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Abstract 

A dominating set of a graph G =( P’, E) is a subset D of Vsuch that every vertex not in D is adjacent to 

some vertex in D. The domatic number d(G) of G is the maximum positive integer k such 

that V can be partitioned into k pairwise disjoint dominating sets. The purpose of this paper is to 

study the domatic numbers of graphs that are obtained from small graphs by performing graph 
operations, such as union, join and Cartesian product. 

1. Introduction 

A dominating set of a graph G = (V, E) is a subset D of V such that every vertex not in 

D is adjacent to some vertex in D. The domatic number d(G) of a graph G = (V, E) is the 

maximum positive integer k such that V can be partitioned into k pairwise disjoint 

dominating sets D,, D2, . . . , Db A partition of V into pairwise disjoint dominating sets 

is called a domatic partition. The concept of a domatic number was introduced in [S]. 

The word ‘domatic’ was created from the words ‘dominating’ and ‘chromatic’ in the 

same way the word ‘smog’ was created from the words ‘smoke’ and ‘fog’. In a certain 

sense a domatic number is analogous to the chromatic number of a graph, which is the 

minimum positive integer k such that the vertex set can be partitioned into k pairwise 

disjoint stable sets. 

Lower bounds, upper bounds and many propositions of domatic numbers were 

studied extensively in [336, 8-10, 12, 13, 15-231. In particular, in [S] it was proved 

that for any graph G there is a natural primal dual weak inequality 

d(G) <6(G) + 1, 

where 6(G) is the minimum degree of a vertex of G. Motivated from this, a graph G is 

called domaticully full if d(G)=&G)+ 1. For instance, the complete graph K, of 
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n vertices, the complement E, of K,, the cycle CJn of 3n vertices, trees and maximal 

outerplanat+ graphs are all domatically full. 

On the algorithmic side, the domatic number problem is NP-complete for general 

graphs [7] and circular arc graphs [2]. The problem has been solved in 0(n2 log n)’ 

time for proper circular arc graphs [2], O(~Z’.~) time for interval graphs [l], and 

O(n log n) time for proper interval graphs [ 11, and has been improved by linear-time 

algorithms for interval graphs [ll, 141. 

The purpose of this paper is to study the domatic numbers of graphs that are 

obtained from small graphs by performing graph operations, such as union, join and 

Cartesian product. In particular, Section 2 gives solutions to the domatic number 

of the union of two graphs and the domatic number of the join of two or more 

graphs. Section 3 gives partial results of the domatic number of the Cartesian 

product of paths. 

2. Graph union and join 

Suppose G1 =(V,E,) and G2 =(V,E,) are two graphs with disjoint vertex sets V, 

and Vz and disjoint edge sets El and E2. The union of G1 and G2 is the graph 

GluGz =(V,uV,, E1uE2). The join of G1 and G2 is the graph G1 +G2 that consists of 

GluG2 and all edges joining VI and V,. 

Proposition 2.1. d(G1uG2)=min{d(G1), d(G,)) for any two graphs G1 and G2. 

Proof. The proposition follows from the fact that D is a dominating set of 

GluG2 if and only if D is the union of a dominating set of G1 and a dominating 

set of G2. 0 

A dominating vertex is a vertex which forms a dominating set, i.e. a vertex adjacent 

to all other vertices. If x is a dominating vertex of a nontrivial graph G, then G is 

isomorphic to (G - x) + K 1. 

Proposition 2.2. If x is a dominating vertex of a graph G, then d(G)=d(G-x)+ 1. 

Proof. Since a domatic partition of G-x together with {x} forms a domatic partition 

of G, d(G)>d(G-x)+ 1. On the other hand, suppose D1,D2, . . ..Dk is a domatic 

partition of G, where k=d(G). Assume XED~. Note that DIuD2-{x}, D3, . . ..Dk is 

a domatic partition of G-x. So d(G-x)ak-l=d(G)-1. Thus, 

d(G)=D(G-x)+ 1. 0 

In the rest of this section, we give results for the domatic number of the join of 

graphs. By Proposition 2.2, from now on, we need only consider graphs without 

a dominating vertex. Let r be a positive integer greater than or equal to 2. If 
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Gl,Gz,..., G, are graphs without a dominating vertex, then their join 

G1 +Gz+ ... +G, also has no dominating vertex. For the domatic number of this 
join, there are two possible cases, which are solved in Theorem 2.3 and Corollary 2.6. 

Theorem 2.3. Suppose ra2 and G1, Gz, . . . . G, are graphs with nI, n2, . . . . n, vertices, 
respectively, and without a dominating vertex. If 1 <nl <n2 < ... < n, and 

nl + ...+r~,_~>n,, thend(G,+G2+...+G,)=L(n,+n2+...+n,)/2J 

Proof. Since G1 +G2+ ... + G, has no dominating vertex, each dominating set con- 
tains at least two vertices and so d(G1 +G2+ . ..+G.)<L(n,+n,+... +n,)/2J. 

On the other hand, we prove that G1 +G, + ... +G, has a domatic partition of 
L(n,+n2+...+n,)/2Jd ominating sets such that each dominating set has exactly two 
vertices, except possibly one dominating set has three vertices. This assertion clearly 
implies the theorem. We prove the assertion by induction on n=nl +n2 + ... +n,. 
Note that the following argument is valid even when some Gi has a dominating vertex. 

The assertion is clearly true for n< 3. It is also true for r=2 since nI =n2 and any 
vertex of G1 together with any vertex of G2 is a dominating set of G, + G2. Now, 
suppose n B 4, r > 3 and the assertion is true for n’ = n - 2. Choose a vertex x in G,_ i 
and a vertex yin G,. Consider the graph G’=G1+~..+G,_2+(Gr_1-~)+(G,-y). 
For the case of n,_ 2 < n,, we have 

n, < ... <n,_,<n,-1, n,_l-l<n,-l 
and 

nl + ... +n,_2+(n,_,-l)~n,-l. 

For the case of n, _ 2 = n,_ 1 = n,, we have 

n, 6... <nr_3<n,_2, n,_1-1=n*-1<n,_2 
and 

ni+ . ..+n.-,+(n,-,-l)+(n,-l)~n,-2. 

To see the last inequality: when n,=n,_l =nr_2 22, the left-hand side ar~,=n,_~; 

when n,=n,_ 1 =nre2 = 1, n>4 implies that r=na4 and so the left-hand side > 
n, _ 3 = 1 = n,_ 2. In either case, by the induction hypothesis, G’ has a domatic partition 
ofL(n,+n,+...+(n,-,-l)+(n,-1))/2Jd ominating sets such that each dominating 
set has exactly two vertices, except possibly one dominating set has three vertices. 
These dominating sets together with {x, y} form the desired domatic partition of 
G1+G2+...+G,. 0 

For the case of n, + n2 + ... + n,_ 1 <n,, we cannot get results similar to Theorem 
2.3. To solve the problem for this case, we need a slightly more general concept, as 
follows. For any nonnegative integer m, an m-domatic partition of a graph G = (V, E) is 
a collection D1, D2, . . . , Dk of k pairwise disjoint dominating sets such that 



118 G.J. Chang 

ID1uDzu... uDkl <m. The m-domatic number d(G 1 m) of G is the maximum k such that 

an m-domatic partition of k dominating sets exists. Note that d(G)=d(G\ n) for any 

graph G of n vertices. 

Proposition 2.4. d(G ( m) d d(G I m’) f or any graph G and any nonnegative integers 
m<m’. 

Theorem 2.5. Suppose n1 < n2 and Gi = (Vi, Ei) is a graph of ni vertices without a domina- 
ting vertex for i = 1,2. Then 

d(G,+G,Im)= 
Cm/21 if 0<mQ2nl, 

nl+d(G21m-2n,) if 2n,<mdn,+nz. 

Proof. For the case when 0 d m < 2nl, there exist L m/2 J pairs of vertices, each of them 

containing one vertex in Gi and the other in Gz. So, each such pair is a dominating set 

of G, + G2 and d(G, + G2 Irn)aL m/2]. On the other hand, since each Gi has no 

dominating vertex, neither does G, + Gz. Consequently, each dominating set is of 

a size of at least two, and so d(G1+G2/m)<Lm/2J Thus, d(G,+GZIm)=Lm/2J. 
For the case when 2n,<m<nl+nz, first of all, choose an (m- 2n,)-domatic 

partition D1, D2, . . . , Dk of G2. These k dominating sets are also dominating sets of 

G1 +Gz. Note that Gz has at least n,-(m-2n,)>nl vertices not in D,uD2u...uDk. 
By an argument similar to that in the first paragraph, n, of these vertices 

together with the n, vertices of G, form n, dominating sets of G1 +Gz. Thus, 

d(G1 +G21m)>nl +d(G*/m-2nl). On the other hand, suppose D1,D,, . . ..D. is an m- 

domatic partition of G1 + G2, where r = d(G, + G2 I m). Note that each Di contains at 

least two vertices, since GI + G, has no dominating vertex. A dominating set is called 

standard if it contains exactly one vertex in VI and exactly one vertex in V2. We claim 

that among these r dominating sets, there are exactly n, standard ones and the other 

r-n, sets are all subsets of V, by considering the following cases. 

(1) Suppose some Di contains at least one vertex x in VI and at least one vertex in 

Vz. We can replace Di by a standard dominating set {x, y>. 

(2) Suppose some Di contains vertices only in V,, say x and y, and some Dj contains 

only vertices in V,, say z and w. We can replace Di and Dj by two standard dominating 

sets (x, z} and {y, w}. 

(3) Suppose all nonstandard dominating sets are subsets of VI. Since n, dn2, we 

can replace each nonstandard dominating set by a standard one by taking a vertex 

from this set and a vertex of Vi, which is not in any Di. 
(4) Suppose there is a vertex x of VI not in any Di. We can choose a vertex y in V2, 

which either is in some nonstandard dominating set DjC V2 or is not in any Di. In the 

former case, we can replace Dj by {x, y} into the domatic partition. 

The discussion of the above cases shows that the domatic partition has exactly ni 

standard dominating sets and r-n, nonstandard dominating sets that are subsets of 

V,. These r - n1 nonstandard dominating sets form an (m - 2n,)-domatic partition of 
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Gz. Therefore, d(GzIm-2n,)~r-n,, i.e. d(G1+GZIm)~n,+d(GzIm-2n,). Thus, 

d(G1+Gz(m)=n,+d(G,(m-2n,). 0 

Corollary 2.6. Suppose r>2 and Cl, GZ, . . . . G, are graphs with nl, n2, . . . . n, vertices, 
respectively, and without a dominating vertex. Zf n1 +nz + ... + n,_ 1 <n,, then 
d(G1 + Gz + . ..+G.)=n,+n2+...+n,_1+d(G,In,-nl-...-n,_,). 

Proof. The corollary follows from Theorem 2.5 by considering G1 + . . . + G,_ I as Gr, 

G, as GZ, and m =nl+nz+...+n,. 0 

Corollary 2.7. Zf r 3 2 and n1 + n2 + ... + n,_ 1 <n,, then d(l?,, + I?,, + . . + I?,,) = 

Proof. The corollary 

a>b. 0 

3. Cartesian product 

follows from Corollary 2.6 and the fact that d(K, 1 b) = 0 for 

The Cartesian product of two graphs G1 =( Vi, E,) and Gz =( Vz, E,) is the graph 

G1 x Gz=(V1 x I’*/,,E) where 

E = {{(a, 4, (a, 4): aE Vi and {c, d}EE2} 

u{{(a,c), (b,c)}: {a,b}EE1 and CEV,}. 

Denote by P, the path of n vertices, i.e. P, has vertex set { 1,2, . . . , n} and edge 

set {{i, i + l} : 1~ i < n - 1). The purpose of this section is to determine the domatic 

number of a r-dimensional grid P,, x Pn2 x ... x P,F, where all ni>,2. Note that 

P,, x P,,z x ... x P,r has n1 .n2 “‘II, vertices of the form (a1,a2, . . ..a.), where 1 <ai<ni 

for 1 did r. Vertex (al, a2, . . , a,) is adjacent to vertex (b,, bZ, . . . , b,) if and only if there 

is exactly one laj- bjJ = 1 and all other ai= bi. Also d(P,, x P,, x ... x P,,)< 

&P,, x P,, x ... x P,,)+ 1 =r+ 1. 

It is clear that P, is domatically full for any n3 1. 

For any 2-dimensional grid P,, x Pnz, D1 = {(a, b): a is odd} and D2 = ((a, b): a is 

even} form a domatic partition. So 2 6 d(Pnl x P,,) < 3. It is clear that d(Pz x P2) = 2 
since P, x Pz has only four vertices and no dominating vertex. It is also the case that 

d(Pz x P4) = d(P4 x P2) = 2. However, d(P,, x P,,) = 3 for all other 2-dimensional grids. 

To establish this result as well as others, we employ Propositions 2.1 and 3.1. 

Proposition 3.1. d(H) < d(G) for any spanning subgraph H = (V, E’) of G = (V, E). 

Proof. The proposition follows from the fact that a dominating set of H is also 

a dominating set of G. 0 
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Theorem 3.2. d(P,, x P,,)= 3 for any 2-dimensional grid P,, x P,, except that 

d(P, x Pz)=d(Pz x P4)=d(P4x P,)=2. 

Proof. Assume (n,, n2) is not (2,2) (2,4) or (4,2). For the case when one of n, and n2 is 

odd, say nl, let 

D, = {(a, b): ar0 (mod 2)), 

D2 = ((a, b): a = 1 (mod 4) and b E 1 (mod 2)), 

u{(a,b): a=3 (mod4) br0 (mod2)), 

D3 = {(a, b): as 1 (mod 4) and b =_O (mod 2)} 

~((a, b): a E 3 (mod 4) b s 1 (mod 2)). 

Then Dr, D2, D3 form a domatic partition of PnI x P,,. Thus d(Pnl x P,,)=3. Fig. 1 

shows a domatic partition of P5 x P4. 

For the case when both n1 and n2 are even: d(P4 x P4)= 3, shown in Fig. 2. Now, 

suppose at least one niB6, say n1 26. Since (P3 x P,,)u(P,, _3 x P,,) is a spanning 

subgraph of P,, x Pn2 and d(P, x P,,) = d(P,, _ 3 x P,,) = 3 by the above cases, 

@‘,, x J’,,)~W=, x P&V’,l-~ x P,,)) 

>,min {d(P, x P,,), d(P,l - 3 x P,,,)) = 3 

by Propositions 2.1 and 3.1. Thus, the theorem holds. q 

For results on other grids, we need the concept about identifying two copies of 

a graph at a vertex set expressed in the following lemmas. More precisely, suppose 

G =( V, E) is a graph and S a subset of V’. Consider the graph G A S =( 1/*, E*) with 

v*= Vu{x*: XEV-S) and 

E*=Eu{{X*,yj: XEV-&YES, (x,y}~E}u({x*,y*}: x,y~V--S, {x,y}~E}. 

Fig. 1. d(f’, x P4) = 3. 
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Fig. 2. d(P, x P4) = 3. 

Lemma 3.3. Z_!- S is a subset of V in a graph G = (V, E), then d(G A S) 2 d(G). 

Proof. The lemma follows from the fact that for any dominating set D of G, 

D* =Du{x*: XED-S} is a dominating set of GA S. 0 

Lemma 3.4. If x is an end vertex of P,, then P,A{x} is isomorphic to P2,,- 1. 

Lemma 3.5. For any two graphs G1 = ( VI, El) and Gz = ( V2, E2), ifS is a subset of VI 

then (G, A S) x G2 is isomorphic to (G, x G,) A (S x V,). 

Theorem 3.6. If r and n are positiue integers and (n1,n2, . . ..n.)~{n,2n- l}, then 
d(P+ x P,, x ... x P,,) 2 d(P, x P, x . . x P,), where the grids are r-dimensional. 

Proof. By Lemmas 3.4 and 3.5, Pzn_ I x P,, x ... x P,r is isomorphic to 

(P, x P,, x ... x P,,) A((x} x V, x ... x V,). The theorem can be proved by induction 

on the number of ni’s that are equal to 2n- 1. 0 

For any positive integer n, since n and 2n - 1 are relatively prime, there exists some 

no such that for any integer m>n,, we can write m = rn + s(2n - 1) for some non- 

negative integers r and s. The minimum such no is denoted by M(n). For instance, 

M(2) = 2 and M(3) = 8. 

Theorem 3.7. If r and n are positive integers and nI, n2, . . . , n,b M(n) then 
d(P,, x P,, x ... x P,,)>d(P, x P, x ... x P,), where the grids are r-dimensional. 

Proof. Since for each ni there exist ri and si such that ni =rin +si(2n - l), 

Pnl x P,, x ... x P”r has a spanning subgraph which is the union of some grids 

P,, x P,, x ... x P,r, where ml, m2, . . . , m,E{n,2n- l}. The theorem follows from 

Propositions 2.1 and 3.1 and Theorem 3.6. 0 

Theorem 3.8 (Laborde, Zelinka [9,21]). Zfk is a positive integer and r = 2k - 1, then the 
r-dimensional grid P, x P, x ... x P, is domatically full. 

Colloary 3.9. Zf k is a positive integer and r =2k- 1, then any r-dimensional grid 

P,, x P,, x 1.. x P,V is domaticully full. 
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We close this paper with the following conjecture: all r-dimensional grids, with 

finitely many exceptions, are domatically full. By Theorem 3.6, this conjecture is true if 

we can find some n such that the r-dimensional grid P, x P, x ... x P, is domatically 

full. In fact a slight modification of the above arguments shows that the conjecture is 

true if we can find a domatically full r-dimensional grid. 
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