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a b s t r a c t

Parallel interference cancellation (PIC) is a well-known multiuser detection algorithm in

direct-sequence code-division multiple-access (DS-CDMA) systems. It is typically

implemented with a multi-stage architecture. One problem associated with the PIC is

that unreliable interference cancellation may occur in the early stages and the system

performance may be degraded. Thus, the partial PIC detector was developed to control

the cancellation level by use of interference cancellation factors. Partial PIC can be

implemented with an adaptive form, in which optimal weights are derived using the

least mean square (LMS) algorithm. In this paper, we propose an algorithm improving

the conventional adaptive partial PIC. The main idea is to reduce the number of active

weights in the LMS algorithm, and to perform weight post-filtering such that the

resultant excess mean square error can be reduced. We also analyze the performance of

the proposed algorithm and derive the bit error rate of the second stage output.

Simulation results verify that the proposed algorithm outperforms the conventional

partial PIC, and derived analytical results are accurate.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In direct-sequence code division multiple access
(CDMA) systems, multiple access interference (MAI) is
regarded as the main source limiting the system capacity.
Multiuser detection (MUD) is a well-known technique
dealing with MAI. Different from the architecture of
conventional single-user receivers, MUD conducts detec-
tions for all users simultaneously and can achieve much
better performance. In [1] a maximum-likelihood multiu-
ser receiver was first proposed. Although significant
performance enhancement can be obtained, the required
computational complexity is very high, growing exponen-
tially with the user number. This adversely affects its real-
ll rights reserved.

: +886 3 5829733.

),
world applications. As a consequence, many suboptimum
alternatives were then proposed [2–4].

The subtractive-type interference cancellation is a
well-known MUD algorithm. As far as the desired user is
concerned, the interference is estimated from the received
signal, regenerated, and cancelled with the interference
canceller. The canceller is usually implemented with
multiple stages to achieve its optimum performance. This
type of MUD can be classified into two categories, i.e.,
successive interference cancellation (SIC) and parallel
interference cancellation (PIC). SIC cancels interference
from other users sequentially [5,6], while PIC does it all at
one time [7,8]. SIC usually conducts signal power ranking
to determine the cancellation order. A stronger user often
has lower probability of decision errors, and cancellation
of this signal gives more reliable result than that of a
weaker user. Thus, we can expect that SIC works better
when users have unbalanced powers. However, SIC
requires extra computation for power ranking and
introduces larger delay. By contrast, PIC is more effective
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when user powers are similar and does not need to
perform the power ranking procedure.

Although the PIC approach is able to cancel inter-
ference from other users simultaneously, its interference
estimation may not be reliable in early stages. Unreliable
interference cancellation will increase interference and
degrade the detector’s performance. Partial PICs were
developed to remedy this problem [9]. In partial PIC,
cancellation factors (ranging from zero to unity) are
introduced to control the cancellation level. Since the
reliability of cancellation increases stage by stage, larger
factors can be used in later stages. Optimum cancellation
factors can be derived in adaptive or non-adaptive ways.
The result of the non-adaptive approach was reported in
[10–15], while that of the adaptive approach in [16–23].
The advantage of adaptive detectors is that it can
dynamically adjust cancellation factors to accommodate
channel variation [16]. Two well known adaptive algo-
rithms have been used in PIC detectors, i.e., the least mean
square (LMS) [17–19] and the recursive least squares
(RLS) [19,20]. The LMS algorithm enjoys its lower
complexity at the expense of slower convergence. The
adaptive filters employed in [19,20] require training
sequences, while those in [17,18] do not. Besides, the
adaptive weights can be updated with the chip or bit
rates. In [17–19], the weights are updated with the chip
rate and in [20], they are updated with the bit rate. The
structure of the proposed adaptive partial PIC detector is
similar to that in [17], which does not require training
sequences and the weights are updated with the chip rate.
This distinct feature enables the adaptive partial PIC
detector to converge fast and work well under fast-fading
environments. Conventional adaptive receivers that do
not use training sequences only require the spreading
code of the desired user [21–23]. In contrast, the adaptive
partial PIC receiver we consider requires the spreading
codes of all users, and it is more suitable for uplink
scenarios. Application of this adaptive partial PIC in
multirate systems was reported in [24].

It is found that the performance of the adaptive partial
PIC in [17] can be further improved. In [25], hard-decision
devices are added at the outputs of adapted weights,
resembling the full PIC operation. However, errors due to
incorrectly decided weights may limit the cancellation
performance. In this paper, we propose a new algorithm
for the performance enhancement of a multi-stage
adaptive partial PIC. The proposed algorithm is composed
of two procedures. The first procedure is called weight
pre-selection, and the second is weight post-filtering.
With these procedures, the resultant excess mean square
error (MSE) due to the adaptive algorithm can be reduced.
As a result, the performance of the canceller in [17] can be
improved. Note that the optimal results for the
two procedures in the proposed algorithm are closely
related. They have to be jointly considered to attain
the best performance. We also conduct performance
analysis for the proposed adaptive partial PIC detector
and derive its bit error rate (BER). The analysis is based on
the method in our previous work [26] in which the
performance of the original adaptive partial PIC [17] is
analyzed.
The remainder of the paper is organized as follows.
Section 2 first describes the conventional non-adaptive
and adaptive partial PIC receivers. In Section 3, we then
detail the proposed algorithm. In Section 4, we analyze
the weight behavior and the output BER of a two-stage
adaptive partial PIC with the proposed algorithm. Finally,
we report the simulation results in Section 5. Conclusions
are given in Section 6.
2. System model

Consider a synchronous CDMA system operated in an
AWGN channel. The received signal in a certain bit
interval can be expressed as

rðnÞ ¼
XK

k ¼ 1

akbkxkðnÞþvðnÞ, 0rnoN, ð1Þ

where ak, bk and xk(n) are the kth user’s amplitude, data
bit, and signature sequence, respectively, and v(n) is
AWGN with variance s2. Let the processing gain be N and
the signature sequence be formed by binary chips with
amplitude 1=

ffiffiffiffi
N
p

. The matched filter output, which is the
first stage output, can then be expressed as

yð1Þk ¼
XN�1

n ¼ 0

rðnÞxkðnÞ ¼ akbkþ
X
jak

ajbjrjkþgk, ð2Þ

where rjk ¼
PN�1

n ¼ 0 xjðnÞxkðnÞ denotes the signature corre-
lation between user j and k, and gk ¼

PN�1
n ¼ 0 vðnÞxkðnÞ the

noise term after despreading. From (2), we can see that
the output signal contains MAI. The operation of a non-
adaptive partial PIC can be described as [9]

yðiÞk ¼ cðiÞk yð1Þk �
X
jak

ajb̂
ði�1Þ

j rjk

0
@

1
Aþð1�cðiÞk Þy

ði�1Þ
k , ð3Þ

where yk
(i) and ck

(i) are the soft-output and the cancellation
factor for the kth user in the ith stage, respectively.
The hard-decision output for the ith stage is then
b̂
ðiÞ

k ¼ sgnfyðiÞk g. The soft-output in (3) can be regarded as
a weighted sum of two estimates; one is the full PIC
output in the current stage multiplied by the cancellation
factor ck

(i), while the other is the weighted soft output
estimate from the previous stage.

The partial PIC can be also obtained with an adaptive
structure as depicted in Fig. 1. Define an error signal as

eðiÞðnÞ ¼ rðnÞ�~r ðiÞðnÞ, i41, ð4Þ

where ~r ðiÞðnÞ is the regenerated received signal as
expressed by

~r ðiÞðnÞ ¼
XK

k ¼ 1

wðiÞk ðnÞb̂
ði�1Þ

k xkðnÞ: ð5Þ

Here, wk
(i)(n) is the adapted weight for the kth user in the

ith stage. After convergence, wk
(i)(N) is seen as the desired

cancellation factor. Define a mean square error (MSE) as

JðiÞðnÞ ¼ E½ðrðnÞ�~r ðiÞðnÞÞ2�: ð6Þ
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Fig. 1. Block diagram of adaptive partial PIC receivers.
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Using the steepest decent algorithm, we can obtain the
weight update equation as

wðiÞk ðnþ1Þ ¼wðiÞk ðnÞþm
ðiÞ
k w
ðiÞ
k ðnÞe

ðiÞðnÞ, 0rnoN, ð7Þ

where mðiÞk is the step size for the kth user in the ith stage.
Here, the input signal is

wðiÞk ðnÞ ¼ b̂
ði�1Þ

k xkðnÞ: ð8Þ

The algorithm in (7) is called the LMS algorithm. The
interference-subtracted signal for the kth user is then

r̂
ðiÞ
k ðnÞ ¼ rðnÞ�

X
jak

wðiÞj ðnÞw
ðiÞ
j ðNÞ: ð9Þ

We then have the matched filter output as

yðiÞk ¼
XN�1

n ¼ 0

r̂
ðiÞ
k ðnÞxkðnÞ: ð10Þ

Note that the optimization criteria for these two types of
partial PICs expressed in (3) and (10) are different. In the
non-adaptive type partial PIC, the optimal factor, ck

(i), is
determined based on the minimization of the ensemble
error averaged over all transmission bits. In other words,
optimal weights apply to all received bit signals. On the
other hand, the optimal weight for the adaptive partial
PIC, wk

(i)(n), is obtained by minimizing the ensemble error
averaged over a certain bit interval (given the bit decision
in the previous stage). The LMS algorithm is re-initiated at
the beginning of each bit period. The input signals in (8)
take on different bit decision values for different stages.
The signature sequence is also changed bit-by-bit when
the long code is used. As a result, the optimal weights
change for each bit duration.

We then extend the signal model to multipath
channels. Denote the transfer function of the channel
impulse response for the kth user as

WkðzÞ ¼
XL�1

l ¼ 0

hk,lz
�tk,l , ð11Þ

where hk,l and tk,l are the gain and delay values for the lth
path, respectively, and L is the number of paths. In the
receiving end, we can use the maximal ratio combining
(MRC) to demodulate the signal. Let the equivalent
baseband received signal be expressed by

rðnÞ ¼
XL�1

l ¼ 0

XK

k ¼ 1

bkakhk,lxkðn�tk,lÞ: ð12Þ

The first stage output signal is given by

yð1Þk ¼
XL�1

l ¼ 0

yð1Þk,l hk,l, ð13Þ

where the branch output from the MRC can be formed as

yð1Þk,l ¼
XN�1

n ¼ 0

rðnÞxkðn�tk,lÞ: ð14Þ

Following the signal model for the AWGN channel, we can
obtain the regenerated received signal as

~r ðiÞðnÞ ¼
XL�1

l ¼ 0

XK

k ¼ 1

wðiÞk ðn�tk,lÞw
ðiÞ
k,lðnÞ, ð15Þ

where wk,l
(i)(n) denotes the weight for the lth path of the

kth user in the ith stage. We can then formulate the error
signal as that in (4), and have a counterpart of r̂

ðiÞ
k ðnÞ in (5)

as

r̂
ðiÞ
k ðnÞ ¼ rðnÞ�

XL�1

l ¼ 0

X
jak

wðiÞj ðn�tj,lÞw
ðiÞ
j,l ðNÞ: ð16Þ

The i th-stage matched output using the MRC is then

yðiÞk ¼
XL�1

l ¼ 0

XN�1

n ¼ 0

r̂
ðiÞ
k ðnÞxkðn�tk,lÞhk,l: ð17Þ

3. Proposed algorithm

It can be seen from (6) that in the ideal condition
(without noise), ~r ðiÞðnÞ ¼ rðnÞ. In this case, the weights are
obtained from (1) and (5) as

wðiÞk ðnÞ ¼
ak, b̂

ðiÞ

k ¼ bk,

�ak, b̂
ðiÞ

k abk:

8<
: ð18Þ

It is found that the ideal weights are determined by the bit
decision results. Note that the adaptation period is
constrained in one bit period since the ideal weight may
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be +ak or �ak for each bit. Thus the weight of each user
tends to attain the desired value bit by bit. This is also the
reason why the adaptive approach performs better than
non-adaptive methods. However, although the LMS algo-
rithm has the complexity advantage, its slow convergence
may not lead the weights to the desired values in such a
short period. In addition, the adapted weights are closely
related to the parameters used in the LMS algorithm.
Thus, when considering to improve the performance of
the LMS algorithm, we have to take several factors into
account such as the number of weights, the step size, the
number of training data, noise variance, and the weight
initials, etc. These factors may interact one another and
complicates the adaptation procedure. In this paper, we
will mainly focus on the first two factors, i.e., the weight
numbers and the step size to obtain improved perfor-
mance. We propose an algorithm that can reduce the
number of adapted weight, leading to a smaller excess
MSE (induced by the LMS algorithm). The algorithm also
allows a larger step size, accelerating the convergence.
3.1. Weight pre-selection procedure

As mentioned, the MSE of the adaptive partial PIC is
proportional to the number of weights adapted in the LMS
algorithm. One way to improve the system performance is
to reduce the number of weights updated in the LMS
algorithm. Here, we propose an algorithm to do the job.
The idea of the algorithm is described as follows. If the
magnitude of the matched output for a user exceeds a
predefined threshold, the corresponding decided bit is
deemed reliable, and the weight corresponding to this bit
is deactivated. In other words, this weight will not be
included in the training process and it is set as the channel
gain immediately. This algorithm can be easily expressed
using a two step-size scenario described below:

mðiÞk ¼
0 if jyði�1Þ

k j4akx
ðiÞ
s ,

mðiÞ if jyði�1Þ
k jrakx

ðiÞ
s ,

8<
: ð19Þ

where xðiÞs denotes the normalized decision threshold. The
step-size decision function, denoted as LSð�Þ, is shown in
Fig. 2(a). Note that it is possible that some weights are
erroneously decided. If this does happen, it will increase
the noise variance in the LMS algorithm. Thus, the
threshold xðiÞs has to be determined carefully.
( )y( )a ξ( )a ξ−

a

( )a ξ

( )μ
( ) ( )w N

( )a ξ

a−

Λs ΛF

Fig. 2. Functions used in the proposed algorithm: (a) weight pre-

selection function; (b) weight post-filtering function.
3.2. Weight post-filtering procedure

It is well known that the convergent weights in the
LMS algorithm are random. We can model the convergent
weights as optimum weights plus noise. Thus, if we know
the weight distribution, we can perform weight post-
filtering (estimation). This will enhance the partial PIC
performance furthermore. Fig. 3 shows a typical
probability density function for the adapted weights. As
we can see, the magnitudes of some weights are greater
than the corresponding channel gains. However, these
weights are not reasonable since a normal weight
magnitude always falls between 7ak to reflect the
cancellation reliability. Thus, the performance can then
be enhanced if the mis-adapted weights can be further
filtered. Note that given a binary random variable
embedded in AWGN, the MMSE estimate corresponds to
a transformation with a hyperbolic tangent function. We
can then apply the result here, and filter the convergent
weights with the hyperbolic tangent function. Since the
function is highly nonlinear, the performance analysis is
difficult. We then use a piecewise linear function, denoted
as LF ð�Þ, instead. The function is shown in Fig. 2(b). Note
that this function has two thresholds, denoted as fxðiÞl ,xðiÞr g.
If a weight is greater than the right-hand side threshold
akx
ðiÞ
r , it is mapped to ak. Similarly, if a trained weight is

less than the left-hand side threshold akx
ðiÞ
l , it is mapped

to �ak. The intermediate values between the thresholds
would be kept unchanged.

As seen from Fig. 3, the weight distribution has
different mean values for correct/erroneous decision
outputs (in the previous stage). Normally, the weight
initials for both correct and erroneous decisions are set as
the channel gain ak, and it takes more adaptation steps for
weights with erroneous decisions to attain the ideal
values around �ak. In other words, the mean value of the
adapted weights for erroneous decision bits will be closer
to �ak if N is larger. However, in a practical system, N is
usually not large enough. Thus, we have to use a large step
size mðiÞ to speed up the convergence for users with
Fig. 3. Probability density function of adapted weights from the LMS

algorithm with processing gain N=31.
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erroneous decisions. However, a larger step size will
enlarge the weight variance which adversely affect the
final performance. Thus, the choice of the step size is
critical. The two procedures proposed above can reduce
the number of active weights and further filter the
adapted weights. As a result, it is possible to use a larger
step size without significantly increasing the weight
variance. Apparently, the parameters used in the proposed
algorithm are coupled one another, and their optimal
values cannot be obtained individually. With some trial-
and-errors, we can find a good compromise among
parameters fmðiÞ,xðiÞs ,xðiÞl ,xðiÞr g such that near optimum
performance can be achieved.
4. Performance analysis for a two-stage detector

The LMS algorithm has been analyzed and developed
for over four decades. However, most results cannot be
used here. This is because the step size used in this
application is large and many assumptions required by
the conventional analysis will be violated. The other
reason is that we are most concerned about the transient
behavior (due to small training period within one bit)
while most works are only concerned about the steady-
state behavior. In [26], we have derived optimum weights,
weight error means, and weight error variances in the
second stage for a two-stage adaptive partial PIC receiver
shown in Fig. 1. Here, we extend the results to derive the
bit error rate (BER) of the proposed algorithm, i.e., the
receiver in Fig. 1 with the additional operations described
in the preceding section. The first part of this section
serves as an excerpt of the derivation in [26] where only
important steps of the derivation will be highlighted.
Interested readers can refer to [26] for more details.
4.1. Analysis of conventional algorithm

In [26], the single-user case was considered first. The
exact solution of optimal weights, weight error means,
and weight error variances for correct and erroneous
decisions (of the first stage) were derived. For the two-
user scenario, the optimal weights and weight error
means were derived exactly, while the weight error
variance were approximated from that in the single-user
scenario. When the analysis is generalized to the multi-
ple-user case (i.e., K42), all the analytical results are
approximated from a simplified two-user model. Assume
that the first user is the desired user. We can then rewrite
the K-user model in (2) as

yð1Þ1 Ca1b1þaIbIrþg1, ð20Þ

where we assume that aI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ja1a2

j

q
and bI 2 f71g. Here,

aI represents the equivalent amplitude of a virtual user,
and r the equivalent correlation of the desired and the
virtual user. Also note that bI is virtual and we do not need
its actual value for multiple-user cases in derivation. For
simplicity the superscript (i=2) on the adapted weights
are omitted throughout this section.
4.1.1. Optimal weight analysis

The Wiener solution for optimal weights can be
represented by wopt=Q�1p where the correlation matrix

of input signals is expressed by Q9Efvð2ÞðnÞvð2ÞðnÞTg with

vð2ÞðnÞ ¼ ½wð2Þ1 ðnÞ,w
ð2Þ
I ðnÞ�

T . The crosscorrelation vector is

given by p9Efvð2ÞðnÞrðnÞg. The joint probability density
function for the random vector c¼ ½g1,gI� is jointly

Gaussian and

f ðcÞ ¼
1

2pjCcj
1=2

exp �
1

2
cT C�1

c c

� �
, ð21Þ

where the covariance matrix is given as

Cc9EfccT g ¼
s2 rs2

rs2 s2

" #
: ð22Þ

Note that Q and p are functions of b̂
ð1Þ

1 and b̂
ð1Þ

I , while the
both bit decision outputs are functions of c and r. Further,
we can see that c is also dependent on r. Our objective is
to derive the optimal weights with closed-form expres-
sions for first stage correct and erroneous decision
outputs under AWGN, and the final result may appear
differently from the noise-free case in (18).

The first step of the analysis work is to obtain the
conditional optimal weights given fixed c and r. Then we
remove the conditions by nested expectation operations.
We denote the optimal weight vectors for the first stage

correct and erroneous decisions by wc
opt ¼ ½w

c
opt,1,wc

opt,I�
T

and we
opt ¼ ½w

e
opt,1,we

opt,I�
T , respectively. In the following,

we give the derivations for the first stage correct decision
as an example. The derivation for erroneous first-stage
decision can be also conducted in a similar way.
(a)
 Express the optimal weight given specific r and c.
Denote a decision pattern from a specific r and c
(represented by ~c) to be B̂ ¼ diagfb̂1,b̂Ig. The Wiener
solution given r and ~c is represented by

~wopt ¼AB̂bþ B̂R�1 ~c, ð23Þ

where A¼ diagfa1,aIg, b=[b1,bI]
T, and the correlation

matrix is given by

R¼
1 r
r 1

" #
: ð24Þ

Express the optimal weight given a specific r and
(b)

averaged c for different first stage bit decisions.
As we can see from (23), the second-stage optimal

weights depend on B̂. There are four decision patterns,

i.e., fb̂
ð1Þ

1 ,b̂
ð1Þ

I g ¼ f7b1,7bIg. Note that for each deci-

sion pattern, we have two bit patterns that b1=bI and

b1abI . Let Uij denote the set of ~c yielding the ith
decision for the jth bit pattern. Then,

�w ij
opt ¼AB̂

i
bj
þ B̂

i
R�1Ecf ~c

ij
g, ð25Þ

where B̂
i

denotes the ith decision pattern, bj denotes
the jth bit pattern and the noise integration is given by

Ecf ~c
ij
g ¼

R
Uijcf ðcÞdcR
Uij f ðcÞdc

: ð26Þ
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The complete set of Uij for all decision and bit patterns
is shown in Table 1. The complete set for the conditional
optimal weights in (25) is presented in Table 2 (the
results for b1=1 are identical to that for b1=�1).
(c)
 Express the optimal weight given a specific r and
averaged c for first stage correct decision.
We can see in (25) that the optimal weight of one user is
coupled to the other user due to R. Our objective is to
derive wc

opt and we
opt for individual users. Thus we have

to determine the components of �wc
opt ¼ ½ �w

c
opt,1, �wc

opt,I�
T

user by user. For example, the optimal weight for the
first user with correct decision and a given r is

�wc
opt,1 ¼

1

PC1

X
C1

�wij
opt,1Pij, ð27Þ

where Pij ¼
R
Uij f ðcÞdc, C1 ¼U11

[U12
[U21

[U22,
and PC1

¼ P11þP12þP21þP22.

(d)
 Express the optimal weight given averaged r and

averaged c for first stage correct decision.
Taking the first user as example, we have

wc
opt,1 ¼ Erf �w

c
opt,1g ¼

P
r �w

c
opt,1PrPC1P
rPrPC1

, ð28Þ

where the distribution for the correlation coefficient is
given by a two-user model as

Pr ¼
1

2N

N

Nð1þrÞ=2

 !
: ð29Þ
e 1
of c for all decision and bit patterns.

j
B̂

i
bj Range for g1 Range for gI

1 1

1

� � g1 4�ða1þaIrÞ gI 4�ða1rþaIÞ

2 g1 4�ða1�aIrÞ gI o�ða1r�aIÞ

1 1

�1

� � g1 4�ða1þaIrÞ gI o�ðaIþa1rÞ

2 g1 4�ða1�aIrÞ gI 4�ða1r�aIÞ

1 �1

�1

� � g1 o�ða1þaIrÞ gI o�ðaIþa1rÞ

2 g1 o�ða1�aIrÞ gI 4�ða1r�aIÞ

1 �1

1

� � g1 o�ða1þaIrÞ gI 4�ðaIþa1rÞ

2 g1 o�ða1�aIrÞ gI o�ða1r�aIÞ

e 2
plete list of conditional optimal weights (a=[1,�1]T and J=di-

,�1}).

11
opt ¼ aþR�1Ecf ~c

11
g �w12

opt ¼ aþJR�1Ecf ~c
12
g

21
opt ¼�aþJR�1Ecf ~c

21
g �w22

opt ¼�aþR�1Ecf ~c
22
g

31
opt ¼ Ja�JR�1Ecf ~c

31
g �w32

opt ¼ Ja�R�1Ecf ~c
32
g

41
opt ¼�Ja�JR�1Ecf ~c

41
g �w42

opt ¼�Ja�R�1Ecf ~c
42
g

4.1.2. Weight error mean analysis

Let the adapted weight of the kth user given ~c and r
and correct fist-stage decision as ~wc

kðnÞ, k=1,I. Then the
weight error vector for correct decision is expressed by
~ec ðnÞ ¼ ½~ec1ðnÞ, ~e

c
I ðnÞ�

T with ~eckðnÞ ¼ ~wc
kðnÞ�wc

opt,k. From (27)
we see that �wc

opt is derived from �w ij
opt ’s. Thus, we also

consider the conditional weight errors as

~eij
ðnÞ ¼ ~w ij

ðnÞ� �w ij
opt , ð30Þ

where the conditional weights are defined as

~w ij
ðnÞ ¼ fwðnÞjc 2 Uij

g: ð31Þ

After some algebraic manipulations, we can have the
weight error mean vector as

�eij
MðnÞ ¼ ½�e

ij
M,1ðnÞ, �e

ij
M,IðnÞ�

T6Ecf~e
ij
ðnÞg

¼ I�
mð2Þ

N
B̂

i
RB̂

i
� �n

�eij
Mð0Þ, ð32Þ

where

�eij
Mð0Þ ¼wð0Þ� �w ij

opt : ð33Þ

The weight error mean for the first user conditioned
on only the first stage correct decision and r is
represented by

�ecM,1ðnÞ6Ef�ec1ðnÞg ¼
1

PC1

X
C1

�eij
M,1ðnÞPij: ð34Þ

Then, the averaged weight error mean for correct decision
for the first user can be obtained by

ecM,1ðnÞ6Efec1ðnÞg ¼ Erf�ecM,1ðnÞg ¼

P
r �e

c
M,1ðnÞPrPC1P
rPrPC1

: ð35Þ

4.1.3. Weight error variance analysis

The weight error variance for correct decision is
defined as ecV ,1ðnÞ ¼ Ef½~ec1ðnÞ�ecM,1ðnÞ�

2g. The exact analysis
for the weight error variance is difficult for multiple users.
Thus the analytical result in the single-user case is used to
approximate that in the multiple-user scenario, which is

ecV ,1ðnÞ ¼ e
c
V ,1ðnÞþb

c
1ðnÞ, ð36Þ

where ecV ,1ðnÞ is expressed as

ecV ,1ðnÞ ¼
½mð2Þ�2

N2
Ns2 1�a2n

1�a2

� �
�s2 1�an

1�a

� �2
( )

, ð37Þ

where a¼ 1�mð2Þ=N. We also have bc
1ðnÞ ¼ Erf �b

c

1ðnÞgwhere

�b
c

1ðnÞ ¼
�b

51

1 ðnÞP51þ
�b

52

1 ðnÞP52

PB
: ð38Þ

In the above equation, we have U51
¼U11

[U21, U52
¼

U12
[U22, B¼U51

[U52, and PB ¼ P51þP52. The term

�b
5j

1 ðnÞ is expressed as

�b
5j

1 ðnÞ ¼
ð1�anÞ

2Eg1
fða1þaIrþg1�wc

opt,1Þ
2
jg14�ða1þaIrÞg, j¼ 1,

ð1�anÞ
2Eg1
fða1�aIrþg1�wc

opt,1Þ
2
jg14�ða1�aIrÞg, j¼ 2:

8<
:

ð39Þ
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4.2. Analysis of proposed algorithm

We assume that each user has the same power such
that a2

k ¼ a2
1, 8k for the analysis hereafter. The general-

ization to the power-imbalanced scenario is straightfor-
ward. Substituting (9) into (10), we can have the despread
output of the second stage for the first user as

yð2Þ1 ¼ a1b1þ
X
ja1

ðajbj�wjðNÞb̂
ð1Þ

j Þrj1þg1: ð40Þ

Note that the stage number on the superscript of wj(N) is
omitted. Assuming that y1

(2) is a Gaussian random variable,
we can estimate the BER in the second stage output. Note
that we have the mean of y1

(2) as a1b1. If interference
cancellation is perfect with the ideal weights obtained in
(18), the variance of y1

(2) is just s2. However, since the
interference cancellation is not perfect even for the
proposed algorithm, the variance will be increased. There
are two major sources of imperfect interference cancella-
tion as demonstrated in the interference term of (40).
The first residual interference results from erroneously
selected weights (set as the channel gain) out of the pre-
selection procedure; the increased variance is denoted by
VS. The other one is due to imperfect interference
cancellation using adapted and post-filtered weights;
the increased variance is denoted by VF. Thus, the overall
interference and noise variance is

s2
out ¼ s

2þVSþVF : ð41Þ

Without loss of generality, we let b1=1. Assuming that the
interference in (2) is Gaussian distributed, we can have
the first stage BER as

Pð1Þe ¼Q
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þ
1

N

P
ja1a2

j

r
0
BB@

1
CCA, ð42Þ

where Qð�Þ is the Q-function. Then the probability that the
user has correct decision in the first stage and its output is
greater than the weight-selection threshold (b1=1 and
yð1Þ1 4xð2Þs a1) is

PSC ¼Q
a1ðx

ð2Þ
s �1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þ
1

N

P
ja1a2

j

r
0
BB@

1
CCA: ð43Þ

In other worlds, PSC is the probability of correct weight
pre-selection. In a similar way, the probability of
erroneous weight pre-selection (b1=1 and yð1Þ1 o�xð2Þs a1) is

PSE ¼Q
a1ðx

ð2Þ
s þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þ
1

N

P
ja1a2

j

r
0
BB@

1
CCA: ð44Þ

For the users whose first-stage outputs are greater than
xð2Þs ak, the corresponding weights will not be adapted
during the LMS algorithm. The interference power due to
erroneous cancellation of the jth interference in (40) is
calculated by

VI6Efðajbjr1j� ~w
c
j ðNÞb̂jr1jÞ

2
g ¼ 4a2

j =N, ð45Þ
where Efr2
1jg ¼ 1=N is used, and we have ~wc

j ðNÞ ¼ aj and
b̂j ¼�bj in this case. The effective weight number in the
LMS algorithm is reduced from K to Keff where Keff is
approximated by Keff=K(1�PSC�PSE). Note that Keff may
not be an integer since it represents an estimate of the
averaged weight number. Then we have

VS ¼ KPSEVI : ð46Þ

The enlarged effective noise variance can be obtained as

s2
eff ¼ s

2þVS. The mean and variance values of ~wc
j ðNÞ and

~we
j ðNÞ can be approximated by the analytic results in (35)

and (36), respectively. Note that when applying the
analytic results in the last subsection to the weight
outputs of the pre-selection module, we have to change
the weight number from K to Keff , the noise variance from

s2 to s2
eff , and let aI ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Keff�1

p
.

Now we calculate VF. We treat VF as the sum of two
contributors from the interference cancellation: one is VFC

contributed from ~wc
j ðNÞ and the other one, VFE, from

~we
j ðNÞ. We denote their corresponding probability density

functions as f ð ~wc
1ðNÞÞ and f ð ~we

1ðNÞÞ, respectively. Fig. 3
gives an example of the simulated distribution outputs.
When ~wc

1ðNÞ4xð2Þr a1, no cancellation error will be intro-
duced. Rather, the weights falling on regions ‘A’ and ‘B’ in
the figure will introduce residual errors and the corre-
sponding interference is represented by

VFC,j ¼ Efr2
jkg

Z xð2Þr aj

xð2Þ
l

aj

ð ~wc
j ðNÞ�ajÞ

2f ð ~wc
j ðNÞÞd ~w

c
j ðNÞ

þVI

Z xð2Þ
l

aj

�1

f ð ~wc
j Þd ~w

c
j ðNÞ, ð47Þ

where VI is obtained in (45). Under the assumption of the
Gaussian distribution, the cumulative density function of
regions ‘A’ and ‘B’ can be found to be

PFC,j ¼ 1�Q
ajðx

ð2Þ
r �ZC,jÞ

sC,j

 !
, ð48Þ

where ZC,j and sC,j are the analytical weight mean and
standard deviation for correct decision output of the jth
interference as given in (35) and (36), respectively. As to
~we

j ðNÞ, erroneous weight decision occurs when ~we
j ðNÞ4

xð2Þr aj, i.e., LF ð ~w
e
j ðNÞÞ ¼ aj and Efðajbj� ~w

e
j ðNÞb̂jÞ

2
g ¼

Efðajbj�ajð�bjÞÞ
2
g ¼ 4a2

j , as denoted by the region ‘C’ in

the figure. Thus, we have

VFE,j ¼ VI

Z 1
xð2Þr aj

f ð ~we
j ðNÞÞd ~w

e
j ðNÞþEfr2

jkg

Z xð2Þr aj

xð2Þ
l

aj

ð ~we
j ðNÞ

þajÞ
2f ð ~we

j ðNÞÞd ~w
e
j ðNÞ, ð49Þ

where the second term in (49) corresponds to the
interference level resulting from weights in region ‘D’ of
the figure. The cumulative density function of regions ‘C’
and ‘D’ is expressed by

PFE,j ¼Q
ajðx

ð2Þ
l �ZE,jÞ

sE,j

 !
, ð50Þ

where ZE,j and sE,j are the counterparts of ZC,j and sC,j,

respectively, for erroneous decision outputs. Then, VFC,j
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and VFE,j can be combined as

VF ¼
X
ja1

VFC,jPFC,jþVFE,jPFE,j

PFC,jþPFE,j
: ð51Þ

Finally, we can express the BER in the second stage output
from (41), (46) and (51) as

Pð2Þe ¼Q
a1

sout

� �
: ð52Þ

5. Simulation results

In this section, we report simulation results to
demonstrate the effectiveness of the proposed algorithm.
We use random codes with N=31 as spreading sequences,
and first consider parameter optimization in the proposed
algorithm. As described, there are two new operations in
the proposed algorithm, i.e., weight pre-selection and
post-filtering. In the first set of simulations, we only
consider the operation of weight post-filtering. We let
xð2Þl 5�ak, and do not conduct weight pre-selection. The
user number is 20 and Eb/N0=7 dB (Eb=ak

2, and N0 ¼ 2s2).
Fig. 4 shows the performance comparison for different mð2Þ
and xð2Þr values. In the figure the optimal step size is
normalized such that mð2Þ ¼ mð2Þ=N. It can be noted that
when xð2Þr is set higher (e.g., 0.7), the enlarged step size
from 0.036 to 0.048 does not provide significant
performance gain. However, when the post-filtering is
reinforced by setting that xð2Þr o0:3, the performance
improvement for larger step sizes can be observed. This
is because the over-adapted weights due to faster
adaptation from a larger step size can be effectively
corrected by the post-filtering procedure and thus the
error rate decreases. We then incorporate the weight pre-
0.1 0.2 0.3
0.008

0.01

0.012

0.014

0.016

0.018

0.02

B
E

R

Fig. 4. Second-stage performance of the proposed alg
selection step and the result is shown in Fig. 5. In the
figure we can observe that the optimal parameter set
given mð2Þ ¼ 0:048 can be determined as xð2Þs ¼ 1:2.
Comparing these figures we also find that the
performance becomes less sensitive to the variation of
post-filtering setting for xð2Þr 40:4 when the weight pre-
selection is utilized. This may be attributed to the fact
that, for most users with high reliability, their adapted
weights are usually close to the channel gain if no pre-
selection is applied. When weight pre-selection is
incorporated, most of the weights with large magnitudes
will be deactivated. Therefore the influence of xð2Þr on the
performance is reduced. The optimization procedure for
xð2Þl is similar to that of xð2Þr and is set as xð2Þl ¼�0:2 in the
remaining simulations.

Now we report the performance comparison for
various multiuser receivers. We consider partial PIC
receivers which include the conventional matched filter,
the non-adaptive partial PIC (referred to as PPIC) de-
scribed in (3), the conventional adaptive partial PIC
(referred to as the APPIC) described in (4)–(10), and the
proposed algorithm. Optimum parameters in each algo-
rithm are obtained empirically (such as ck

(i) for PPIC, mðiÞ for
APPIC, as well as the mðiÞ and thresholds for LSð�Þ and LF ð�Þ

in the proposed algorithm). We first compare the
performance of the proposed algorithm and other meth-
ods for different user numbers with Eb/N0=7 dB. We let
the maximum stage number be five. The optimal ck

(i)

(same for all users) from Stage two to five are determined
as {0.6,0.65,0.7,0.75}. The optimal mðiÞ’s for APPIC are
{0.02,0.009,0.004,0.002}. The optimal mðiÞ for the proposed
algorithm are set as {0.055,0.05,0.045,0.04}, and the
thresholds as fxðiÞs ,xðiÞl ,xðiÞr g ¼ f1:2,�0:2,0:4g for all stages.
Fig. 6 shows the BER performance of the second stage
0.4 0.5 0.6 0.7

ξ(2)
r

μ(2)=0.036

μ(2)=0.042

μ(2)=0.048

μ(2)=0.055

orithm (only weight post-filtering is activated).
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Fig. 5. Second-stage performance of the proposed algorithm (both weight pre-selection and post-filtering are activated).
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Fig. 6. Second-stage performance comparison for different user numbers (Eb/N0=7 dB).
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output. We can find that the conventional matched filter
receiver gives the worst result due to MAI. The proposed
algorithm performs better than APPIC in all cases. In the
figure, the theoretical result in (52) is also shown for
comparison. It can be seen that the analysis is accurate
when the number of users is small while deviates from
the simulated result gradually as the user number grows.
This is reasonable since the weight behavior analysis of
the LMS algorithm is approximated from that of the
single-user and two-user cases under the assumption of
power balance. We also show the performance for the
outputs of the fifth stage in Fig. 7. As we can see, the
performance of all adaptive partial PIC receivers are close
to the single-user bound when the number of users is
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Fig. 7. Fifth-stage performance comparison for different user numbers (Eb/N0=7 dB).
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Fig. 8. Second stage performance comparison for different Eb/N0 ratios (K=10).
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small. Also note that, from the empirical parameter
setting stated above, the optimal step sizes in the
proposed algorithm are larger than those in the conven-
tional APPIC approach. Thus, the convergence can be
accelerated, and then the performance can be improved
accordingly. We then conduct the performance compa-
rison under different Eb/N0’s (10 users). Figs. 8 and 9 show
the performance comparison for the second and fifth
stage outputs, respectively. The parameters used here are
the same as those in Fig. 6. We can observe that the
performance of the proposed algorithm is close to the
single-user bound for low to median Eb/N0 values. The
analytic result for the proposed algorithm at the second
stage output is also shown in Fig. 8. From the figure, we
can see that the behavior of the analytic result is quite
similar to that of simulations for low to moderate Eb/N0

values. We also compare the system performance under a
power-imbalanced scenario. The user powers are equally
distributed in linear scale and the power ratio between
the strongest and weakest users is set as 15 dB. The
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Fig. 9. Fifth-stage performance comparison for different Eb/N0 ratios (K=10).
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Fig. 10. Second stage performance comparison for the weakest user under power imbalance (Eb/N0=7 dB for the weakest user).
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parameters are kept unchanged except that the optimal
mðiÞ values for APPIC are set as {0.034,0.01,0.005,0.002}. In
Figs. 10 and 11, we show the BER performance for the
weakest user in the second and fifth stage outputs,
respectively. It can be seen that the proposed algorithm
provides a significant performance gain, especially when
the user number is large. Note that the proposed
algorithm can make the performance of the weakest
user indistinguishable from the single-user bound when
the user number is smaller than 20. The reason for this
superior performance is due to the fact that stronger users
have lower probability of errors. As a result, the weight
pre-selection function tends to set the cancellation
weights of stronger users as their channel gains, and the
effective user number in the LMS algorithm is then
decreased stage-by-stage. This behavior is very similar
to that in the SIC approach. In addition, the interference is
further reduced with the filtered weights. Thus the
proposed algorithm can approach the single user bound,
just like what SIC performs, but with fewer stages. The
performance comparison for the second stage output as
depicted in Fig. 10 shows that the gap between the
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Fig. 11. Fifth-stage performance comparison of the weakest user under power imbalance (Eb/N0=7 dB for the weakest user).
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Fig. 12. Fifth-stage performance comparison under a two-ray multipath fading channel (Eb/N0=17 dB).
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analytic and simulated results is larger when the number
of users is smaller. This may be due to the fact that the
theoretical results are derived with the approximation of
the equal-power two-user scenario. When the number of
users is smaller and the power is imbalanced, the
approximation is less valid and analytic results are less
accurate.

In the following, we consider the performance of the
proposed algorithm under the multipath fading channel.
We use a two-path fading channel where the second path
is one chip delay with respect to the main path, and each
path gain is Gaussian distributed with zero mean
and equal variance. The optimal weights for PPIC
are determined as {0.7,0.8,0.85,0.9}. The optimal mðiÞ

are set as {0.012,0.007,0.003,0.001} for APPIC and
{0.025,0.023,0.021,0.02} for the proposed algorithm. The
thresholds are given as xðiÞs ¼ 2:4,xðiÞl ¼�0:5, and xðiÞr ¼ 0:5
for all stages. The result is shown in Fig. 12, and we can
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see that the proposed algorithm still performs better than
other approaches.

An attractive feature for the proposed algorithm is that
the adaptation is conducted chip-by-chip and conver-
gence is fast. Each time when a new bit is received, the
weight values are reset and then adjusted. The larger the
value of N, the more data we can have and the better
performance we can expect. To conform this assertion, we
then conduct simulations with the scenario of varied N.
Fig. 13 shows the performance comparison for the second
stage output. The simulation configuration is the same as
that of Fig. 6 except that the stepsize is kept constant
(mð2Þ ¼ 0:048 � 31 for all N values). From the figure, we can
observe that the system performance will approach the
single-user bound when N is large.

In the adaptive PPIC receiver scenario, the channel
information is required for the determination of initial
values. When the proposed algorithm is utilized, the
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channel information is further used to determine the
optimal parameters. All of the simulations conducted
above have assumed perfect channel estimation. How-
ever, in a practical system, the channel estimation error
always exists, and its effect has to be taken into account.
To have an idea how multiuser detection algorithms are
affected by the error, we model the error as a Gaussian
random variable with a standard deviation of sa and
conduct simulations for different sa’s. Fig. 14 shows the
simulation result. It can be seen in the figure that the
proposed algorithm always performs better than PPIC
under different levels of channel estimation error.

6. Conclusions

Multiuser detection is one of the key techniques for
enhancing the capacity of DS-CDMA systems. Due to its
simplicity and effectiveness, the adaptive partial PIC
receivers has been considered as a promising approach
in multiuser detection. In this paper, we propose an
enhanced algorithm for the adaptive partial PIC. The main
idea is to use a weight pre-selection procedure and a post-
filtering scheme to reduce the weight error variance.
Simulation results show that the proposed algorithm
outperforms the conventional adaptive approach in all
scenarios. In power-imbalanced systems, the proposed
algorithm can even approach the single-user bound. We
also conduct performance analysis and derive the output
BER in the second stage. Simulations confirm that the
analytic results are accurate. In addition to dealing with
MAI in single-carrier CDMA systems, the proposed
algorithm can also be extended to inter-code interference
(ICI) problem in multicarrier CDMA (MC-CDMA) systems
[27–29]. Note that the MC-CDMA system has been
considered as a candidate for advanced wireless commu-
nication. Research on this subject is now underway.
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