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Using SVM based method for equipment fault detection in a thermal power plant
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A B S T R A C T

Due to the growing demand on electricity, how to improve the efficiency of equipment in a thermal

power plant has become one of the critical issues. Reports indicate that efficiency and availability are

heavily dependant upon high reliability and maintainability. Recently, the concept of e-maintenance has

been introduced to reduce the cost of maintenance. In e-maintenance systems, the intelligent fault

detection system plays a crucial role for identifying failures. Data mining techniques are at the core of

such intelligent systems and can greatly influence their performance. Applying these techniques to fault

detection makes it possible to shorten shutdown maintenance and thus increase the capacity utilization

rates of equipment. Therefore, this work proposes a support vector machines (SVM) based model which

integrates a dimension reduction scheme to analyze the failures of turbines in thermal power facilities.

Finally, a real case from a thermal power plant is provided to evaluate the effectiveness of the proposed

SVM based model. Experimental results show that SVM outperforms linear discriminant analysis (LDA)

and back-propagation neural networks (BPN) in classification performance.
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1. Introduction

Thermal power plants fired by fossil fuels are one of the primary
sources of noxious greenhouse gas emissions, producing, carbon
dioxide. Even so, they are still the major source of supplying
electricity in Taiwan. According to the annual report of the Taiwan
Power Company (TPC), the total power generation of their eight
thermal power plants exceeds 70% of the total energy generated
nowadays [3] in Taiwan. Consequently, due to growing demands
on electricity, how to improve the efficiency of equipment in a
thermal power plant has become a critical issue.

Huang et al. [6] indicated that the efficiency and availability
depend heavily on high reliability and maintainability. In order to
raise efficiency, the equipment of thermal power plants is
becoming larger and more complex. However, due to lack of
manpower and information resources, the diagnosis and repair of
failed equipment cannot usually be performed immediately. From
lots of published articles [58–62], we can find that to identify the
failure types of steam turbines and their root causes is time
consuming. It needs professional knowledge regarding materials
and mechanical engineering. Generally speaking, thermal power
plant engineers can merely handle routine or uncomplicated
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maintenance tasks. Additional tests and expert advice are
additionally required from the technical support of original
equipment manufacturers for complex fault diagnosis and
maintenance, although these additional tests are often costly
and involve some risk to equipment [8]. Hence it leads to long
downtimes for equipment and causes significant production losses
[11]. In order to reduce the cost of maintenance and risky
experiments, the concept of e-maintenance has been introduced to
identify the root cause of component failure, to reduce the failures
of production systems, to eliminate costly unscheduled shutdown
maintenances, and to improve productivity [12].

In an e-maintenance system, the intelligent fault detection
system plays a crucial role for identifying failures. Data mining
techniques are the core of such intelligent systems and can greatly
enhance their performance [6,8,9]. Applying these techniques to
fault detection makes it possible to eliminate additional tests or
experiments which usually involve high expense and highly risk
[8]. Recently, several data mining techniques such as artificial
neural networks, fuzzy logic systems, genetic algorithms, and
rough set theory have all been employed to assist the detection and
condition monitoring tasks [4,10]. For example, Yang and Liu [8]
presented a hybrid-intelligence data mining framework which
involves an attribute reduction technique and rough set theory to
diagnose the faults of boilers. Shu [45] established an interactive
data mining approach based inference system to solve the basic
technical challenge and speed up the discovery of knowledge in
nuclear power plant. Besides, some related works designed data
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mining based models for failure inspections, but not for fault
predictions, such as the work of Yang and Liu [8]. Vast amounts of
data describing process variables for boilers and turbines have
been used for monitoring, control and over-limit alarms. Huang
et al. [6] used principle component analysis (PCA) and T2 statistics
to inspect different types of faults in a thermal power plant. Prasad
et al. [9] proposed a histogram based method to monitor and
maximize the performance of thermal power plants. Therefore,
building an intelligent system for the fault prediction of any
thermal power plants most valuable equipment, namely turbines,
has become necessary.

Since artificial intelligence techniques can improve prediction
accuracy and decrease people involvement, it is very important to
select an appropriate learning algorithm. In recent years, support
vector machines (SVM) [15], has been considered as one of the
most effective supervised learning algorithm in many pattern
recognition problems [16–18]. It has been reported that SVM
provides a better classification result than other methods such as
neural networks or decision trees [1,14,19–21,23,35]. Moreover,
SVM has been widely applied to fault detection and diagnosis in
production environment. For examples, Hsu et al. [47] integrated a
feature extraction technique, independent component analysis
(ICA), into SVM to develop an intelligent fault detector for non-
Gaussian in multivariate processes. Li et al. [48] combined another
dimension reduction method, partial least squares (PLS), with SVM
to increase the performance of on-line fault detection in batch
processes. In the work of Zhang [49], both kernel independent
component analysis (KICA, for non-Gaussian distribution) and
kernel principal component analysis (KPCA, for Gaussian distribu-
tion) are used for fault detection in, named Tennessee Eastman
process, which is a complex non-linear process created by Eastman
Chemical Company. Mahadevan and Shah [50] utilized one-class
SVM for fault detection and diagnosis and claimed that their
approach outperformed principal components analysis (PCA) and
dynamic principal components analysis (DPCA). From these works,
we can know that SVM is one of effective fault detection approach
in realistic industrial processes. In addition, SVM has been usually
combined with feature extraction techniques including ICA, PLS,
PCA, KPCA, KICA, and DPCA. But, by using feature extraction
techniques, the transformed smaller feature space cannot be
explainable and this is not good for searching root causes further.

Therefore, this work proposes a SVM based model which
integrates a dimension reduction scheme and the SVM classifier is
used to predict the failures of turbines. In this proposed model, in
order to handle the huge amounts of collected data, correlation
analysis (CA) and decision tree (DT) feature reduction methods
have been introduced. Moreover, back-propagation neural net-
work (BPN) and linear discirminant analysis (LDA) are utilized as
the benchmarks for comparison purposes. Finally, a real case from
a thermal power plant in Taiwan is provided to evaluate the
effectiveness of the proposed SVM based model.

2. Thermal power plant

This section provides a brief introduction of a thermal power
plant. In a power plant, the prime mover is steam driven. By
heating, water is transformed into steam, and it is then condensed
[(Fig._1)TD$FIG]

Fig. 1. Energy transformation of
to push a turbine of power generators to produce electricity. Fig. 1
illustrates the basic steps in converting fossil fuels to electricity.

2.1. Equipment in a thermal power plant

The equipment of a thermal power plant is schematically
shown in Fig. 2. The equipment can be classified into four major
groups. As described below, they are the steam generator, the
steam turbine generator, the electrical driven generator, and the
monitoring and alarm system.

1. Steam generator: The steam generating boiler produces steam
with high purity, pressure and temperature required for the
steam turbine that drives the electrical generator. The generator
includes boiler, water feeding system, fuel system, SCR, air
heater, EP, FGD, etc.

2. Steam turbine generator: The steam turbine generator is used to
transform the thermal energy to mechanical energy. The
generator includes the turbine and the condensed system. It
is the major piece of equipment of a thermal power plant.

3. Electrical driven generator: The electrical driven generator
transforms the mechanical energy to the electrical energy. The
generator includes electrical generator, exciter, transformer, etc.

4. Monitoring and alarm system: The system is used to monitor the
above generators, and sounds the alarm if any abnormal event
occurs.

Among them, the steam turbine generator is one of the most
valuable pieces of equipment in a thermal power plant. Therefore,
we focus on analyzing the failures of turbines in this work.

2.2. The important monitoring parameters and failure analysis of the

steam turbine generator

The steam turbine generator is the most crucial piece of
equipment in a thermal power plant. The turbine is a complex
multi-axle system involving high-pressure generators, low-pres-
sure generators, and exciter rotors [51]. The steam turbine blade is
extremely complex since it must be flexible enough to change
shape during operation in response to cold temperatures and the
dynamic coupling effect [58]. Researchers have paid lots of
attention on analyzing failures including failure types and causes
[52,53,59,60]. Besides, Marco et al. [62] indicated that turbine
startup is one of the critical problems in the operation of electrical
power plants. Parka et al. [61] indicated that reducing environ-
mental damage and increasing turbine efficiency are essential
issues. Chen [51] indicated that reliable power generation and low
maintenance costs are the major goals of power plant administra-
tion. He considered turbines are one of major parts for mainte-
nance to enhance the efficiency of power plant equipment.
Therefore, he presented an operational maintenance model by
employing radio frequency identification technology. Moreover, in
the work of Akturk and Gurel [52], the operational importance of
turbines was heightened and realized. Therefore, to keep this
generator operating smoothly without interruption by any faults,
inspecting the data of parameters reported by the monitoring and
alarm system is an important task.
thermal power plant [31].
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Fig. 2. A schematic illustration of thermal power plant [32].
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The key monitoring parameters of the steam turbine generator
include the temperature and pressure of the primary steam, the
temperature and pressure of the reheated steam, vibration of the
steam turbine generator and the rotation speed of turbine blades.
Fig. 3 demonstrates that the temperature and pressure of primary
steam and the rotation speed of the turbine shaft have a significant
effect on the power load. Table 1 summarizes some of the causes
with important monitoring parameters that lead to the failures of
steam turbine generators. Engineers can maintain or repair the
equipment with respect to the causes and failures.

Erosion of turbine blades may be caused by moisture [33]. If
water gets into the steam and is blasted onto the blades, rapid

[(Fig._3)TD$FIG]

Fig. 3. The effect of parameters on the power load [32].
impingement and erosion may occur that possibly leads to
imbalance and catastrophic failure. The balance in large rotating
steam turbines is vitally important to ensure the reliable operation
of thermal power plants [34]. Most large steam turbines have
sensors installed to measure the movement of the shafts in
bearings. This condition monitoring can identify several potential
problems and allow the repair of turbines to be planned before any
problems become serious.

The generation of electricity requires precise speed control.
Uncontrolled acceleration of turbine rotors may lead to an over-
speed trip, which causes the blade valves controlling the flow of
steam to the turbine to be closed. If so, the turbine may continue
accelerating until it breaks apart, often spectacularly. The
generator should rotate at constant synchronous speed according
to the frequency of the electrical power system. The most common
speed is 3600 revolutions per minute for a 60 Hz system [33].

The power company studied herein owns eight thermal power
plants, and our case comes from a plant which owns four 500 MW
oil/gas fired units. The experimental data are collected by the real-
time monitor system.
Table 1
The causes of failures in steam turbine generator with monitoring parameters.

Monitoring parameters Parameter variation Potential failure

Pressure and temperature

of primary steam and

reheated steam

Abnormal increase Failure in inlet

steam of turbine

Pressure and temperature

of primary steam and

reheated steam

Abnormal decrease Erosion of

turbine blade

Vibration Abnormal increase Failure in bearing

of turbine

Rotation speed Over speed Failure in blade

of turbine
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3. Implemental procedure of employed methodology

3.1. The proposed SVM based model

This section will introduce the detailed procedure of imple-
menting our SVM based model. The employed model could be
divided into five steps described as below:

Step 1: Identify monitoring parameters of turbines
Step 2: Data preprocessing
Step 2.1: Data cleaning (remove noisy or inconsistent data)
Step 2.2: Data transformation (normalize the data)
Step 3: Feature selection
Step 3.1: Implement correlation analysis
Step 3.2: Implement decision tree algorithm (C4.5)
Step 3.3: Acquire key parameters
Step 4: Construct SVM classifier
Step 3.1: Select kernel function
Step 3.2: Find optimal parameter settings
Step 3.3: Train SVM classifier
Step 5: Performance evaluation
Because modern power plants have been computerized, a

huge amount of data could be automatically collected and
stored. Therefore, the first step of our model is to identify the
monitoring parameters which are related to turbine failure
detection. The condition attributes (inputs) and the decision
attribute (output) could be confirmed in step 1. Step 2 is data
preparing phase. In this step, collected data should be prepared
for implementing feature selection and constructing classifiers.
We remove noisy and missing data, and then normalize these
clean data. In step 3, two feature selection techniques including
correlation analysis and decision tree have been utilized to
reduce dimension of input data. By synthesizing both results of
feature selection, the key condition attributes have been
determined in this step. Next, the major task in step 4 is to
build a SVM classifier including selecting kernel function,
finding optimal parameter settings and training SVM. Finally,
we will use a testing data to validate the effectiveness of the
built SVM classifier. A more detailed discussion of our proposed
approach is given in the following subsections.

3.2. Data preprocessing

After identifying input and output variables (step 1), data needs
to be preprocessed. Step 2 is to clean data and transform data. Real-
world data tend to incomplete, noisy, and inconsistent. In the step
of data cleaning, this study attempts to remove the missing data,
outliers, and correct inconsistencies in the data. Besides, different
monitoring attribute has different scales. We need to normalize all
attribute values into the same scale to avoid the influence of scales.
All values of attributes are normalized to the interval [0,1] by using
a min–max normalization equation, as expressed by Eq. (1). In this
equation, maxi is the maximum and mini is the minimum of the i-
th attribute values, and vi j is the value of i-th attribute of j-th object
and v

0
i j is the normalized value. In summary, data preprocessing

techniques can improve the quality of the data, thereby helping to
improve the accuracy and efficiency of data mining process.

v
0

i j ¼
vi j �mini

maxi �mini
(1)

3.3. Feature selection

Because the sizable data automatically collected in a thermal
power is too huge to handle, dimension reduction techniques have
been considered in this work. Typically, there are two kinds of
algorithms to reduce the feature space in classification. The first
one is feature selection which is to select a subset of most
representative features from the original feature space. The second
algorithm is feature extraction which is to transform the original
feature space to a smaller one to reduce the dimension. Although
feature extraction can reduce the dimension of feature space
greatly compared with feature selection [26], the transformed
smaller feature space cannot be explainable. Accordingly, feature
selection algorithm is used in this study.

Dimension reduction via feature selection is one of the most
fundamental steps in data processing [7,13]. Feature selection can
be understood as choosing a subset of features that achieves the
lowest error according to certain allowed losses [5]. A large feature
set often contains redundant and irrelevant information, and can
actually degrade the performance of classifier [44]. A number of
soft computing approaches, such as neural networks, genetic
algorithms (GA) [63], decision tree, rough sets [7,64], and
correlation analysis have been widely used to remove irrelevant,
unnecessary, and redundant attributes. However, when applying
these feature selection to industry, we need to consider the
computational cost and complexity. For the purpose of being easily
used, we employ correlation analysis and decision tree to
implement feature selection task in this study.

Correlation analysis is one of the common ways to select
important features. This method is to evaluate the (linear)
relationship among pair-wise inputs by using the correlation
function [22]. Correlation analysis is a proven technique to remove
redundant features, but it may fail when working with a low
number of samples or when the assumed linear relationship does
not exist. This method is employed as a base-line technique in
order to explore the complexity of our particular feature selection
problem. When using correlation analysis, first, we calculate the
correlation coefficients between attributes, and then keep only one
of the attributes which most highly correlates.

Another dimension reduction technique employed herein is the
decision tree based feature selection method. A common
understanding is that some learning algorithms have built-in
feature selections such as decision trees [25]. When decision tree
induction is used for feature selection, a tree is constructed from
the given data. All attributes that do not appear in the tree are
assumed to be irrelevant. The set of attributes appearing in the tree
form the reduced subset of attributes [24]. In this study, we will
synthesize the results of correlation analysis and decision tree to
be our result of feature selection.

3.4. Learning algorithms

3.4.1. Support vector machines

In this work, SVM [15] has been employed as the learning
algorithm due to its superior classification ability. SVM is a
supervised learning technique and it can be used for classification
and regression. The main advantages of SVM include the use of
kernels (no need to acknowledge the non-linear mapping
function), the absence of local minima (quadratic problem), the
sparseness of solution and the generalization capability obtained
by optimizing the margin [2].

Briefly speaking, SVM establishes a decision boundary between
two classes by mapping the training data (through kernel
functions) onto a higher dimensional space, and then finding
the maximal margin hyperplane within that space. Finally, this
hyperplane can be viewed as a classifier. The further introduction
of SVM operations can be found in the following.

Giving n examples S ¼ fxi; yig
n
i¼1; yi 2f�1;þ1g, where xi

represents the condition attributes, yi is the class label, and i is
the number of examples. The decision hyperplane of SVM can be
defined as ðw; bÞ, where w is a weight vector and b a bias. Let w0 and
b0 denote the optimal values of the weight vector and bias.



Table 2
The characteristics of dataset for thermal power plant.

No. of records Input attributes Target

10,822 29 continuous

attributes

1 target attribute with 3 classes

Normal: 67.75%

Low: 24.65%

Abnormal: 7.6%
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Correspondingly, the optimal hyperplane can be written as

wT
0xþ b0 ¼ 0 (2)

To find the optimum values of w and b, it is required to solve the
following optimization problem.

min
w;b;j

1

2
wT wþ C

Xn

i¼1

ji

Subject to yiðwTfðxiÞ þ bÞ�1� ji; ji�0

(3)

where j is the slack variable, C is the user-specified penalty
parameter of the error term (C > 0), and f is the kernel function.

To sum up, SVM can change the original non-linear separation
problem into a linear separation case by mapping input vector onto
a higher feature space. On the feature space, the two-class
separation problem is reduced to find the optimal hyperplane that
linearly separates the two classes transformed into a quadratic
optimization problem. In addition, several popular kernel func-
tions are listed as Eqs. (4)–(7).

Linear kernel Kðxi;x jÞ ¼ xix j (4)

Polynomial kernel of degreeg

Kðxi;x jÞ ¼ ðgxix j þ rÞg ; g >0 (5)

Radial basis function

Kðxi;x jÞ ¼ expf�g xi � x j

�� ��2g; g >0 (6)

Sigmoid kernel Kðxi;x jÞ ¼ tanhðgxix j þ rÞ; g >0 (7)

Here, r, g and g are kernel parameters and are user-defined.
According the work of Hsu et al. [36], RBF kernel function is
selected in this study. Readers can find more detailed information
about SVM in Refs. [1,16,18,20].

In addition, the result of SVM is sensitive and might easily be
influenced by parameter settings and the choice of kernel
functions. To make sure of the optimal classification performance
of an intelligent fault prediction system, BPN and LDA, which have
shown their good classification ability in lots of published works,
are employed as benchmarks.

3.4.2. Back-propagation neural networks

Neural networks implemented by using back-propagation
learning algorithms have been widely applied in pattern recogni-
tion, function approximation, and optimization. In general, neural
networks can be classified into two groups, feed-forward and
feedback networks. In this work, we use a feed-forward network
because of its superior classification ability. Besides, the back-
Table 3
The summary of attributes.

Type ID Description Notation Typ

Measure M4471 BRG NO1 VIBRATION(X) X1 Tem

Measure M4499 TURBINE SHAFT SPEED X2 Tem

Pressure P4111 TURB. PRIMARY IN P RS X3 Tem

Pressure P4113 IMPULSE CHAMBER P X4 Tem

Pressure P4115 TURB. COLD RHT P LS X5 Tem

Pressure P4120 RHTR. OUTLET P X6 Tem

Pressure P4129 EXTR. 1 P AT TURB X7 Tem

Pressure P4132 EXTR. 3 P AT TURB3 X8 Tem

Pressure P4144 CROSSVR P TO LP TURB 1 X9 Tem

Pressure P4145 CROSSVR P TO LP TURB 2 X10 Tem

Pressure P4151 HP GLAND STEAM P X11 Tem

Temperature T4107 SEC SPHTR OUT T X12 Tem

Temperature T4108 FIRST ST STM T PT 2 X13 Tem

Temperature T4109 MAIN STEAM T X14 Tem

Temperature T4111 TURB PRIMARY IN T RS X15 Equ
propagation learning algorithm [28] is the best known training
algorithm for neural networks and still one of the most useful. This
iterative gradient algorithm is designed to minimize the mean
square error (MSE) between the actual output of a multilayer feed-
forward perceptron and the desired output. According to the rule of
thumb and reports of available published papers, the number of
hidden layers should be one or two. The back-propagation
algorithm contains a forward pass and a backward pass. The
forward pass attempts to obtain the activation value. The purpose
of the backward pass is to adjust weights and biases according to
the difference between the desired and actual network outputs.
These two passes will go through iteratively until the network
converges. The detailed information about BPN can be found in
related references [29,30].

3.4.3. Linear discriminant analysis

LDA projects high-dimensional data onto a low-dimensional
space where the data can achieve maximum class separability [39].
The derived features in LDA are linear combinations of the original
variables, where the coefficients are from the transformation
matrix. The optimal projection in classical LDA is obtained by
simultaneously minimizing the within-class distance while
maximizing the between-class distance, thus achieving maximum
class discrimination [40]. LDA has been successfully applied in
many applications such as pattern recognition, image retrieval,
face recognition, and so on [38,41–43].

In conventional statistical learning techniques, linear discrimi-
nant analysis [37] and logistic regression are very popular for
pattern recognition [46]. But, LDA is stronger, involving ease of
application once the initial model has been developed. In addition,
LDA has no free parameters to be tuned and the extracted features
are potentially interpretable under linearity assumptions [5]. As a
result, LDA has also been adopted in this work.

4. Computational results

Table 2 provides a brief explanation about the data background,
including data size, number of features, and class distribution.
Totally, 10,822 examples are collected for further analysis. There
are 29 input attributes (monitoring parameters) with continuous
e ID Description Notation

perature T4113 FIRST ST STM T PT 1 X16

perature T4114 TURB COLD RHT T RS X17

perature T4115 TURB COLD RHT T LS X18

perature T4122 TURB HOT RHT INT RS X19

perature T4129 EXTR. 1 T AT TURB X20

perature T4132 EXTR. 3 T AT TURB X21

perature T4144 CROSSOVER T TO LP TURB 1 X22

perature T4151 HP GLAND STEAM T X23

perature T4470 TURB OIL CLR OUT OIL T X24

perature T4484 STM CHEST DP MTL T RH X25

perature T4485 STM CHEST DP MTL T LH X26

perature T4486 STM CHEST SHLW MTL T RH X27

perature T4487 STM CHEST SHLW MTL T LH X28

perature T4488 HP FIRST STM T X29

ipment status F53 The equipment failure modes Y



Table 4
Correlation analysis.

Input attributes Correlation coefficient (R)

X4 X5 0.9990

X4 X7 0.9999

X4 X10 0.9989

X25 X26 0.9995

X25 X27 0.9998

X25 X28 0.9996

X16 X17 1.0000

X13 X20 0.9997

X12 X18 0.9978

X3 X6 0.9951

X19 X29 0.9903

K.-Y. Chen et al. / Computers in Industry 62 (2011) 42–50 47
values and 1 target attribute with three-class labels (normal, low
and abnormal). For classification model building, 70% of the
examples are used as a training set and 30% as a test set. Table 3
summarizes the attributes of the thermal power plant dataset.

4.1. Feature selection

The main purpose of feature selection is to remove irrelevant or
redundant attributes and improve the performance of classifica-
tion. This section provides the results of correlation analysis and
decision tree based feature selection techniques. Table 4 shows
some correlation coefficient between/among attributes. The
classification may not be influenced if we merely keep one of
those highly correlated attributes for further analysis. For example,
X5, X7, and X10 (X26, X27, and X28) are highly correlated with X4
(X25). Therefore, X5, X7, and X10 (X26, X27, and X28) can be
removed. As a result, 11 attributes including X5, X7, X10, X26, X27,
X28, X17, X20, X18, X6, and X29 are considered as irrelevant
features. As a result, 18 attributes are kept for building classifiers.
Table 6
Illustration of different employed data sets in experiments.

Data set No. of attributes Employed attributes

Raw 29 X1-X29

DT 5 X3, X4, X21, X23, X27

CA 18 X1, X2, X3, X4, X8, X9, X11, X12, X13, X14, X15,

X19, X21, X22, X23, X24, X25

DT + CA 19 X1, X2, X3, X4, X8, X9, X11, X12, X13, X14, X15,

X19, X21, X22, X23, X24, X25, X27

Table 5
Extracted knowledge rules of decision tree.

Rule no. IF AND THEN

1 X3<70.96195 X4<16.33355 NODE: 4

No.: 416

2 16.5336<= X4 – NODE: 7

No.: 3034

3 X4<16.2259 70.96195<= X3 NODE: 8

No.: 1024

4 X27<500.09 16.33355<= X4<16.5336 NODE: 10 No.:

5 500.09<= X27 16.33355<= X4<16.5336 NODE: 11

No.: 295

6 X21<365.687 16.2259<= X4<16.33355

70.96195<= X3

NODE: 14

No.: 304

7 X23<316.973 365.687<= X21

16.2259<= X4<16.33355

70.96195<= X3

NODE: 28 No.:

8 316.973<= X23 365.687<= X21

16.2259<= X4<16.33355

70.96195<= X3

NODE: 29

No.: 151
In addition, Table 5 lists the knowledge rules extracted by
decision tree (C4.5). In the decision tree based feature selection
technique, the attributes appearing in nodes of a constructed tree
can be considered as important variables for classifying objects.
According to the results shown in Table 5, except for 5 attributes
(X3, X4, X21, X23, and X27), 24 attributes which do not appear in
the tree can be removed.

In order to clearly demonstrate the results, we use the notation
‘‘Raw’’, ‘‘DT’’, and ‘‘CA’’ to represent the original data and the
feature selection results of decision tree and correlation analysis,
respectively. Moreover, the union of ‘‘DT’’ and ‘‘CA’’ is employed as
another data set which is denoted as ‘‘DT + CA’’. Table 6 shows the
detailed illustration of the employed datasets.

4.2. Building classifiers and performance evaluation

To perform SVM, RBF which is one of most widely used kernel
functions in SVM applications [54–56] has been employed due to
some desirable properties. For instance, RBF includes other kernels
as special cases and avoids difficulties associated with very large
numbers because its values range between 0 and 1. Moreover, it is
well known, that the predictive performance of a SVM depends
heavily upon an appropriate choice of its parameters settings [57].
Therefore, using RBF kernel function only needs to tune of its two
parameters C and g , which facilitate adapting the classifier to a
particular task.

In this research, we use the LIBSVM version 2.82 [27], which is
an integrated tool for support vector classification and regression,
and is available at http://www.csie.ntu.edu.tw/�cjlin/libsvm. In
LIBSVM, the optimal settings of these two parameters can be found
by using grid search. Readers can find more detailed information
regarding gird search in Ref. [36]. In BPN, the parameter settings
and optimal structure of neural network are obtained by a trial-
Illustration

Original data

Keep the attributes which appear in constructed decision trees

X16, After removing those who owns high correlation between each other

X16, The union of ‘‘Re’’ and ‘‘DT’’ data sets

Important variable

Abnormal: 100.0%

Low: 0.0%

Normal: 0.0%

X3, X4

Abnormal: 0.0%

Low: 0.0%

Normal: 100.0%

X4

Abnormal: 0.0%

Low: 99.7%

Normal: 0.3%

X3, X4

18 Abnormal: 0.0% Low: 100.0% Normal: 0.0% X4, X27

Abnormal: 0.0%

Low: 7.5%

Normal: 92.5%

X4, X27

Abnormal: 0.0% Low: 12.2% Normal: 87.8% X3, X4, X21

100 Abnormal: 0.0%

Low: 99.0%

Normal: 1.0%

X3, X4, X21, X23

Abnormal: 0.0%

Low: 80.1%

Normal: 19.9%

X3, X4, X21, X23
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Table 7
The parameters and structure setting in BPN.

Data set Structure Learning rate Momentum Iterations

Raw 29-15-1 0.02 0.9 5000

DT 5-10-1 0.02 0.9 5000

CA 18-15-1 0.02 0.9 5000

DT + CA 19-15-1 0.02 0.9 5000

Table 8
The summary of SVM, BPN and LDA.

Method SVM BPN LDA

Performance Training

(%)

Testing

(%)

Training

(%)

Testing

(%)

Training

(%)

Testing

(%)

Dataset and attribute no.

Raw 29 93.64 93.13 87.71 86.50 83.62 76.71

DT 5 90.94 90.20 82.87 81.62 81.20 74.91

CA 18 92.16 91.58 87.49 88.13 83.02 76.23

DT + CA 19 93.23 92.79 87.70 86.04 82.97 75.95

Average 92.49 91.93 86.44 85.57 82.70 75.95
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and-error method whose results can be found in Table 7. Learning
rate and momentum are set as 0.02 and 0.9, respectively. The
number of training iterations is set to 5000.

Table 8 summarizes the results of SVM, BPN, and LDA on four
different datasets. Without implementing feature selection tech-
niques (raw dataset), SVM has the highest classification accuracy
(93.13%) compared with BPN (86.50%) and LDA (76.71%). Generally
speaking, from Fig. 4, it is easy to find that SVM is slightly better
than BPN and greatly outperforms LDA in all four datasets. On
average, SVM has a 91.93% classification accuracy, and it is better
than those of BPN (85.57%) and LDA (79.95%). In fact, we have
statistical evidence to support these results. Two hypothesis tests
also have been provided as follows.

H0 : mSVM � mBPN

H1 : mSVM >mBPN
(8)

As a result, the p-value is 0.015 (<0.05). Then we draw a
conclusion of rejecting H0. We have 95% confidence to believe that
SVM is significantly better than BPN.

H0 : mBPN � mLDA

H1 : mBPN >mLDA
(9)

As a result, the p-value is 0.03 (<0.05). We can therefore reject the
null hypothesis (H0). We have 95% confidence to believe that BPN is
better than LDA. Finally, we can conclude that SVM has a better[(Fig._4)TD$FIG]
Fig. 4. The comparisons of SVM, BPN, and LDA.
performance than BPN and LDA in this case. Therefore, SVM is
suitable to be selected as a classifier for analyzing turbine failures.

Regarding the performance of feature selection, we found that
the performance will drop slightly with the reduction of attributes.
DT technique can remarkably reduce the dimensionality size from
29 to 5. CA and DT + CA techniques also can do this job from 29 to
18 and to 19, respectively. But, DT technique has the largest drop in
classification performances (SVM: #2.93%; BPN: #4.84%; LDA:
#1.8%) among three feature selection methods. Considering both
performance and dimension reduction, the results indicated that
DT + CA not only can reduce the amount of monitoring parameters
(from 29 to 19), but also can keep the classification performance
(SVM: #0.34%; BPN: #0.46%; LDA: # 0.76%). Although the accuracy
slightly decreases, the reduction of input variable reaches up to
82.76%. A little loss of accuracy can shorten training procedure and
save data storage space.

5. Conclusions

This work proposed a SVM based model for predicting failures
of turbines in a thermal power plant. In order to handle the huge
amount of collected data, the proposed SVM based model
integrates feature selection techniques. Finally, a real-world data
from a thermal power company has been employed to evaluate the
effectiveness of our proposed model. By comparing performances
and effectiveness of SVM, BPN, and LDA for dealing with inspection
data of a thermal power plant, the experimental results indicated
the performance of the classifier (SVM) of our model as being
superior to those of BPN and LDA. The SVM based model can
successfully detect the types of turbine faults with a high degree of
accuracy (greater than 90%). Our proposed method can assist on-
line engineers to find failure types without the support of original
equipment manufacturers, which are often expensive and time
consuming. It can dramatically shorten the shutdown mainte-
nance time and thus increase the capacity utilization rate of
turbines.

In feature selection, although these dimension reduction
approaches will result in a slight loss of classification accuracy,
they are within acceptable limits, compared with the advantage of
saving the data processing time and computation time of learning
algorithms in the training phase. In this work, we proposed a
simple and clear feature selection technique which could be easily
followed by readers in industry. However, if companies do not
considering computational costs, Support vector machine recur-
sive feature extraction (SVM-RFE) algorithm and genetic algo-
rithms (GA) might result in better performances. It could be a
possible direction of further studies. Moreover, although our
method can predict the fault types, further analysis of failures is
necessary to discover root causes. That can be a potential direction
for future works. In addition, the proposed model needs suitable
equipments such as sensors and data storage devices to provide
data for training. This is the limitation of our model.
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