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Optimal management for infinite capacity N-policy M/G/1 queue

with a removable service station

Y.C. Changa* and W.L. Pearnb

aDepartment of Industrial Engineering and Management, Ching Yun University, Taiwan;
bDepartment of Industrial Engineering and Management, National Chiao Tung University, Taiwan

(Final version received 8 March 2007)

In this article, we consider an infinite capacity N-policy M/G/1 queueing system with a single removable server.
Poisson arrivals and general distribution service times are assumed. The server is controllable that may be turned
on at arrival epochs or off at service completion epochs. We apply a differential technique to study system
sensitivity, which examines the effect of different system input parameters on the system. A cost model for infinite
capacity queueing system under steady-state condition is developed, to determine the optimal management policy
at minimum cost. Analytical results for sensitivity analysis are derived. We also provide extensive numerical
computations to illustrate the analytical sensitivity properties obtained. Finally, an application example is
presented to demonstrate how the model could be used in real applications to obtain the optimal management
policy.

Keywords: analytical results; management policy; M/G/1 queue; sensitivity analysis

1. Introduction

In this article, we use a differential technique to study

the optimal management policy of an N-policy M/G/1

queue with infinite capacity. The decision-maker can

turn a single server on at customers’ arrival epochs or

off at service completion (departure) epochs. The term

‘removable server’ represents the system of turning on

and turning off the server, depending on the number of

customers in the system. The service times are

described by an arbitrary probability distribution

with mean 1/� and arrivals entering the service station

follow a Poisson process with mean rate �. The next

job order cannot start processing until the previous

service has completed and as long as its queue is non-

empty, the server will process job orders at this rate.

The processing process is independent of the Poisson

arrival process of the job orders, which means that

regardless of the number of outstanding job orders,

they continue to transmit to the processing centre in

rate �. Arriving job orders form a single waiting line at

the processing centre based on the order of their

arrival. The processing centre can only process one

order at a time, and it takes a zero set-up time to

restart the production line.
In the literature, the N-policy queueing systems

have been extensively studied. A pioneer work in this
field is Yadin and Naor (1963), who first introduced

the concept of an N-policy, which turns the server on
when the number of customers in the system reaches a
certain number, N (N� 1), and turns the server off
when no customer is present. After the server is turned
off, it may not operate until N customers are present in
the system. Past research works may be categorised
into two parts according to whether the system
capacity is infinite or finite. For the infinite capacity
case, we review existing works treating problems with
removable servers. The N-policy M/G/1 queueing
system with a reliable server was first studied by
Heyman (1968), and was investigated extensively by
several researchers including Bell (1971, 1972), Kimura
(1981), Tijms (1986), Gakis, Rhee, and Sivazlian
(1995), Artalejo (1998) and many others. Recently,
Wang and Huang (1995a) developed analytic
closed-form solutions for the N-policy M/Ek/1 queue-
ing system with a reliable server. Wang, Chang, and
Sivazlian (1999) investigated the N-policy M/H2/1
queueing system and provided stability conditions,
that is, steady-state conditions. For finite capacity
queueing systems with a removable server, Hersh and
Brosh (1980) considered a queueing system with a
Poisson distribution arrival process and exponential
distributed service times operating under the N-policy.
Teghem (1987) studied an M/G/1 queueing system in
which the removable server applies a (v,N ) policy.
Analytical explicit solutions for the N-policy M/Ek/1
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queueing system were derived and a sensitivity analysis
was performed in Wang and Huang (1995b).

The primary objectives of this article are to perform
a sensitivity analysis of the optimal management
policy, and to demonstrate the connection of mathe-
matical formulation and computer program imple-
mentation. First, we derive the analytical closed-form
results on the sensitivity analysis. Then, an efficient
S-PLUS computer program is used to calculate the
optimal value of N and other critical system perfor-
mance measures under optimal operation condition.
To examine the effects of the input parameters on the
optimal value, we apply differential technique to study
system sensitivity. Also, we carry out extensive com-
putational experiments to illustrate our findings.
Finally, without having an intimate knowledge of the
mathematics implemented in the model, an application
example is presented for demonstration purposes.

2. Steady-state results

Let LN denote the expected number of customers in the
N-policy M/G/1 queue with infinite capacity. From
Tijms (1986) and Wang and Ke (2000), we have the
following analytical closed-form expression, where
� ¼ �=� and E½S2� is the second moment of the service
time:

LN ¼
N� 1

2
þ �þ

�2E ½S2�

2ð1� �Þ
: ð1Þ

Notations for the idle period, the busy period and
the busy cycle are defined as follows: (1) the idle
period, the length of time the server is turned off per
cycle, is denoted by I, (2) the busy period, the length of
time when the server is turned on and in operation and
customers are being served per cycle, is denoted by B,
(3) the busy cycle, from the beginning of the last idle
period to the beginning of the following next idle
period, is denoted by C. The expected lengths of
the idle period, the busy period and the busy cycle are
denoted by E [I ], E [B] and E [C ], respectively. The
busy cycle is the sum of the idle period and the busy
period, C ¼ Iþ B, or E [C ]¼E [I ]þE [B]. Using the
results stated in Wang and Ke (2000), we have the
long-run fraction of time, for the server is in idle, busy,
respectively, and the number of busy cycles per
unit time:

E ½I �

E ½C �
¼ 1� �, ð2Þ

E ½B�

E ½C �
¼ �, ð3Þ

1

E ½C �
¼
�ð1� �Þ

N
: ð4Þ

Empty probability, that there is no customer in the

system and no station is in service (the service station is

turned off), is given by

P00 ¼
1� �

N
: ð5Þ

Stability conditions for a stable queueing system are

given by Equation (5) with 05P0051. With simple

algebraic manipulations, we obtain the following

inequality, where �¼ �/�, which is sufficient for

stationary conditions,

05 �5 1: ð6Þ

3. Optimal management policy

We define: (1) Ch� holding cost per unit time for each

customer present in the system, (2) Ca� cost per unit

time for performing an auxiliary task by the service

station in the idle period, (3) Co� operating cost per

unit time for the service station in operation,

(4) Cs� start-up cost per unit time for activating the

service station while the service station is turned off

and (5) Cd� shut down cost per unit time for removing

the service station from the service. Our objective is to

determine the optimal value of the management

parameter N, say N*, to minimise the total expected

cost function. Utilising the definition of each cost

element, the total expected cost function per unit time

per customer is given by (see also Wang and Ke 2000)

TCðN Þ ¼ChLNþCa
E ½I �

E ½C �
þCo

E ½B�

E ½C �
þ ðCsþCd Þ

1

E ½C �
:

ð7Þ

We should note that the last two terms of

Equation (1) are not function of the decision variable

N. Likewise, we note from Equations (2)–(3) that,

terms E [I ]/E [C ], and E [B]/E [C ] do not involve the

decision variable N. Omitting those cost terms not a

function of the decision variable N, the optimisation

problem in Equation (7) is equivalent to minimising the

following equation:

~TCðN Þ ¼ Ch
N� 1

2
þ ðCs þ Cd Þ

�ð1� �Þ

N
: ð8Þ

Discarding the fixed cost �(1/2)Ch of the first term,

Equation (8) reduces to the following expression,

subject to 05�51, and N¼ 1, 2, . . .

T̂CðN Þ ¼ Ch
N

2
þ ðCs þ Cd Þ

�ð1� �Þ

N
: ð9Þ

Since N is a positive integer, N¼ 1, 2, . . . , the

optimal value N* minimising TC(N ) can be
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determined from the following two inequalities,

T̂CðN� � 1Þ � T̂CðN�Þ,

T̂CðN� þ 1Þ � T̂CðN�Þ:
ð10Þ

From Equation (10), the necessary conditions for

N * to be optimal reduce to

ðN � � 1ÞN � �
2�ðCs þ Cd Þð1� �Þ

Ch
� N �ðN � þ 1Þ:

ð11Þ

The optimal value N * may be determined by giving

a particular value of 2�(CsþCd)(1� �)/Ch. Note that

there might be two simultaneous solutions for

Equation (11) which minimise the total expected cost

function TC(N ). For example, we set a particular value

of 2�(CsþCd)(1� �)/Ch¼ 42 in Equation (11) and

solve for N * to obtain N *¼ 6 or 7. If N is treated as a

continuous variable greater than zero, we present two

methods to solve for the optimal of N, say N *, and

convexity of TC(N ) will be proved. Note that the

S-PLUS computer program we used allows one to plot

TC(N ) versus N to illustrate the convexity property

(Figure 8).

Method 1: Differentiating TC(N ) with respect to N

and setting the result equal to zero yields

Ch

2
� ðCs þ Cd Þ

�ð1� �Þ

N2
¼ 0:

Thus, the optimal value of N is approximately

given by

N � ¼
2�ð1� �ÞðCs þ Cd Þ

Ch

� �1=2

: ð12Þ

Differentiate TC(N ) with respect to N twice and

then substitute

N � ¼
2�ð1� �ÞðCs þ Cd Þ

Ch

� �1=2

to obtain

d2TCðN �Þ

dN2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3

h

2�ðCs þ Cd Þð1� �Þ

s
4 0, for �5 1,

ð13Þ

which implies that TC(N ) is a concave upward

(convex) function and achieves a global minimum

when (Wang and Ke 2000)

N � ¼
2�ð1� �ÞðCs þ Cd Þ

Ch

� �1=2

: ð14Þ

Method 2: From Equation (9) we have the following

inequality

T̂CðN Þ ¼ Ch
N

2
þ ðCs þ Cd Þ

�ð1� �Þ

N

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ChðCs þ Cd Þð1� �Þ

p
, ð15Þ

which gives a lower bound of T̂CðN Þ and indicates that

T̂CðN Þ is a concave upward function with lower boundffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ChðCs þ Cd Þð1� �Þ

p
. Equality in Equation (15)

holds when

Ch
N

2
¼ ðCs þ Cd Þ

�ð1� �Þ

N
: ð16Þ

With some algebraic manipulations, we obtain

N � �
2�ð1� �ÞðCs þ Cd Þ

Ch

� �1=2

: ð17Þ

Note that the expressions of N * in Equations (14)

and (17) are the same. If N * is not an integer, the

optimal value of N is one of the two integers closest to

N *, the expression may rewrite as

N � ¼
2�ð1� �ÞðCs þ Cd Þ

Ch

� �1=2

þ ": ð18Þ

where "2 (�1, 1) is a constant.

4. Analytical results for sensitivity analysis

An important part of any modelling study is that of

sensitivity analysis, which determines how changes in

model parameters would affect system performance.

Sensitivity coefficients, defined as the partial deriva-

tives of the model output with respect to the input

parameters, are useful in assessing the reliability of the

output from a complex model with many uncertainty

parameters. A system analyst often concern with how

the system performance can be affected by the changes

of the input parameters in the recommended queueing

service model. Sensitivity study on the queueing model

with critical input parameters may provide some

answers to this question. In the following, we conduct

some sensitivity investigations on the optimal value N *

based on changes in values of the cost parameters Ch,

Ca, Co, Cs, Cd and system parameters � and �.
We note that the terms E [B]/E [C ], and E [I ]/E [C ]

do not involve the decision variable N. Therefore, we

may set the relative cost parameters Ca and Co to be

some fixed constants, say, zero. Further, from

Equation (18), it is easy to see that

N � /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCs þ Cd Þ=Ch

p
:

International Journal of Systems Science 1077
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We perform some algebraic manipulation with respect
to system parameters � and �. By differentiating N *
with respect to �, we obtain

@N �

@�
¼
ð1� 2�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCs þ Cd Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Chð1� �Þ

p : ð19Þ

Setting the last equation to be 0 then solving for �,
we find � ¼ �=2 (note that �5� is required). By
differentiating @N �=@� with respect to � again and
substituting � ¼ �=2, we can easily show that

@2N �

@�2
�¼�=2

�� ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðCs þ Cd Þ

Ch�3

s
5 0: ð20Þ

The above result implies that N * is a concave
downward function with respect to �, which achieves
its maximum at � ¼ �=2. By differentiating N * with
respect to � to achieve

@N �

@�
¼

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cs þ Cd

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Chð1� �Þ

p 4 0, ð21Þ

for any � with �5�. Thus, N * is increasing in �.
We summarise the analytical results for the sensitivity
analysis as follows.

(1) N * increases in � for �51/2 and decreases in �
for �41/2.

(2) N * increases in �.
(3) Cost parameters Ca and Co do not affect N *.
(4) N * is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCs þ Cd Þ=Ch

p
. In other

words, N * increases in Cs and Cd whereas
decreases in Ch.

Sensitivity analyses indicate the effects of changes
in key input parameters on the optimal solution. The
derivatives in the calculations may be treated as the
‘changing rate’ with respect to each changing param-
eters. A small derivative may result in a small
‘changing rate’, which means it would not affect the
optimal decision value significantly. Consequently,
more effort should be made to obtain accurate
estimates for those parameters with large ‘changing
rate’. Further, the optimal management policy is
insensitive to the cost elements Ca and Co in the total
expected cost function per unit time per customer.
Hence, poor estimates of those cost elements do not
affect the optimal value N *.

The results reveal some interest properties of the
M/G/1 queueing system with a removable service
station. For low-traffic intensity service systems with
�51/2, when arrival customers increase, we should
raise the threshold N * to start serving waiting
customers. On the other hand, for high-traffic intensity
service systems with �41/2, when arrival customers
increase, we should reduce the threshold N * to start

serving waiting customers to maintain low cost. For
the service station, as long as it can serve in a faster
rate, the system manager should increase the threshold
N *. Operating cost per unit time for the service station
in operation and cost per unit time for performing an
auxiliary task by the service station may treat as fixed
cost to the service system and they would not affect the
decision variable N.

We should note that N-policy is used because of
expensive start-up and shut down cost per cycle
(relative to holding cost), they affect N * in the
following manner. For the same cost ratio (cost per
cycle relative to holding cost), we would obtain the
same value N *. As start-up cost per unit time for
activating the service station or removable cost per unit
time increases, one should increase the threshold N *
to prevent high set-up and shut down costs. When
holding cost per unit time for each customer present in
the system increase, one should decrease the threshold
N * to avoid high holding cost.

5. Numerical computations

We now perform an extensive numerical study to
illustrate these sensitivity analysis results. Our findings
reveal that the optimal management policy is sensitive
to some input parameters, such as the cost coefficients
Ch, Cs, Cd and system parameters � and �. Therefore,
we may set the insensitivity cost elements Ca and Co

equal to zero. Further, incremental rather than
accounting costs are considered since the latter often
include such non-incremental elements as overhead.
In our investigation, holding cost Ch is set to be
5(0.75)80 or 5(1)85 to cover various levels of, from low
to high holding costs. Equation (18) suggests that
N � /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCs þ Cd Þ=Ch

p
. We may treat (CsþCd), say Cc,

as the cost per cycle, without loss of generality, we
assume Cs and Cd to be equal since only the sum of
them is concerned. Dealing with the system parame-
ters, we note that 05�51 is sufficient for steady-state
condition. A queueing system may be characterised by
� ¼ �=�, which represents the traffic intensity. In our
study, a widespread range of � is covered.

The sensitivity calculations demonstration may
now focus on the four critical input parameters: Ch,
Cc, � and �. We group them into six possible pairs: Ch

and Cc; Ch and �; Ch and �; Cc and �; Cc and �; � and
�, under consideration simultaneously in order to
study the interaction of these key factors. Individual
affection on the optimal solution is examined as well.
We consider the following experimental design of
system parameters for sensitivity analysis on the
optimal value N � based on changes in considerable
input values. We calculate the optimal value N � for the
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parameters settings summarised in Table 1, which
cover a widespread range of applications dealing with
the referred queueing model and plot the results in
Figures 1–6. For example, rows 2–4 list the parameters
settings for various combinations of Ch and Cc. The
specified range Ch¼ 5(0.75)80, which means that Ch is
set to the range [5, 80] in incremental steps of size 0.75,
and Cc¼ 100(50)5100 are considered in which the ratio
Cc/Ch covers widespread cost relationships. Rows 3
and 4 are chosen to examine the sensitivity of N �

versus Ch or Cc once a time. In row 3, for various Ch

increase from 5 to 80 by 0.75, three levels of Cc¼ 100,
3000 and 5000 are selected. In row 4, three levels of
Ch¼ 5, 20 and 50 and Cc¼ 100(50)5100 are considered.
Figure 1(a) plots the surface of N � versus Ch and Cc.
Figure 1(b) and (c) shows the cross-section,

which plot the curves of N � versus Ch and Cc,
respectively.

We observe from Figure 1(a)–(c) that: (1) N �

increases in Cc but decreases in Ch, (2) N
� increases in

the ratio Cc/Ch. Figure 2(a)–(c) reveals that: (1) N �

increases in � for �51/2 and decreases in � for �41/2,
(2) N � decreases in Ch. From Figure 3(a)–(c) we
observe that: N � increases in � but decreases in Ch. We
observe from Figure 4(a)–(c) that: (1) N � increases in
Cc, (2) N

� increases in � for �51/2 and decreases in �
for �41/2. Figure 5(a)–(c) reveals that: N � increases
both in Cc and in �. From Figure 6(a)–(c) we observe
that: (1) N � increases in � for �51/2 and decreases in �
for �41/2. The ‘local maximum’ �=2 moves from left
to right as � increases. If � is large enough, one could
see that N � increases in �, (2) N � increases in �.

Table 1. Parameters settings for various system parameters combinations.

Ch Cc � � Parameter setting (1) Parameter setting (2)

(1) (2) 0.3 0.8 5(0.75)80 100(50)5100
(1) (2) 0.3 0.8 5(0.75)80 100, 3000, 5000
(1) (2) 0.3 0.8 5, 20, 50 100(50)5100
(1) 1600 (2) 1 5(1)85 0.05(0.01)0.85
(1) 1600 (2) 1 5(1)85 0.25, 0.55, 0.85
(1) 1600 (2) 1 5, 10, 50 0.05(0.01)0.85
(1) 1600 0.8 (2) 5(1)85 1(0.1)10
(1) 1600 0.8 (2) 5(1)85 1, 3, 5
(1) 1600 0.8 (2) 5, 10, 50 1(0.1)10
5 (1) (2) 1 100(50)4100 0.05(0.01)0.85
5 (1) (2) 1 100(50)4100 0.25, 0.55, 0.85
5 (1) (2) 1 100, 2000, 4000 0.05(0.01)0.85
5 (1) 0.8 (2) 100(50)4100 1(0.1)10
5 (1) 0.8 (2) 100(50)4100 1, 3, 5
5 (1) 0.8 (2) 100, 2000, 4000 1(0.1)10
5 1600 (1) (2) 0.05(0.009)0.95 1(0.09)10
5 1600 (1) (2) 0.05(0.009)0.95 1, 3.07, 5.05
5 1600 (1) (2) 0.32, 0.68, 0.95 1(0.09)10

10 30 50 70
Ch

0

5

10

15

20

0 1000 2000 3000 4000 5000
Cc

0

5

10

15

20

(b) (c)(a)

Figure 1. (a) Surface plot of N* versus Ch¼ 5(0.75)80 and Cc¼ 100(50)5100; (b) plots of N* versus Ch¼ 5(0.75)80, Cc¼ 100,
3000, 5000 (bottom to top in plot) and (c) plots of N* versus Ch¼ 5, 20, 50 and Cc¼ 100(50)5100 (top to bottom in plot).
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0 1000 2000 3000 4000

Cc

0

5

10

15

20

0.1 0.3 0.5 0.7 0.9

l

0

5

10

15

20

(b) (c)(a)

Figure 4. (a) Surface plot of N* versus Cc¼ 100(50)4100 and �¼ 0.05(0.01)0.85; (b) plots of N* versus Cc¼ 100(50)4100,
�¼ 0.25, 0.55, 0.85 (bottom to top in plot) and (c) plots of N* versus Cc¼ 100, 2000, 4000 and �¼ 0.05(0.01)0.85 (bottom to top
in plot).
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l

1
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Ch

1

3

5
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11

13

(b) (c)(a)

Figure 2. (a) Surface plot of N* versus Ch¼ 5(1)85 and �¼ 0.05(0.01)0.85; (b) plots of N* versus Ch¼ 5, 10, 50 and
�¼ 0.05(0.01)0.85 (top to bottom in plot) and (c) plots of N* versus Ch¼ 5(1)85 and �¼ 0.25, 0.55, 0.85 (bottom to top in plot).
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Figure 3. (a) Surface plot of N* versus Ch¼ 5(1)85 and m¼ 1(0.1)10; (b) plots of N* versus Ch¼ 5, 10, 50 and �¼ 1(0.1)10 (top to
bottom in plot) and (c) plots of N* versus Ch¼ 5(1)85 and �¼ 1, 3, 5 (bottom to top in plot).
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6. An application example

A routine maintenance in computer communication
systems is now presented for illustrative purposes. In
addition to transmitting and receiving data, processors
in communication systems also perform a variety of
testing and processing data, which is considered the
processor’s primary activity, while the maintenance is
considered a secondary activity. The way in which the
maintenance is scheduled relative to data management
and processing is dependent upon system require-
ments. Since maintenance activity is often divided into
small tasks, whenever the processor finds that there are
no primary jobs in the system to service, it begins to
work on a maintenance task. For the purpose of our
research work, however, we think of a communication
network as a network whose purpose is to interconnect
a set of applications that are implemented on process-
ing centre and managed by an N-policy. The N-policy
applied to control the queueing system is probability
due to expensive start-up and shut down cost per cycle
or to fully utilise the server.

In the idle period, the processor keeps working on
this maintenance task until the processor finds that N

or more primary jobs have accumulated in the system,

it resumes working on primary jobs until there are no

job orders in the system. An N-policy model that

activates the server when there are N customers waiting

for service and deactivates the server when there are no

customers in the system can be also defined as a

queueing system in which the idle time of the server

may be utilised for other secondary jobs, for our case

to work on a maintenance task. The N-policy systems

are easily particularised to model many practical

situations where the server’s effort is divided between

primary and secondary customers by specifying an

appropriate server scheduling discipline. From the

perspective of primary customers, work performed on

secondary customers is equivalent to perform an

auxiliary task by the server in the so-called idle

period with fixed cost.
Data management and data processing have higher

priority over the maintenance activity. However, the

maintenance tasks are never pre-empted. When pri-

mary jobs are being severed, the system behaves as a

typical single-queue, single-server system. When pri-

mary jobs are absent from the system, the server
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Figure 6. (a) Surface plot of N* versus �¼ 0.05(0.009)0.95 and �¼ 1(0.09)10; (b) plots of N* versus �¼ 0.05(0.009)0.95 and
�¼ 1, 3.07, 5.05 (bottom to top in plot) and (c) plots of N* versus �¼ 0.32, 0.68, 0.95 and �¼ 1(0.09)10 (bottom to top in plot).
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Figure 5. (a) Surface plot of N* versus Cc¼ 100(50)4100 and �¼ 1(0.1)10; (b) plots of N* versus Cc¼ 100(50)4100 and �¼ 1, 3, 5
(bottom to top in plot) and (c) plots of N* versus Cc¼ 100, 2000, 4000 and �¼ 1(0.1)10 (bottom to top in plot).
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(processor) performs a maintenance task until finding
at least N primary jobs in the system. Figure 7 shows a
schematic diagram of the routine operations in com-
puter communication systems.

The program output is shown as follows:

N¼ 7,
TC(N )¼ 157.5714,
E [I ]¼ 8.75,
E [B]¼ 35,
1/E [C ]¼ 0.02285714.

System characteristics calculations for the model do
not require complicated intermediate functions to be
implemented, and most of the system performance
measures usually of interest can be calculated in a
straightforward way. In the example investigated,
input system parameters the job order stream arrival
rate �¼ 0.8 job/s, the job order processing (service) rate
�¼ 0.8 job/s and cost element holding cost per second
for each job present in the system set to Ch¼ 10, and
cost per second for performing an auxiliary task by the
service station or cost per second for keeping the server
off set to Ca¼ 0, the cost per second for keeping the
processor (service station) operating set to Co¼ 0, the
start-up cost for turning the processor on set to
Cs¼ 800, the removable cost per second for removing
the processor set to Cd¼ 800. The summary of the
model inputs are tabulated in Table 2.

The S-PLUS computer program gives the expected
length of idle period E [I ]¼ 8.75 s, the expected length
of processing (busy) period E [B]¼ 35 s and the
expected number of busy cycles per second
1/E [C ]¼ 0.02. The value of N for the optimal
management policy is N � ¼ 7 units of job orders, and
the corresponding minimum expected cost is found to
be TCðN �Þ ¼ 157.57. Figure 8 plots the expected cost
TCðN Þ versus N¼ 1(1)30. It shows that the minimum
expected cost indeed occurs when N¼ 7, and the
tendency of TCðN Þ versus N could be easily observed.
We summarise the model outputs in Table 3. We have
given an example to illustrate how a system analyst can
use computer program such as S-PLUS to calculate

system performance measures, the optimal value of N
and its minimum expected cost. The application
example demonstrates the levels of detail that are

appropriate for building a model and using that model
for performance projection. The example illustrates the

relationship between modelling concepts, evaluation

0 5 10 15 20 25 30

N

15
0

20
0

25
0

30
0

35
0

T
C

(N
)

Figure 8. Plot of TC(N ) versus N for N¼ 1(1)30.

Table 2. Model input parameter values.

System parameters and cost
elements Notation Value

Job order stream arrival rate � 0.8
Job order processing (service) rate � 1
Holding cost per second per job

order present
Ch 10

Cost per second for performing an
auxiliary task

Ca 0

Cost per second for keeping the
processor on

Co 0

Start-up cost per second for turn-
ing the processor on

Cs 800

Shut-down cost per second for
turning the processor off

Cd 800

Completed job 

(Arrival rate λ) 

Job arrival stream 

Queue 

(When number of job units ≥ N) 

Processing Centre

Maintenance 

Job arrival stream 

(Arrival rate λ) Queue 

Service  
rate μ

Figure 7. A schematic diagram of the routine operations in
computer communication systems.

Table 3. Model output for system performance measures.

System performance measures Notation Value

Optimal management policy N* 7
Minimum expected cost TC(N*) 157.57
Expected length of idle period E[I ] 8.75
Expected length of busy period E[B] 35
Number of busy cycles per second 1/E[C ] 0.02
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algorithms and implementation. It also indicates how
such implementation can save the cost by the analyst.
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