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a b s t r a c t

We study the electronic transport through a single-molecule transistor (SMT) by considering the phonon-
associated tunneling rate. We find that the electron–phonon interaction (EPI) changes the constant
conductivities of the leads into a multi-channel structure of single vibration frequency. This interference
of the multi-channel tunneling process results in a bias-dependent tunneling rate and obscures the
conductance peaks at large bias voltage. The bias-dependent tunneling rate further causes a remarkable
conductivity gap between the chemical potential of the leads (n = 0) and the first phonon sideband
(n = 1). These anomalies are consistent with the experimental observations in transport experiments.

© 2010 Elsevier Ltd. All rights reserved.
0. Introduction

Among the research topics of molecular devices, one of
the particular interests in transport issues is to study charge
states coupling to their vibrational or configurational modes. In
recent years, as the trend of miniaturization of electronic devices
continues, the influence of electron–phonon interaction (EPI) on
a single-molecule transistor (SMT) system [1–4], as well as on
a semiconductor quantum dot (QD) system [5,6], has received
much attention and has been investigated experimentally by a
number of groups. Some of them reported that single-molecule
transistors could be strongly affected by a single-vibration mode.
In Ref. [1], Park et al. showed that this kind of mechanical device
can be realized by attaching a C60 molecule to the gold surface,
where the single phonon mode of the C60 was induced via the
van der Waals force and electrostatic interactions. They observed
the staircase current and found oscillations of conductance as the
bias in both terminals was increased. Later, Weig et al. successfully
reproduced a similar staircase current by embedding a quantum
dot on a freestanding GaAs/AlGaAs membrane [6], where a single-
vibrationmode is applied by an electron–phonon cavity. In a recent
work published in Ref. [7], Leturcq et al. took advantage of a
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suspended carbon nanotube (CNT) to create a vibrating quantum
dot for the observation of strong electron–phonon coupling effects
on the current. They confirmed the phonon-blockade behavior
at low-bias and probed conductance peaks in the Coulomb
Blockade regions, where the phonon frequency is decided by the
longitudinal phonons in the CNT.

The rate equation (RE) [8], the master equation [9–11] and
the NEGF [12,13] have successfully explained many transport
experiments. Each of these theoretical approaches has its own
advantages and limitations. For instance, the RE rapidly yields the
equation ofmotion for every state by directly replacing the density
ρ


t ′

by ρ(t), that is, it can only work under a weak-coupling

environment. In the report by Brandes [9], they calculated themain
current of double quantum dots via the RE and concluded that
the non-linear electric current stemmed from the shake-up effects
of the phonons. Theoretically, the EPI induces phonon sidebands
(PSB) in the spectral function and leads to satellite conductance
peaks of PSB in mesoscopic nanostructures. These multiple peaks
appear asymmetrically with respect to the renormalized level
of the quantum dot, and a PSB can be acquired as the applied
bias (eVb) exceeds the required energy of the phonons [14–16].
To our knowledge, the non-equilibrium Green’s function (NEGF)
is a convincing tool for solving kinetic equations, particularly
when the system is under non-equilibrium conditions [17,18]
(Vb ≠ 0). The advantage is that a state is well-defined in the
far past and the historical evolution of the state is maintained
well by the S-matrix. Basically, the evolution of the propagator in
the NEGF is managed on a complex contour, not a real-time one.
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In order to change the complex contour into real-time physical
quantities, sophisticated mathematical techniques are required,
and a transformation procedure called the analytic continuation,
or the Langreth theorem (LT), is applicable [19]. In Ref. [17], one
of the famous applications of the Langreth theorem on quantum
transport was developed by Jauho, Wingreen, and Meir (JWM). In
the conventional JWM’s current formula [12], the entire system
is divided into the leads and the central region, and the current
can be obtained as we solve the Green’s functions Gr,< (ω). Note
that the JWM’s formula possesses the self-consistent feature to
fulfill the continuity rule [17]. Here, the self-consistency means
that the bandwidth of the spectral functionmust coincide with the
tunneling rate as solved by the Fermi golden rule.

In this paper the EPI system is studied under a small polaron-
transformed frame [18], where the electron tunneling through
the barrier is accompanied by a creation/annihilation of a phonon
field [14,20,21], i.e. V (∗)kα → VkαX+(X). According to the Fermi
golden rule [18], the EPImay yield a phonon correlation involved in
particle tunneling. So far most theoretical studies have attempted
to separate the phonon correlation function from the interacting
system via the Born approximation [12,14,18], i.e., the (EPI)
retarded Green’s function is written as a product of a (retarded)
electron Green’s function and a phonon correlation function. Even
though this approach was proved to be successful in predicting
the energy for emission (or absorption) of a phonon, it may
cause phonon sidebands, which disagrees with experiments in the
zero-phonon resonant tunneling regime [14]. In practice, this is
because some correlationswere not taken into consideration in the
calculations referred to in Table 4.1 of Ref. [17]. In order to correct
this conflicting sideband, Chen et al. [22] utilized the current
formula derived by Wingreen and Meir [13] and studied from
the lesser/greater Green’s function. Consequently, a generalized
current formula was obtained, and was able to work at zero bias
voltage and arbitrary temperatures. Nonetheless, these theoretical
predictions still do not coincide with the experimental results. For
example, at e |Vb| > ω0, there exists a conductivity gap between
the sidebands of n = 0 and n = 1 in experiments [1], while it is
absent through the mean-field theory (MFT) calculations, which is
due to the inappropriate treatment of the electronGreen’s function
in the dot system. Note that in Ref. [22], Chen and co-workers
imposed a concept of an average field to simplify the particle
transport through the EPI system (MFT). The mean-field implies
that the particle interacts with only the average field of the others,
i.e., the systems are at equilibrium, and hence the interaction
field operator may be replaced by a scalar field VkαX+(X) →

Vkα ⟨X⟩. However, this scalar assumption is insufficient to describe
the particle transport properties caused by the EPI effect, to
be specific, when the bias voltage was turned on at some t0,
i.e., the system is now at non-equilibrium. Hence, the relevant
time-dependent interactions, such as phonon quantities such as
X(t)X+


t ′


should be treated as the contour-ordered Green’s
function, and then the application of the Langreth rule gives the
real time Green’s functions. In this article, we ignore the higher-
order tunneling process induced by the heating of vibration or
mutual influence in sub-electronic and sub-phononic systems, and
treat the lead electrons and the phonons as in equilibrium. That
is, we focus on the lowest-order electron–phonon interaction. In
addition, the spin degree of freedom and the influence of Coulomb
interaction are also omitted.

1. Physical model and formulation

1.1. Model

The electron transport between the leads and the central
region is considered as shown in Fig. 1. For example, in a single
resonant QD or SMT, electrons vibrate at a single frequency ω0.
The EPI system is studied theoretically through a non-perturbative
μL
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Fig. 1. A vibrating single-molecule transistor (C60).

canonical transformation H = eSHe−S with S = (λ/ω0) d+d
b+

− b


[14,18,22]. Under this unitary transformation, the
Hamiltonian now reads:
H = Hcen + H lead + HT ,

Hcen ≡ ε0

Vg


d+d + ω0b+b, (1)

H lead =

−
kα ,α∈L,R

εkα c
+

kα ckα , (2)

HT =

−
kα ,α∈L,R

Vkα c
+

kαdX + h.c, (3)

where

X ≡ exp
[
−
λ

ω0


b+

+ b
]
. (4)

The operators d+(d) and c+

kα


ckα


represent the creation (annihi-

lation) operators of the electron in the QD (or SMT) and the α
lead, respectively. The operator b+(b) is the creation (annihilation)
operator of the phonon. ε0 ≡ ε0


Vg


− ∆ is the dot level en-

ergy controlled by the gate voltage, with the canonical energy shift
∆ = λ2/ω0. The coupling strength of EPI is denoted by λ and the
tunneling matrix element between the QD (or SMT) and the α lead
is defined as Vkα . Here εkα is the energy of the electron in theα lead,
which remains unchanged because of the absence of phonon field
in the α lead.

1.2. The transport formula and self-energy

The current from the left lead to the central region can be
defined [12] as

JL(t) =
2e
h̄
Re

−
k,α∈L

Vkα,dG<d,kα

t, t ′


|t ′→t (5)

where the Green’s function G<d,kα

t, t ′


≡ i


c+

kα


t ′

X


t ′

d(t)


to-

gether with its conjugate property are applied above. Note that the
interaction is mutual, both terminals are vibrating from the per-
spective of the quantum dot, hence c+

kα and X evolve at the same
time. Performing the continuation rules [12] on Gd,kα


τ , τ ′


and

substituting the resulting G<d,kα

t, t ′


into Eq. (5), we obtain:

JL(t) = −
2e
h̄
Im

∫ t

−∞

dt1Gr
dd (t, t1)Σ

<
αϵL (t1, t)

+G<dd (t, t1)Σ
a
αϵL (t1, t)


, (6)
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where the partial part of the tunneling self-energy can be found as

Σa
α


t, t ′


= −θ


−t + t ′

 −
n


Σ>
α,n


t, t ′


−Σ<

α,n


t, t ′


. (7)

Here Σ>,<
α,n = F+>,<

·
∑

kα |Vkα|
2 g>,<kα . F+>(t − t ′) ≡ ⟨X+(t ′)

X(t)⟩ and F+<

t − t ′


≡


X(t)X+


t ′


are the greater and lesser
phonon Green’s functions, and g<(>)kα


t − t ′


is the lesser (greater)

Green’s function for the free electron in the α lead. The Fourier
transform of the self-energies in Eq. (7) leads to:

Σ r,a
α,n (ω) =

−
kα


pn

V ∗

kαVkα

ω + nω0 − εkα ± iδ
f <α (εkα)

+ p−n
V ∗

kαVkα

ω + nω0 − εkα ± iδ
f >α (εk)


, (8)

Σ≷
α,n (ω) =

−
kα

V ∗

kαVkαp∓ng
≷
kα (ω + nω0)

= ∓i
−
n

p∓nΓα (ω + nω0) f ≷
α (ω + nω0) , (9)

where f <α (εkα) and f >α (εkα) are the electron and hole Fermi func-
tions in the α lead. In this paper, Γα (ω) = 2π

∑
kα |Vkα|

2 δ
(ω − εkα) represents the rate of a particle leaving the quantum dot
system without the EPI. The factor pn denotes the weighting func-
tion of the interactions between the electron and n phonons, which

is found as pn = e−2g

N0+

1
2


enω0/2kBT In


2g

√
N0 (N0 + 1)


[18],

where N0 and In are the Bose function and the modified Bessel
function.

1.3. The spectral function

In frequency space, the appliance of the LT on the self-consistent
Dyson equation of the electron Green’s function in the QD (or
SMT) [17,18] leads toGr,a

dd (ω) =

ω − ε0 −Σ

r,a
T (ω)

−1, where the
contour-ordered self-energyΣT induced by the tunneling process
reads ΣT (ω) = F+ (ω) ΣT (ω), and it carries the information on
the lead electrons and phonons. From the definition of the spectral
function Ad (ω) = −2ImGr

dd (ω), we get:

Ad (ω) =

∑
n,α


pnΓα f <α (ω + nω0)+ p−nΓα f >α (ω + nω0)


(ω −ε0)2 + [W (ω) /2]2

, (10)

whereε0 = ε0

Vg


− ReΣ r

T (ω) denotes the renormalized level
position, and W (ω) = −2ImΣ r

T (ω) represents the life-time
broadening (bandwidth) of the dot state. A comparison with the
conventional JWM’s formula in Ref. [17] assures that the life-time
broadening of a dot state W (ω) in Eq. (10) equals the summation
of out-tunneling rates between the leads and the system, i.e.
Eq. (8); Eq. (6) is therefore self-consistent and meaningful. Note
that G<dd (ω) in Eq. (6) can be quickly solved via using the Keldysh
equation G<dd =

Gr
dd

2Σ<
T (ω) [12]. The remaining goal is to decide

the retarded self-energy Σ r
T (ω). To this end,

∑
kα is replaced by

dωρ (ω), and the Lorentz density of states with bandwidth EC at
the chemical potential µα is assumed [20,21]. With this auxiliary
function, the integral becomes convergent, and the retarded self-
energy of the electron in QD (SMT) reads

ReΣ r
T (ω) =

−
n,α
(pn − p−n)

Γα (ω + nω0)

2π


ln


EC

2πkBT


− Reψ


1
2

+ i
ω + nω0 − µα

2πkBT


, (11)
ImΣ r
T (ω) =

1
2π

−
n,α


pnΓα (ω + nω0) f <α (ω + nω0)

+ p−nΓα (ω + nω0) f >α (ω + nω0)


. (12)

ψ(z) is the digamma function with a complex argument. It can
be seen from Eq. (11) that besides the energy shift ∆ due to
the canonical transformation, another energy shift ReΣ r

T (ω) is
obtained from the phonon correlation function. In addition to the
renormalization shift, we find that the life-time broadening of
Eq. (12) from the LT is more complicated than that from the
MFT [22], which is a constant. It is because the LT preserves the
properties of electrons and holes in the leads via the phonon
Green’s functions.

1.4. The Landauer–Büttiker formula

The Landauer–Büttiker formula [23,24] can be used to describe
the current from one lead to another, and may be derived through
the Green’s function [12]. Using the identical relations of Gr

−Ga
=

G> − G< and Σ r
− Σa

= Σ>
− Σ< in Eq. (6), an alternative

expression of current is acquired as:

Jα =
e
h̄

∫
dω
2π

−
n,n′


Tααnn′ (ω) f <α (ω + nω0) f >α


ω − n′ω0


− Tααn′n (ω) f

>
α (ω − nω0) f <α


ω + n′ω0


, (13)

where the tunneling function Tααnn′ is defined as

Tααnn′ (ω) = pnpn′

Γ α (ω + nω0)Γ
α

ω − n′ω0


W (ω)

Ad (ω) . (14)

Eqs. (13) and (14) are the central formulas for studying the
joint effect due to the phonon-associated tunneling rate.Moreover,
Eq. (13) provides a clearer picture of EPI transport than Eq. (6) does,
that is, the electron departs from the n-th (electron) state in the
α lead (source), tunnels through the dot, and arrives at the n′-th
(hole) state in the α lead (drain). In general, the electron states
are located below the chemical potential and the hole states above.
Fig. 2(a) shows a graphical illustration for this description for a low-
lying level position ε0 = −ω0 (left),medium level ε0 = 0 (central),
and higher level ε0 = ω0 (right), where the bias is at eVb = 2ω0,
and the red arrows indicate the significant channels for particles
passing through the dot. FromEq. (14),we see that Tααnn′ is expressed
in terms of the spectral function, tunneling rates, and weight
factors on both terminals pn and pn′ due to the EPI effect. At zero
temperature, the weight factor pn is zero for n < 0 [22], the Fermi
function goes towards a step function, and the transport window
for each channel, i.e. θ (µα − ω − nω0) θ


ω − n′ω0 − µα


, in

Eq. (13) is given by εFα,−n − εF
α,n′ = µα − µα −


n + n′


ω0. At

low temperature, the particle transport practices arewithinµL and
µR. However, at high temperature, p−‖n‖ is non-zero, and hence
the phonon-mediated states outside the transport window also
participate. Therefore, the current in this field is probable [7].

An analogous transport scheme has been presented in previous
publications [11,12,14,16,22,25,27], although the background
physics is different. For example, in Refs. [14] and [22] the n-
th phonon-mediated state exists in the QD (or SMT) because the
phonon field is treated as being involved in the evolution of the
dot, so the phonon sidebands come from the SMT electrons and
holes. Note that the quantized number is labeled from the energy of
the dot, not from the chemical potential of the leads. Furthermore,
Dong et al. [25] performed a mapping technique to reach a
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Fig. 2. (Color online) (a) A schematic description of the transport channels and
tunneling coefficient at different gate voltages. Here • represents the electron state
(labeled from the chemical potentail of the left lead µL) and ◦ the hole state (from
the chemical potential of the right lead µR). The red arrow denotes the transport
path. (b) The differential conductance for each channel, where the quantum pair
(n, n′) means that the particle transports from the n-th phonon-mediated state
in the α lead (electron state •) to the n′-th phonon-mediated state in the α lead
(hole state ◦). The parameters of the system are ΓL = ΓR = 0.2ω0, kBT =

0.05ω0, λ = 1.5ω0 , µL = −µR = ω0 and the Lorentz cut-off is EC = 100 in
the integral calculation [21]. (c) Differential conductance in the leads Glead (blue
line) and in the dot Gs,l

lead (red lines), where Gs
dot (solid line) is induced by the EPI

renormalization, and Gl
dot (dotted line) is caused by the level broadening. The inset

shows that the conductance Gs
dot becomes significant at strong electron–electron

coupling (red dotted line, ΓL = ΓR = 0.6ω0) while it is highly supressed at strong
electron–phonon coupling (blue line, λ = 2ω0).

Landauer–Büttiker formula similar to the one in Eq. (13). However,
since the phonon correlation is not involved in the tunneling self-
energy, this technique results in a bias-independent bandwidth
in the tunneling function, no matter what approximation is
adopted. It is worth mentioning that the results obtained by Braig
and Flensberg [27] through the RE are similar to those of ours, and
a comparison is made in Section 2.2.

1.5. Differential conductance

Taking the derivative of Eq. (13)with respect to the bias voltage,
the differential conductances can be expressed as:

G = Glead + Gdot, (15)

Glead =
e
h̄

∫
dω
2π

−
n,n′

Tααnn′ (ω) f ′

nn′ (ω) , (16)

Gdot =
e
h̄

∫
dω
2π

−
n,n′

∂Tααnn′ (ω)

∂Vb
fnn′ (ω) , (17)

fnn′ (ω) = f <α (ω + nω0) f >α

ω − n′ω0


− f <α (ω + nω0) f >α


ω − n′ω0


, (18)
where the wide-band limit is considered, and Glead and Gdot
are defined as the conductance in the leads and in the QD (or
SMT) system, respectively. Jα (ω) is the current density, fnn′ (ω)
determines the effective transport window and the derivative of
the Fermi function with respect to the bias reflects a thermal
broadening function in the leads [26],

f ′

nn′ (ω) = β
−
η∈±1

 f >R

ηω − n′ω0


8 cosh2


β

2 (ω + ηnω0 − µL)


+
f <L (ηω − nω0)

8 cosh2

β

2 (ω − ηn′ω0 − µR)

 . (19)

For eVb > 0, f ′

nn′ (ω) shows multiple peaks at ω = εFα,−n(= µα

− nω0) and ω = εFα,n (= µα + nω0), where n and n′
= 0, 1, 2

and so on. Substituting Eq. (19) back into Eq. (16), it is found that
Glead reaches itsmaximumwhen the dot levelmatches the thermal
broadening peaks. Therefore, when drawing Glead versus Vg (see
Fig. 2(c)), the satellite peaks of differential conductance are at Vg =

εFα,−n and εFα,n, symmetrically distributed with respect to Vg = 0.

2. Results and discussion

The interference of the multi-channel tunneling process plays
an important role in the quantum transport. This effect may shift
the level position to higher energies and cause the bias-dependent
bandwidth of the tunneling function in the interacting system,
and further leads to the conductivity gap between the chemical
potential of the leads (n = 0) and the first phonon sideband
(n = 1).

2.1. The influence of the EPI energy shift

According to Eq. (17), the conductivity probed in the dot can be
further divided into two parts,

Gs(l)
dot =

e
h̄

∫
dω
2π

Jα (ω) Ks(l) (ω) , (20)

where Gs
dot and Gl

dot respectively characterize the conductance
induced by the energy shift and the bandwidth of the dot level, and
Ks (ω) and Kl (ω) are solved as

Ks (ω) = −


ReGr (ω) ·

 −
n,α∈L,R

(pn − p−n)Γ
α (−1)δL,α

βImψ1


1
2

+ i
β

2π
(ω + nω0 − µα)


 , (21)

Kl (ω) = Ad (ω)W ′ (ω) , (22)

W ′ (ω) = β
−

n,α∈L,R

(pn − p−n)Γ
α (−1)δL,α

16 cosh2

β

2 (ω + nω0 − µα)
 .

A comparison between Gs
dot and Gl

dot in Fig. 2(c) gives that Gl
dot

is always negative while Gs
dot is positive at the quantized levels

of phonon-mediated states

eVg = nω0


. In addition, Gs

dot also
exhibits a logarithmic energy dependence near the quantized level,
as depicted in the inset of Fig. 2(c). In practice, this is due to the
consideration of the EPI-renormalized energy shift during particle
transport. A comparison of Gs

dot in the inset of Fig. 2(c) shows that
the energy-shift dependence becomesmore apparent (dotted line)
as the electron–electron coupling is increased (ΓL = ΓR = 0.6ω0),
whereas it is highly suppressed when increasing the intensity of
the EPI. This is because of the existence of e−g in the weighting
factor pn.
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a b

c d

Fig. 3. (Color online) The conductance map versus the gate voltage Vg and the bias
voltage Vb , where (a) is solved with the MFTmethod and (b) with the LT method. In
(b), a gap always exists between the edge of the conductance (chemical potential,
n = 0) and the first phonon-mediated state (n = 1). Note that the parameters
are the same in Figs. 2 and 3. The differential conductance as a function of the
gate voltage is plotted at eVb = 2.5ω0 . Left inset: the schematic description of
particle transport through the dot at eVg = 0.75ω0 . There exist three channels
for particle transport, (0, 0) , (0, 1), and (0, 2). Right inset: the MFT-PAT current.
(d) The conductance in the leads (blue dashed line) and in the dot (red dashed line).
The solid line is the total conductance, and the arrow indicates the occurrence of
the conductivity gap. Left inset: the phonon-associated tunneling rate due to the left
and the right leads (WL andWR). Right inset: the LT-PAT current, where no resonant
peak occurs at eVg = 0.75ω0 .

2.2. Conductivity gap

Next we investigate an experimentally observable feature
induced by the phonon-associated tunneling rate, the conductance
gap [1] (cg). Comparison of Fig. 3(a) and (b) suggests that a gap
always exists between the edge of the conductance (chemical
potential, n = 0) and the first phonon-mediated state (n =

1); however, no conductance gap appears in the MFT calculation.
In the MFT, the current can be understood as an effective
particle propagating in an average field between themulti-channel
leads, where the spectral function of the dressed electron in the
dot is given by Ad (ω) = Γ /[(ω − ε0)

2
+ Γ 2

] with Γ =

(ΓL + ΓR) ⟨X⟩
2 /2, which is independent of the bias, analogous to

the model without EPI. Taking Ad (ω) in Eqs. (15)–(18), we obtain
G = Glead, and hence the conductance peak represents the vacant
phonon-mediated states in the wire. In general, the bandwidth is
the decay rate, i.e., the out-tunneling rate. At dynamic equilibrium,
the total out-tunneling rate is supposed to balance the sum of the
in-tunneling rates so as to satisfy the continuity rule. Nevertheless,
in the MFT the in-tunneling rate is bias-related while the out-
tunneling rate is a constant, which signifies that some information,
such as electrical properties, will be lost during the transport.

According to the derivations in Eq. (6), we obtain W (ω) =

−2ImΣ r
T (ω) from the LT method, meaning that the level

broadening of the dot equals the summation of out-tunneling rates
between the leads and the system. From Eq. (12), we find that the
electric information of the leads is kept via the electron–phonon
correlation function. Since the Fermi functions are non-uniformly
enhanced by the phonons (weighting factors), Gdot has a great
impact whenW is differentiated with respect to the bias.

Fig. 3(d) gives the profile of Glead and Gdot versus eVg at eVb =

2.5ω0. We can see that Gdot presents a similar peak-structure to
Glead, but with negative amplitude. In order to analyze those peaks,
we can perform the weak-coupling limit [17]. The weak coupling,
that is, the spectral function in Eq. (10) taking the form of Ad (ω) =

2πδ (ω − ε0), is performed on Eqs. (16), (17) and (13), which gives

Glead =
e
h̄
Γ αΓ α

W (ε0)

−
n,n′

pnpn′ f ′

nn′ (ε0) , (23)

G(l)dot = −
e
h̄
J (ε0)W ′ (ε0) , (24)

J (ε0) =
e
h̄
Γ αΓ α

W (ε0)

−
n,n′

pnpn′ fnn′ (ε0) . (25)

Gs
dot does not exist since ReΣ r

T (ω) approaches zero at small Γ .
This is a good approximation because Eqs. (23)–(25) satisfy the
definition of G = ∂ J (ε0) /∂Vb. Moreover, when rewriting p−n =

pne−βnω0 inW (ε0) and fnn′ (ε0), and performing some algebra, we
readily reach the same current expression for a single resonant
model as reported by Braig and Flensberg [27]. This is because
the application of the RE, a method used to describe the quantum
transport as the correlations in the system are much shorter
than the electron transfer time, is equivalent to the expression of
Ad (ω) = 2πδ (ω − ε0) in the NEGF [28,29].

Next, we consider the source of the conductance gap. At zero
temperature, the summation of Eqs. (23) and (24) leads to:

G = Gdot + Glead

=
e
h̄
Γ LΓ Re−2g

W 2
T=0 (ε0)

−
n,n′

gn+n′

n!n′!


W

′

T=0 (ε0) fnn′ (ε0)

+WT=0 (ε0) f ′

nn′ (ε0)

, (26)

where WT=0 and fnn′ consist of multiple step functions, and
W

′

T=0 (ε0) and f ′

nn′ (ε0) comprise delta functions. In the MFT,
WT=0 (ε0) = Γ , which is a constant such that W

′

T=0 (ε0) = 0
and G = Glead. Consequently, Eq. (26) is directly proportional to
the thermal broadening function f ′

nn′ (ε0), and results in a multiple
peak structure, as depicted in Fig. 3(c). At eVg/ω0 = 0.75, three
available channels (0, 0) , (0, 1), and (0, 2) contribute to the
tunneling current (see the left inset of Fig. 3(c)). However, for the
LT method, W

′

T=0 (ε0) is non-zero at eVg/ω0 = 0.75. Taking these
quantum pairs in Eq. (26) reveals that Gdot and Glead are of the
same order and cancel each other out (see Fig. 3(d)), suggesting
that the existence of a phonon-associated tunneling rate would
greatly scale down the current and lead to a conductance gap in
this field. The current–voltage characteristics in the right inset of
Fig. 3(d) reflect this phenomenon. From the viewpoint of physics,
this means that a virtual state is generated in this energy field. It
is the first time that such a conductivity gap has been examined
theoretically in the quantum dot system.
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3. Conclusion

By applying the small polaron transformation and non-
equilibrium Green’s function (NEGF) technique, we examine the
joint effects due to the phonon-associated tunneling rate. We
suggest a useful transport formula and derive its corresponding
spectral function to satisfy the continuity rule of the conven-
tional JWM’s formula. We find that, as the phonons are coupled
to the electron tunneling process, the relevant phonon correla-
tion breaks the electron–hole symmetry in the non-interacting
terminals, making the tunneling rate change as a quantized feature
of the vibration frequency. With the help of the Landauer–Büttiker
formula, we recognize that the complex phonon-assisted tunnel-
ing process could be remodeled into a single-level quantum dot
coupling to multi-channel leads. The current is written as a sum
of all tunneling flux via different channels. The conventional ef-
fective single-particle transportation based on the mean-field the-
ory is shown to be insufficient to interpret the phonon-assisted
tunneling process. We find that the channel interference effect
obscures the conductance map as the bias is increased. Such inter-
ference effects also lead to a significant conductance gap between
the chemical potential of the leads and the first phonon-mediated
state. This behavior has been widely observed in experiments but
not explored theoretically before.

We hope that this new transport scheme together with the
study of the phonon-associated tunneling rate will provide useful
insights into the quantum transport field, and that more new
physics like the low-frequency noisewill be progressively explored
in the future.
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