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In this article, we consider an infinite capacity N-policy M/G/1 queueing system with a single removable server.
Poisson arrivals and general distribution service times are assumed. The server is controllable that may be turned
on at arrival epochs or off at service completion epochs. We apply a differential technique to study system
sensitivity, which examines the effect of different system input parameters on the system. A cost model for infinite
capacity queueing system under steady-state condition is developed, to determine the optimal management policy
at minimum cost. Analytical results for sensitivity analysis are derived. We also provide extensive numerical
computations to illustrate the analytical sensitivity properties obtained. Finally, an application example is
presented to demonstrate how the model could be used in real applications to obtain the optimal management

policy.
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1. Introduction

In this article, we use a differential technique to study
the optimal management policy of an N-policy M/G/1
queue with infinite capacity. The decision-maker can
turn a single server on at customers’ arrival epochs or
off at service completion (departure) epochs. The term
‘removable server’ represents the system of turning on
and turning off the server, depending on the number of
customers in the system. The service times are
described by an arbitrary probability distribution
with mean 1/u and arrivals entering the service station
follow a Poisson process with mean rate A. The next
job order cannot start processing until the previous
service has completed and as long as its queue is non-
empty, the server will process job orders at this rate.
The processing process is independent of the Poisson
arrival process of the job orders, which means that
regardless of the number of outstanding job orders,
they continue to transmit to the processing centre in
rate L. Arriving job orders form a single waiting line at
the processing centre based on the order of their
arrival. The processing centre can only process one
order at a time, and it takes a zero set-up time to
restart the production line.

In the literature, the N-policy queueing systems
have been extensively studied. A pioneer work in this
field is Yadin and Naor (1963), who first introduced

the concept of an N-policy, which turns the server on
when the number of customers in the system reaches a
certain number, N (N>1), and turns the server off
when no customer is present. After the server is turned
off, it may not operate until N customers are present in
the system. Past research works may be categorised
into two parts according to whether the system
capacity is infinite or finite. For the infinite capacity
case, we review existing works treating problems with
removable servers. The N-policy M/G/1 queueing
system with a reliable server was first studied by
Heyman (1968), and was investigated extensively by
several researchers including Bell (1971, 1972), Kimura
(1981), Tiyms (1986), Gakis, Rhee, and Sivazlian
(1995), Artalejo (1998) and many others. Recently,
Wang and Huang (1995a) developed analytic
closed-form solutions for the N-policy M/E,/1 queue-
ing system with a reliable server. Wang, Chang, and
Sivazlian (1999) investigated the N-policy M/H,/1
queueing system and provided stability conditions,
that is, steady-state conditions. For finite capacity
queueing systems with a removable server, Hersh and
Brosh (1980) considered a queueing system with a
Poisson distribution arrival process and exponential
distributed service times operating under the N-policy.
Teghem (1987) studied an M/G/1 queueing system in
which the removable server applies a (v, N) policy.
Analytical explicit solutions for the N-policy M/E;/1
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queueing system were derived and a sensitivity analysis
was performed in Wang and Huang (1995b).

The primary objectives of this article are to perform
a sensitivity analysis of the optimal management
policy, and to demonstrate the connection of mathe-
matical formulation and computer program imple-
mentation. First, we derive the analytical closed-form
results on the sensitivity analysis. Then, an efficient
S-PLUS computer program is used to calculate the
optimal value of N and other critical system perfor-
mance measures under optimal operation condition.
To examine the effects of the input parameters on the
optimal value, we apply differential technique to study
system sensitivity. Also, we carry out extensive com-
putational experiments to illustrate our findings.
Finally, without having an intimate knowledge of the
mathematics implemented in the model, an application
example is presented for demonstration purposes.

2. Steady-state results

Let Ly denote the expected number of customers in the
N-policy M/G/1 queue with infinite capacity. From
Tijms (1986) and Wang and Ke (2000), we have the
following analytical closed-form expression, where
o = A/w and E[S?] is the second moment of the service
time:
N-1 VE[S?] |
L/v—i2 +,0+72(1_p)~ (1)
Notations for the idle period, the busy period and
the busy cycle are defined as follows: (1) the idle
period, the length of time the server is turned off per
cycle, is denoted by 7, (2) the busy period, the length of
time when the server is turned on and in operation and
customers are being served per cycle, is denoted by B,
(3) the busy cycle, from the beginning of the last idle
period to the beginning of the following next idle
period, is denoted by C. The expected lengths of
the idle period, the busy period and the busy cycle are
denoted by E[I/], E[B] and E[C], respectively. The
busy cycle is the sum of the idle period and the busy
period, C =1+ B, or E[C]=E[I]+ E[B]. Using the
results stated in Wang and Ke (2000), we have the
long-run fraction of time, for the server is in idle, busy,
respectively, and the number of busy cycles per
unit time:

E[I]
W—I—P, (2)
E[B] _
m—ﬂa (3)
I a1-p)
ElC]- N )

Empty probability, that there is no customer in the
system and no station is in service (the service station is
turned off), is given by

l—p

Py =—. S
0 ="y (5)
Stability conditions for a stable queueing system are
given by Equation (5) with 0<Pyy<1. With simple
algebraic manipulations, we obtain the following
inequality, where p=2A/u, which is sufficient for

stationary conditions,

0<p<l1. (6)

3. Optimal management policy

We define: (1) C,=holding cost per unit time for each
customer present in the system, (2) C,=cost per unit
time for performing an auxiliary task by the service
station in the idle period, (3) C,=operating cost per
unit time for the service station in operation,
(4) Cy=start-up cost per unit time for activating the
service station while the service station is turned off
and (5) C,=shut down cost per unit time for removing
the service station from the service. Our objective is to
determine the optimal value of the management
parameter N, say N*, to minimise the total expected
cost function. Utilising the definition of each cost
element, the total expected cost function per unit time
per customer is given by (see also Wang and Ke 2000)
TCN) = Cil+ Corgy it Cogron + (Gt Co)

(7

We should note that the last two terms of
Equation (1) are not function of the decision variable
N. Likewise, we note from Equations (2)—(3) that,
terms E[/]/E[C], and E[B]/E[C] do not involve the
decision variable N. Omitting those cost terms not a
function of the decision variable N, the optimisation
problem in Equation (7) is equivalent to minimising the
following equation:

M1 = p)
~—

Discarding the fixed cost —(1/2)C}, of the first term,
Equation (8) reduces to the following expression,
subject to O0<p<1,and N=1,2,...

- N-—1
TC(N) = C, +(Cs+ Cy)

®)

A1 p)_

TC(N)—Ch +(C +Cy) N

)

Since N is a positive integer, N=1,2,..., the
optimal value N* minimising 7C(N) can be
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determined from the following two inequalities,

TC(N* — 1) > TC(N*),

N R (10)
TC(N* 4+ 1) = TC(N™).
From Equation (10), the necessary conditions for

N * to be optimal reduce to

2M(Cs + Ca)(1 = p)

N*—1N* <
( ) - Ch

< N*(N* +1).
(11

The optimal value N * may be determined by giving
a particular value of 2A(Cy+ C,)(1 — p)/C),. Note that
there might be two simultaneous solutions for
Equation (11) which minimise the total expected cost
function TC(N). For example, we set a particular value
of 2AM(Cy+ Cy)(1 — p)/C,=42 in Equation (11) and
solve for N * to obtain N* =6 or 7. If N is treated as a
continuous variable greater than zero, we present two
methods to solve for the optimal of N, say N*, and
convexity of TC(N) will be proved. Note that the
S-PLUS computer program we used allows one to plot
TC(N) versus N to illustrate the convexity property
(Figure 8).

Method 1: Differentiating 7C(N) with respect to N
and setting the result equal to zero yields

Ch )‘(1 - p) _

7_(C3+Cd) N2 0.

Thus, the optimal value of N is approximately
given by

(12)

N* = <2)‘(1 - p)(C\ + CL[ )> 1/2.
Cy

Differentiate TC(N') with respect to N twice and
then substitute

1/2
to obtain
Ch )

2 x C;
dTC(N)_\/ h 0, forp<l,

aN' G x o =p)
(13)

which implies that 7TC(N) is a concave upward
(convex) function and achieves a global minimum
when (Wang and Ke 2000)

N = <zx<1 —PNC+Cy >>‘/2.

c, (14)

Method 2: From Equation (9) we have the following
inequality

M1 —p)
N
> V20CW(Cs + Co)(1 —p),  (15)

A N
TC(N) = C/15+ (Cs+ Cy)

which gives a lower bound of fC(N ) and indicates that
f“C(N ) is a concave upward function with lower bound
V2ACi(Cs + C4)(1 — p). Equality in Equation (15)
holds when

N Al —
G = (€ e o2

With some algebraic manipulations, we obtain

N* <2x(1 —PNC+ Cy ))‘/2
C ’

(16)

(17)

Note that the expressions of N * in Equations (14)
and (17) are the same. If N* is not an integer, the
optimal value of N is one of the two integers closest to
N *, the expression may rewrite as

12
N = (n(l — PC+C )) .

: (18)

where ¢ € (—1, 1) is a constant.

4. Analytical results for sensitivity analysis

An important part of any modelling study is that of
sensitivity analysis, which determines how changes in
model parameters would affect system performance.
Sensitivity coefficients, defined as the partial deriva-
tives of the model output with respect to the input
parameters, are useful in assessing the reliability of the
output from a complex model with many uncertainty
parameters. A system analyst often concern with how
the system performance can be affected by the changes
of the input parameters in the recommended queueing
service model. Sensitivity study on the queueing model
with critical input parameters may provide some
answers to this question. In the following, we conduct
some sensitivity investigations on the optimal value N *
based on changes in values of the cost parameters Cj,
C, C,, Cy, C;and system parameters A and u.

We note that the terms E[B]/E[C], and E[I]/E[C]
do not involve the decision variable N. Therefore, we
may set the relative cost parameters C, and C, to be
some fixed constants, say, zero. Further, from
Equation (18), it is easy to see that

N* « J(C; + Cq)/Ch.
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We perform some algebraic manipulation with respect
to system parameters A and w. By differentiating N *
with respect to A, we obtain

aN* (1=2p)/(C+ Ca)
n - GO -p

Setting the last equation to be 0 then solving for A,
we find A = /2 (note that A < pu is required). By
differentiating dN*/ox with respect to A again and
substituting A = u/2, we can easily show that

PN* 2(Cs+ Cy)
Ev 2 = —2‘/&7“3 <0. (20)

The above result implies that N* is a concave
downward function with respect to A, which achieves
its maximum at A = p/2. By differentiating N * with
respect to u to achieve

N _ VGG,

w0 =p)
for any u with A < u. Thus, N* is increasing in u.
We summarise the analytical results for the sensitivity
analysis as follows.

(19)

1)

(1) N*increases in A for p<1/2 and decreases in A
for p>1/2.

(2) N* increases in p.

(3) Cost parameters C, and C, do not affect N *.

(4) N*is proportional to \/(Cs + Cy)/Cy. In other
words, N* increases in C; and C,; whereas
decreases in C,.

Sensitivity analyses indicate the effects of changes
in key input parameters on the optimal solution. The
derivatives in the calculations may be treated as the
‘changing rate” with respect to each changing param-
eters. A small derivative may result in a small
‘changing rate’, which means it would not affect the
optimal decision value significantly. Consequently,
more effort should be made to obtain accurate
estimates for those parameters with large ‘changing
rate’. Further, the optimal management policy is
insensitive to the cost elements C, and C, in the total
expected cost function per unit time per customer.
Hence, poor estimates of those cost elements do not
affect the optimal value N *.

The results reveal some interest properties of the
M/G/1 queueing system with a removable service
station. For low-traffic intensity service systems with
p<1/2, when arrival customers increase, we should
raise the threshold N* to start serving waiting
customers. On the other hand, for high-traffic intensity
service systems with p>1/2, when arrival customers
increase, we should reduce the threshold N * to start

serving waiting customers to maintain low cost. For
the service station, as long as it can serve in a faster
rate, the system manager should increase the threshold
N *. Operating cost per unit time for the service station
in operation and cost per unit time for performing an
auxiliary task by the service station may treat as fixed
cost to the service system and they would not affect the
decision variable N.

We should note that N-policy is used because of
expensive start-up and shut down cost per cycle
(relative to holding cost), they affect N* in the
following manner. For the same cost ratio (cost per
cycle relative to holding cost), we would obtain the
same value N*. As start-up cost per unit time for
activating the service station or removable cost per unit
time increases, one should increase the threshold N *
to prevent high set-up and shut down costs. When
holding cost per unit time for each customer present in
the system increase, one should decrease the threshold
N * to avoid high holding cost.

5. Numerical computations

We now perform an extensive numerical study to
illustrate these sensitivity analysis results. Our findings
reveal that the optimal management policy is sensitive
to some input parameters, such as the cost coefficients
Cy, Cy, C;and system parameters A and . Therefore,
we may set the insensitivity cost elements C, and C,
equal to =zero. Further, incremental rather than
accounting costs are considered since the latter often
include such non-incremental elements as overhead.
In our investigation, holding cost Cj is set to be
5(0.75)80 or 5(1)85 to cover various levels of, from low
to high holding costs. Equation (18) suggests that
N* «x /(Cs+ Cy)/Cy. We may treat (C;+ Cy), say C,,
as the cost per cycle, without loss of generality, we
assume C; and Cy to be equal since only the sum of
them is concerned. Dealing with the system parame-
ters, we note that 0 <p<1 is sufficient for steady-state
condition. A queueing system may be characterised by
p = A/u, which represents the traffic intensity. In our
study, a widespread range of p is covered.

The sensitivity calculations demonstration may
now focus on the four critical input parameters: Cj,
C., » and . We group them into six possible pairs: Cj,
and C.; Cj,and A; Cj, and u; C. and A; C. and u; A and
i, under consideration simultaneously in order to
study the interaction of these key factors. Individual
affection on the optimal solution is examined as well.
We consider the following experimental design of
system parameters for sensitivity analysis on the
optimal value N* based on changes in considerable
input values. We calculate the optimal value N* for the
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Table 1. Parameters settings for various system parameters combinations.

Cy, C. A n Parameter setting (1) Parameter setting (2)
(1) ) 0.3 0.8 5(0.75)80 100(50)5100
(1) (2) 0.3 0.8 5(0.75)80 100, 3000, 5000
(1) ) 0.3 0.8 5, 20, 50 100(50)5100
(D) 1600 (2) 1 5(1)85 0.05(0.01)0.85
(D) 1600 ) 1 5(1)85 0.25, 0.55, 0.85
(D 1600 (2) 1 5, 10, 50 0.05(0.01)0.85
(1) 1600 0.8 2) 5(1)85 1(0.1)10
(1) 1600 0.8 (2) 5(1)85 1,3,5
(1) 1600 0.8 2) 5, 10, 50 1(0.1)10
5 (1) ) 1 100(50)4100 0.05(0.01)0.85
5 (1) ) 1 100(50)4100 0.25, 0.55, 0.85
5 (1) 2) 1 100, 2000, 4000 0.05(0.01)0.85
5 (1) 0.8 2) 100(50)4100 1(0.1)10
5 (1) 0.8 (2) 100(50)4100 1,3,5
5 (1) 0.8 2) 100, 2000, 4000 1(0.1)10
5 1600 (1) 2) 0.05(0.009)0.95 1(0.09)10
5 1600 (1) 2) 0.05(0.009)0.95 1, 3.07, 5.05
5 1600 (1) 2) 0.32, 0.68, 0.95 1(0.09)10

(©)

20 1

15 1

10 -

5 |
[
5'0 70 0 10'00 20'00 SdOO 40'00 50'00
Ch CC

Figure 1. (a) Surface plot of N* versus C;,=5(0.75)80 and C.=100(50)5100; (b) plots of N* versus C;,=5(0.75)80, C.=100,
3000, 5000 (bottom to top in plot) and (c) plots of N* versus C, =35, 20,50 and C.=100(50)5100 (top to bottom in plot).

parameters settings summarised in Table 1, which
cover a widespread range of applications dealing with
the referred queueing model and plot the results in
Figures 1-6. For example, rows 24 list the parameters
settings for various combinations of Cj, and C.. The
specified range Cj, =5(0.75)80, which means that Cj, is
set to the range [5, 80] in incremental steps of size 0.75,
and C.=100(50)5100 are considered in which the ratio
C./C), covers widespread cost relationships. Rows 3
and 4 are chosen to examine the sensitivity of N*
versus C;, or C. once a time. In row 3, for various Cj,
increase from 5 to 80 by 0.75, three levels of C. =100,
3000 and 5000 are selected. In row 4, three levels of
C,=15,20and 50 and C, =100(50)5100 are considered.
Figure 1(a) plots the surface of N* versus C;, and C,.
Figure 1(b) and (c) shows the cross-section,

which plot the curves of N* versus C, and C.,
respectively.

We observe from Figure 1(a)-(c) that: (1) N*
increases in C, but decreases in Cy,, (2) N* increases in
the ratio C./C;. Figure 2(a)—(c) reveals that: (1) N*
increases in A for p<1/2 and decreases in A for p>1/2,
(2) N* decreases in C;. From Figure 3(a)-(c) we
observe that: N* increases in p but decreases in C;,. We
observe from Figure 4(a)—(c) that: (1) N* increases in
C,, (2) N* increases in A for p<1/2 and decreases in A
for p>1/2. Figure 5(a)—(c) reveals that: N* increases
both in C, and in u. From Figure 6(a)—(c) we observe
that: (1) N* increases in A for p<1/2 and decreases in A
for p>1/2. The ‘local maximum’ /2 moves from left
to right as u increases. If u is large enough, one could
see that N* increases in A, (2) N* increases in pu.
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(a) (b) ()
13 1 13 1

10 30 50 70 90
Ch

Figure 2. (a) Surface plot of N* versus C,=5(1)85 and A=0.05(0.01)0.85; (b) plots of N* versus C,=5,10,50 and
A=10.05(0.01)0.85 (top to bottom in plot) and (c) plots of N* versus C;,=5(1)85 and 1 =0.25,0.55,0.85 (bottom to top in plot).

(a) (b) (c)
20 1
g i
S i
£ 8 ”"’1”,’,',1’,’,’,’:’:’:”,,,”111, il
§_ d il "",’!’5,?:,2’,”:,:’ i
10 {
8
©
/ 5 j
2 4 6 8 10 10 30 50 70 90

Figure 3. (a) Surface plot of N* versus C;,=5(1)85 and u=1(0.1)10; (b) plots of N* versus C;, =5, 10, 50 and u =1(0.1)10 (top to
bottom in plot) and (c) plots of N* versus C,=15(1)85 and u=1, 3,5 (bottom to top in plot).

(@) (©
20 |
15 -
£
% 10.
o
5.
/_/ A
0.
0 1000 2000 3000 4000 01 03 05 07 09
C A

c

Figure 4. (a) Surface plot of N* versus C.=100(50)4100 and A =0.05(0.01)0.85; (b) plots of N* versus C.=100(50)4100,
A =0.25,0.55,0.85 (bottom to top in plot) and (c) plots of N* versus C.=100,2000,4000 and A =0.05(0.01)0.85 (bottom to top
in plot).
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(©

30
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Figure 5. (a) Surface plot of N* versus C.=100(50)4100 and = 1(0.1)10; (b) plots of N* versus C.=100(50)4100 and u=1,3,5
(bottom to top in plot) and (c) plots of N* versus C.=100,2000,4000 and p =1(0.1)10 (bottom to top in plot).

(b)

()

22 29
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% Ui
3 Wi
iy ni\l“.nm\“h 12 12
i
h‘““‘“‘““““““‘l‘ﬁ
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Figure 6. (a) Surface plot of N* versus A =0.05(0.009)0.95 and p=1(0.09)10; (b) plots of N* versus A =0.05(0.009)0.95 and
u=1,3.07,5.05 (bottom to top in plot) and (c) plots of N* versus 1 =0.32,0.68,0.95 and x =1(0.09)10 (bottom to top in plot).

6. An application example

A routine maintenance in computer communication
systems is now presented for illustrative purposes. In
addition to transmitting and receiving data, processors
in communication systems also perform a variety of
testing and processing data, which is considered the
processor’s primary activity, while the maintenance is
considered a secondary activity. The way in which the
maintenance is scheduled relative to data management
and processing is dependent upon system require-
ments. Since maintenance activity is often divided into
small tasks, whenever the processor finds that there are
no primary jobs in the system to service, it begins to
work on a maintenance task. For the purpose of our
research work, however, we think of a communication
network as a network whose purpose is to interconnect
a set of applications that are implemented on process-
ing centre and managed by an N-policy. The N-policy
applied to control the queueing system is probability
due to expensive start-up and shut down cost per cycle
or to fully utilise the server.

In the idle period, the processor keeps working on
this maintenance task until the processor finds that N

or more primary jobs have accumulated in the system,
it resumes working on primary jobs until there are no
job orders in the system. An N-policy model that
activates the server when there are NV customers waiting
for service and deactivates the server when there are no
customers in the system can be also defined as a
queueing system in which the idle time of the server
may be utilised for other secondary jobs, for our case
to work on a maintenance task. The N-policy systems
are ecasily particularised to model many practical
situations where the server’s effort is divided between
primary and secondary customers by specifying an
appropriate server scheduling discipline. From the
perspective of primary customers, work performed on
secondary customers is equivalent to perform an
auxiliary task by the server in the so-called idle
period with fixed cost.

Data management and data processing have higher
priority over the maintenance activity. However, the
maintenance tasks are never pre-empted. When pri-
mary jobs are being severed, the system behaves as a
typical single-queue, single-server system. When pri-
mary jobs are absent from the system, the server
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Figure 7. A schematic diagram of the routine operations in
computer communication systems.

(processor) performs a maintenance task until finding
at least N primary jobs in the system. Figure 7 shows a
schematic diagram of the routine operations in com-
puter communication systems.

The program output is shown as follows:

N=7,
TC(N)=157.5714,
E[I]=8.75,
E[B]=35,
1/E[C]=0.02285714.

System characteristics calculations for the model do
not require complicated intermediate functions to be
implemented, and most of the system performance
measures usually of interest can be calculated in a
straightforward way. In the example investigated,
input system parameters the job order stream arrival
rate L = 0.8 job/s, the job order processing (service) rate
u =0.8job/s and cost element holding cost per second
for each job present in the system set to C, =10, and
cost per second for performing an auxiliary task by the
service station or cost per second for keeping the server
off set to C, =0, the cost per second for keeping the
processor (service station) operating set to C, =0, the
start-up cost for turning the processor on set to
C, =800, the removable cost per second for removing
the processor set to C;=800. The summary of the
model inputs are tabulated in Table 2.

The S-PLUS computer program gives the expected
length of idle period E[/]=8.75s, the expected length
of processing (busy) period E[B]=35s and the
expected number of busy cycles per second
1/E[C]=0.02. The value of N for the optimal
management policy is N* =7 units of job orders, and
the corresponding minimum expected cost is found to
be TC(N*)=157.57. Figure 8 plots the expected cost
TC(N) versus N=1(1)30. It shows that the minimum
expected cost indeed occurs when N=7, and the
tendency of TC(N) versus N could be easily observed.
We summarise the model outputs in Table 3. We have
given an example to illustrate how a system analyst can
use computer program such as S-PLUS to calculate

Table 2. Model input parameter values.

System parameters and cost

elements Notation Value
Job order stream arrival rate A 0.8
Job order processing (service) rate " 1
Holding cost per second per job C, 10

order present

Cost per second for performing an
auxiliary task

Cost per second for keeping the C, 0
processor on

Start-up cost per second for turn-
ing the processor on

Shut-down cost per second for Cy 800
turning the processor off

C 800
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Figure 8. Plot of TC(N) versus N for N=1(1)30.

Table 3. Model output for system performance measures.

System performance measures Notation Value
Optimal management policy N* 7
Minimum expected cost TC(N*) 157.57
Expected length of idle period E[I] 8.75
Expected length of busy period E[B] 35
Number of busy cycles per second 1/E[C] 0.02

system performance measures, the optimal value of N
and its minimum expected cost. The application
example demonstrates the levels of detail that are
appropriate for building a model and using that model
for performance projection. The example illustrates the
relationship between modelling concepts, evaluation
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algorithms and implementation. It also indicates how
such implementation can save the cost by the analyst.
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