently accessed task-related
knowledge topics and the order in which they were referenced, can
provide important knowledge resources to fulfill workers' task needs
when they reference task-relevant knowledge. Based on the GKF, the
frequently accessed task-related knowledge could be reused and
shared with the group to support workers in the performance of their
tasks. The frequent knowledge paths in the GKF help a worker access/
learn task-related knowledge, overcome obstacles encountered when
performing a task, and enhance his/her learning efficiency and work
productivity. From the group-based knowledge flow, workers can
discover the knowledge frequently accessed by other groupmembers.
Each worker can also share his/her knowledge with others to facilitate
knowledge reuse, cooperation and sharing. In addition, the GKF could
complement each worker's knowledge flow.

From the perspective of a task's execution, a group-based
knowledge flow will be an important knowledge asset when
performing a task similar or relevant to the performance of those
tasks from which the group-based knowledge flow was derived. For a
novice who needs to execute a task similar to the tasks executed by
group members, the GKF can provide a reference for accessing and
ferencing paths for a specific group.
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learning the required knowledge. For example, a group-based
knowledge flow derived from the knowledge flows of several
researchers working on Social Network Analysis (SNA) related
research tasks would be helpful to a new researcher who has just
started working on an SNA-related research task.

In addition, some tasks, such as business processes or workflows,
may be executed repeatedly. The frequently referenced knowledge
used to perform the tasks can be identified and shared with group
members to enhance their performance through knowledge reuse,
cooperation and sharing based on the GKF. In summary, the GKF can
be used to support the performance of tasks, enhance organizational
learning, and facilitate knowledge sharing and reuse in knowledge-
intensive environments.

6. Conclusion and future work

In this paper, we have proposed algorithms for mining group-
based knowledge flows (GKFs). Workers performing similar (rele-
vant) tasks or cooperative tasks generally have similar task-related
information needs, and can form a group to facilitate knowledge
reuse, cooperation and sharing. To discover the GKF of a group of
workers, we design algorithms that can analyze the workers'
information needs expressed in their KFs to generate a GKF model.
The model represents the information needs, the direction of
knowledge flows, and possible paths for referencing task-relevant
knowledge for a group of workers with similar task needs when they
perform similar or cooperative tasks. Based on the model, we can
identify representative paths as common behavior patterns for the
group. Thus, the patterns can be regarded as accessing and learning
references of task-related knowledge to help group members
accomplish their tasks. The GKF model can be used to identify task-
related knowledge topics and their flows as important knowledge
resources to fulfill workers' task needs and promote knowledge
sharing among group members. Finally, we implement a prototype
system to demonstrate the efficacy of the proposed algorithms. Our
system not only derives the KF for a group of workers, but also
visualizes the mining results for further analysis.

In this work, we focus on proposing a theoretical model and
algorithms for deriving GKFs. A prototype system is implemented to
demonstrate the efficacy of the proposed approach. In our future
work, we will conduct further evaluations using empirical data
collected from organizations. Wewill also develop a recommendation
method based on the GKF, so that workers can reuse, cooperate and
share their knowledge with other groupmembers to accomplish their
tasks. Moreover, different working groups in an organization may
provide knowledge support for one another. To facilitate knowledge
sharing in a group or among groups, we will investigate recommen-
dation methods that provide task knowledge to workers and groups
proactively. The effectiveness of a recommendation method depends
to a large extent on how much workers trust one another. This factor
is important because the level of trust may determine whether or not
a worker is willing to share knowledge with others. Through group
recommendation methods, task-related knowledge can be shared
effectively to enhance the efficiency of all knowledge workers.
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