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In this paper, a feature-point-driven expression editing and synthesis framework is 

proposed. While the extensively used blend shape methods suffer detail losing during 
image blending, the proposed multi-layer method can retain the flexibility and variety of 
geometry editing and preserve detail features as well. For low-frequency sub-bands, op-
timization-based blend shape is presented for large-to-mid scale synthesis. In addition, 
statistics-based feature matching and enhancement are proposed for high-frequency de-
tails. Our results show that the proposed methods are adequate to high-resolution expres-
sion synthesis and detail-preserved image editing.   
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1. INTRODUCTION 
 

While facial editing and synthesis are popularly used in computer animation, adver-
tisement and other interaction systems, producing realistic facial details is still a labor- 
intensive work. Due to our familiarity with facial appearance, animators have to carefully 
reproduce the delicate changes. By contrast, motion capture (Mocap) techniques are 
widely used for semi-automatic facial motion acquisition. In order to capture feature 
markers’ motions, dozens of markers are placed on control points of a subject’s face. But, 
these techniques still can’t capture the subtle portions, such as wrinkles, creases, or pores. 

To acquire facial expressions, there are also many techniques, such as high resolu-
tion 3D laser scanners and face-scanning dome [1]. These approaches provide convinc-
ing results, but it is inefficient to acquire all appearances that we need and these devices 
are highly expensive. On the other hand, many data-driven approaches are proposed to 
generate novel facial expressions from a set of example appearances, such as blend shape 
[2-7]. The concept of blend shape is to represent each example expression in convex 
vector space. Novel expression can be generated by using convex combination of those 
example expressions, also called prototypes. Using blend shape can synthesize various 
facial expressions. However, the high-resolution facial detail information, such as wrin-
kles and pores, may blur during image blending. To tackle the problem, we propose mul-
ti-layer facial detail analysis and synthesis approach for synthesizing expressions with 
large-scale geometry and preserving details as well. For each prototype image, we utilize 
steerable pyramid [8, 9] to extract various frequency bands and resolution-aware meth-
ods are applied to each sub-band respectively to preserve image details. The framework 
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can be divided into two parts: offline processing and online multi-layer expression syn-
thesis. Fig. 1 demonstrates the framework of our system. 

The offline procedure aligns those acquired expressions with the neutral face for 
producing prototype images. Furthermore, motion of each aligned pixel is estimated dur-
ing image alignment. To keep the regional detail variations, we cluster a face into differ-
ent regions by normalized graph cuts (NCuts) [10, 11]. The offline procedure only needs 
to be done once. 

The online part is to synthesize novel expressions from prototype expressions. In 
addition to dealing with the lowest sub-band by blend shape, we propose using statistics- 
based feature matching and high-band enhancement approaches for high-band data syn-
thesis. Instead of the weighted blending in spatial domain, statistics-based feature match-
ing and high-band enhancement retrieves the high-band data according to estimate statis-
tics parameters, and therefore, preserves the detail resolution. Our results show that the 
proposed multi-layered method synthesizes more detailed and less artificial expressions 
than the blend shape method. 

 

Fig. 1. The framework of multi-layer analysis and synthesis. Left: the offline process; right: the on- 
line process. Users only have to assign the control points and our system can automatically 
synthesize the corresponding expressions. 

2. RELATED WORK 

To analyze and synthesize novel facial images or surfaces, example-based methods, 
such as blend shape, are the most practical solutions. In the following sections, we intro-
duce several state-of-the-arts, and also mention the detail acquisition and other related 
articles. 
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2.1 Novel Facial Expression Synthesis 
 
Blend shape is extensively used to generate novel facial expressions from a set of 

example expressions, called prototypes. Pighin et al. [2] used convex combinations of the 
geometries and textures of example models. However, their expression editing system 
required users manually specifying the convex combination coefficients for novel facial 
expressions. Zhang et al. [3] developed a geometry-driven expression synthesis system to 
tackle the troublesome problem of parameter tuning. After assigning feature point posi-
tions of facial expressions, their system can automatically estimate the corresponding 
coefficient for novel facial textures. 

Blanz and Vetter [4] proposed an impressive system for 3D face modeling from a 
single image. They transformed geometry and texture of hundreds of scanned faces to 
principal component analysis (PCA) [12] vector space and used linear combination to 
synthesize new facial surfaces. In 2003, Blanz et al. [5] further extended their method for 
photo-realism facial animation. After adding the facial expression vector to a neutral 3D 
face model, their system can transfer expressions across individuals.  

Ezzat et al. [6] applied the blending concept for speech-driven animation. A se-
quence of training video is first projected to vector subspace space, called multidimen-
sional morphable model (MMM), and they mapped the phonemes to projected coeffi-
cients. Given a new speech sequence, novel facial animation can be estimated by opti-
mizing the MMM coefficient trajectories. In 2005, Vlasic et al. [13] proposed a more 
general multilinear model to transfer facial motion to another character by matrix fac-
torization. They parameterized the space with various attributes (e.g., identity, expression 
and viseme), and thus, those parameters can be used to drive 3D textured face mesh for a 
re-target character. However, a large number of normalized face scan data are required 
for evaluation of multilinear model. 

The abovementioned methods, based on subspace data blending, are proven to be 
reliably for synthesizing novel facial expressions. Nevertheless, high-frequency details 
are usually lost during data blending. 

On the other hand, Golovinskiy et al. [14] presented a statistical model for retarget-
ting 3D facial details such as pores and wrinkles. They used Weyrich’s acquisition sys-
tem [1] to acquire high resolution facial geometry across different genders, ages and rac-
es. By matching displacement image with desired statistic properties and combining it 
with the base mesh, new face geometry with details can be generated. The proposed me-
thod is inspired by this work. While this work focused on geometry transfer, our method 
focuses on expression editing. Moreover, since they extracted and synthesized statistical 
details from tiles, their approach cannot deal with coarse wrinkle cross over those tiles.  

Recently, Ma et al. [15] used polynomial functions to approximate correlations be-
tween strains of large-scale facial surfaces and mid-scale wrinkle undulations. This ap-
proach represented and controlled surface details in an efficient and compact form. Su-
conphunt et al. presented a 3D expression editing system by 2D feature contours [16]. 
The goal of this work is similar to ours. Nevertheless, they proposed directly combining 
best-matched prototype segments from database, and our multi-layered approach re-
quired much fewer prototypes to keep detailed wrinkles. 
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2.2 Acquisition of Facial Expressions 
 

In addition to wrinkle textures, Acquisition of 3D facial detailed geometry is also 
attractive in graphics research. In Weyrich’s research [1], they used face-scanning dome 
to measure high-resolution face model and skin reflectance. The equipment consisted of 
16 digital cameras, 150 LED light sources, and a commercial 3D face-scanning system. 
Their measurement system can acquire high quality facial details; however, this method 
required high cost. 

Zhang et al. [17] presented a system that construct high resolution and dynamic face 
models from video sequences. However, to reconstruct dynamic fine facial geometry 
from space-time stereo encounters inherent low-capture-rate and self-occlusion problem 
of structure light system. To rectify this problem, Bickel et al. [18] proposed a multi- 
scale representation and acquisition technique for animating high resolution facial ge-
ometry and wrinkles. They classified facial expressions from fine scale (e.g. pores, moles, 
freckles, spots) to coarse scale (e.g., nose, cheeks, lips, eyelids), and used corresponding 
equipment to capture different scale features. In their system, a valley-shape wrinkle 
model is applied to analyze position and shape of wrinkles from intensity variations in 
video. In 2008, Bickel et al. [19] further extended their method for animation. Their hy-
brid animation considered facial geometry as large-scale motion and fine-scale motion. 
They computed the large-scale motion by using the same linear shell deformation [18], 
and interpolated fine-scale facial details by radial-basis functions. 

3. FACE SEGMENTATION 

Our goal is to synthesize expressions with limited prototypes. For producing more 
various facial expressions, we propose partitioning a face into meaningful regions for the 
consequent synthetic procedure. Therefore, we first decompose a normalized face into 64 
× 64 grids, and evaluate the correlation of motion between every two grids. With motion 
correlations, Normalized Cuts (NCuts) [10, 11] are then used to segment face into re-
gions. The detailed steps are presented in the following sub-sections. 

 
3.1 Pre-processing 
 

After recording images with different facial expressions as our prototypes, without 
lose of generality, we select the first image or preparative expression as the neutral face. 
All other images are aligned with the neural face to avoid blurred or ghost effects during 
image blending. Users first assign the corresponding feature points and lines in each im-
age, and the global head movement can be removed. Image warping [20] is then applied 
to align unassigned pixels with the neutral face. We assume the pixel displacement be-
tween aligned and unaligned images as the motion of that pixel. 

After evaluating motion information of all prototype images, we use histogram 
equalization [21] to align the facial skin colors. At present, our prototype expressions are 
selected empirically. The selection can be replaced by automatically clustering expres-
sions from video frames. Our 22 prototype images are shown in Fig. 2. 
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Fig. 2. Twenty two prototype images with various expressions. The resolution of each prototype 

image is 512 × 512 pixel2. 

 
3.2 Correlation Analysis 
 

To reliably cluster a face into regions and for further statistic analysis, we first de-
compose face into 64 × 64 grids and use the statistic parameters in grids for data group-
ing. As shown in Fig. 3, we consider variation of those tiles at the same grid index but 
different prototype images as temporal variation The orders do not affect our analysis. We 
define the motion of the grid a at t as the average motion of pixels in the grid a at proto-
type t. 

 
Fig. 3. The tiles in the same position among different prototype images can be regarded as the tem- 

poral variations of the corresponding grid. 

 
The correlation between gird a and b can be defined as: 
 

1

1( , ) ( )( ), 
1

n
t t

a bt

a a b b
Correlation a b

n S S=

− −
=

− ∑    (1) 

where at and bt are the motion of grid a and grid b at time t (or prototype t).⎯a and⎯b are 
the average motions of grid a and grid b among all prototype images respectively. Sa and 
Sb are the standard deviation of grid a motion and grid b motion. Using the correlation 
formula (Eq. (1)), we can evaluate the correlation between each pair of grids. Since our 
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human faces are nearly symmetric, in addition to the original prototypes, we also included 
mirrored prototypes for face segmentation. Therefore, the distributions of our segmented 
regions are symmetric, which is closer to users’ cognition, but these regions are synthe-
sized respectively. 
 
3.3 Face Segmentation Based on Normalized Cuts 
 

After evaluating correlation between each pair of grids, we use normalized cuts [10, 
11] to partition face into regions of adequate sizes and shapes. 

Normalized cut is aimed at minimizing the disassociation between two groups: 
 

( , ) ( , )( , ) ,
( , ) ( , )

cut A B cut A BNcut A B
asso A V asso B V

= +    (2) 

where the A and B are two disjoint sets, cut(A, B) is the total weight of edges that have 
been removed in partitioning procedure. asso(A, V) is the total connection from nodes in 
A to all nodes in the graph, and asso(B, V) is similar defined. 

Our purpose is to segment facial grids into different groups. Therefore, we regard 
facial grids as nodes and set up a fully-connected weighted graph G = (V, E). The edge 
weight wij between grid i and grid j can be defined as: 

 
||1 ( , )|| .Correlation i j

ijw e− −=    (3) 

After evaluating the weight value, we can set W as an N × N symmetrical matrix with 
W(i, j) = wij, N is the amount of all grids. And let D be an N × N diagonal matrix with d on 
its diagonal, where 

 
( ) ( , ).

j
d i w i j= ∑  

Then we minimize the normalized cut by solving the generalized eigenvalue system:  
 

(D − W)y = λDy.   (4) 

Instead of recursive binary cuts, we use the subspace of n top eigenvectors and K- 
means clustering for more efficient K-way partition.  

In order to determine a reasonable number of clusters, we define a measurement func-
tion to keep the balance between cluster number and the correlation within each group:  

 

1 2arg min{  (1 )},n k n k cor∗ = × + × −    (5) 

where n is the number of clusters, cor is the average correlation among all groups, k1 and 
k2 are the parameters for adjusting the influence of each term. By minimizing the meas-
urement function, we can determine the number of face regions. Fig. 4 shows the cluster-
ing result. In the synthesizing procedure, we deal with each cluster respectively. 
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(a)                                    (b) 

Fig. 4. (a) The result of face clustering. Grids marked by the same color belong to the same cluster; 
(b) Regions of a face segmented by normalized cuts. 

4. MULTI-LAYER FACIAL DETAIL SYNTHESIS 

After segmenting a face into motion-consistency regions, existing data-driven meth-
ods, e.g. feature-point-driven blend shape [3], can automatically synthesize the correspon- 
ding textures according to feature point’s configuration. Nevertheless, high-frequency 
details, such as pores and wrinkles, usually blur during blending process. Therefore, we 
propose improving the blend shape process by a multi-layer analysis and synthesis ap-
proach to preserve the facial details. 

Our main concept is first separating grids of all prototypes into various sub-band 
images, including high-pass images, low-pass images, and various orientation sub-bands. 
Next, for a novel expression, we evaluate high sub-band images by our detail-preserved 
methods and synthesize low sub-band images by optimization-based blend shape. Finally, 
we combine those processed components in each sub-band and can obtain novel facial 
expressions.  
 
4.1 Sub-band Extraction by Steerable Filter 
 

We modify the framework of steerable pyramid [8, 9] for sub-band decomposition 
and integration. Steerable pyramid is similar to the well-known Laplacian pyramid, and 
can decompose an image into several frequency bands. Moreover, it further divides each 
frequency band into a set of orientation bands. Since the steerable pyramid is self-inver- 
ting, we can apply the same filter for image reconstruction. 

Fig. 5 shows our modified framework of steerable pyramid. For preserving more high 
frequency information, we further decompose the high-band of each prototype image into 
four orientation sub-bands. Besides, we adopt the first derivative of the 2-dimensional, 
circularly symmetric Gaussian functions, rotating 0°, 90°, 30°, and 120° around horizontal, 
as steerable filters for sub-band extraction. 

Fig. 5 (b) shows an example of decomposing an image Pi and it also demonstrates 
our symbol definition for each sub-band. In our multi-layer analysis and synthesis pro-
cedure, we use a set of prototype images {Pi}i=1 to m, m is the number of all prototypes. 
Each prototype image Pi is decomposed by high-pass/low-pass split filter and then gen-
erate high sub-band Pi

H0 and low sub-band Pi
L0. Let O0(.) represents the operator of 

horizontal steerable filter. O90(.), O30(.), and O120(.) represent the rotated horizontal op-
erator by 90°, 30°, and 120° respectively. By decomposing level j low-band Pi

Lj, we can 
produce high-band Pi

Hj+1 and low-band Pi
Lj+1 of level j + 1. High-band Pi

Hj+1 can be re- 
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(a)                                       (b) 

Fig. 5. (a) The modified framework of steerable pyramid in our multi-layer facial detail synthesis 
procedure. The left-hand side of the diagram is analysis part; the right-hand side is synthe-
sis part. Each square box represents convolution or down/up sampling operations: H0 is a 
high-pass filter, Li are low-pass filters of level i sub-band and Oj are band-pass filters in 
different orientation. The hollow circles represent the decomposed sub-band images. The 
pyramid can construct recursively by repeating the process enclosed by the dashed rectan-
gle at the location of solid circle; (b) The illustration of a steerable pyramid and symbol 
definition. 

 
garded as composing of different orientation components: O0(Pi

Lj), O90(Pi
Lj), O30(Pi

Lj), and 
O120(Pi

Lj). 
By comparing reconstructed image with the ground truth, our experiments showed 

that a 3-level pyramid provided satisfactory intensity ranges and details in analysis and 
synthesis of prototypes with 512 × 512 pixels. More frequency levels can barely improve 
the quality. Therefore, our modified framework of steerable pyramid decomposes all pro- 
totypes into 4 orientations at 3 levels of frequency bands, and employs those sub-bands 
for synthesizing novel facial expressions.  

In order to synthesize detail-preserved expressions and reduce blurred results, opti-
mization-based blend shape is only applied to the lowest sub-band Pi

L3 and other high- 
band images are processed by statistic-matching-based methods.  
 
4.2 Feature-Point-Driven Blend Shape 

 
We assume that facial geometry has high relation with facial appearance. That is, 

the positions of control points between similar facial expressions are with high similarity. 
By presenting the geometry and appearance of prototype images in vector space, novel 
facial expression can be generated from convex combination of prototype images with 
proper blending weights. Therefore, we represent the ith expression Ei as Ei = (Gi, Pi), 
where Gi is geometry (position configuration of feature points) and Pi is the prototype 
image i. Let H(E0, E1, …, Em) be the space of all possible convex combination among all 
example expressions, i.e., 
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Therefore, novel expression Enew can be represented by a particular set of w as: 
 

0 0
( , ), where , .

m m
new new new new new

i i i i
i i

E G P G w G P w P
= =

= = =∑ ∑    (7) 

Since we separate a face into regions for more variety during synthesis, we include 
notation of region R in Eq. (6) as: 
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   (8) 
where the Gi

R denote the vector of Ei’s control point positions within or on the boundary 
of R. Pi

R denotes the region R of prototype image Pi. wi
R is the blending weight for region 

R of prototype i. Accordingly, each region R of the synthetic image can be generated by: 
 

0 0
( , ), where , .

m m
R R R R R R R R R

i i i i
i i

E G P G w G P w P
= =

= = =∑ ∑    (9) 

4.3 Weight Evaluation by Optimization 
 
In conventional blend shape, weights wi or wi

R are assigned by users, but it is not 
intuitive. Since we consider that facial appearance is highly related to facial geometry, we 
only ask users to adjust positions of feature points, e.g. eye or mouth corners. Our system 
can estimate the weight according to geometry features, and use the weight to synthesize 
novel facial appearance. 

Let GR
new denotes region R’s control points position of novel expression. Given GR

new, 
we want to find the blending weight for interpolating G0

R, …, Gm
R. This problem can be 

formulated as an optimization problem as the weight evaluation in [3]: 
 

0 0

0

Minimize: ,

Subject to: 1, 0  for 0,1,  , .  

Tm m
R R R R R R
new i i new i i
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R R
i i
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=

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= ≥ =

∑ ∑

∑ …

   (10) 

After optimizing the blending weights of each region by a sequential quadratic pro-
gramming (SQP) method, we can apply those coefficients for synthesizing novel facial 
appearances.  
 
4.4 Statistics-based Feature Matching 

 
Applying blend shape to novel expression synthesis is effective, especially with on- 
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ly few prototype images. However, when blending a large number of prototype images, 
high frequency details at pores or wrinkles, usually lost during blending process.  

On the other hand, if we apply the blending as parameter evaluation and synthesize 
high-band images by appropriate data indexing, the high frequency features will be pre-
served. Therefore, we propose using statistics-based matching for high-bands of proto-
types. 

The simplest method is to extract histogram of each high-band grid and select the 
gird with the closest histogram for synthesis in high-band. However, storing and analyz-
ing those histograms is burdensome. Golovinskiy et al. [14] found the width of histogram 
function is a dominant factor. Therefore, we adopt the concept and use the standard de-
viation of each grid to substitute histogram of each grid. 

In the offline stage, we evaluate the standard deviations of prototype high band data. 
To synthesize high-band of novel expressions, the feature-point driven weights are used 
to blend standard deviation values of a grid among prototypes, and we select the proto-
type grid with the closest standard deviation value for synthetic expression. σ(Pi

f, k) 
represents the standard deviation of grid k belonging sub-band f of prototype i. The stan-
dard deviation of corresponding synthesized grid Sigma can become: 

 

0
( , ),  where  gird .

m
R f
i i

i
Sigma w P k k Rσ

=
= ∈∑    (11) 

The grid k of the synthesized image in sub-band f can be determined by finding the 
best matched prototype i: 

 
* arg min( ( , )), for 0,  1,  ,  .f

i
i

i Sigma P k i mσ= − = …    (12) 

4.5 Maximum-effect Enhancement 
 
By selecting a proper grid for each synthetic image high-band, we can maintain the 

high frequency information in synthetic results. However, when dealing with prototype 
images with highly uneven standard deviation values, using the closest standard devia-
tion as criterion may cause discordant synthetic results. Therefore, we further propose 
using maximum-effect enhancement for such situations.  

Instead of applying the prototype with closest standard deviation, maximum-effect 
enhancement selects the prototype high-band with maximum blending weight as the cor-
responding synthetic high-band of the region. After blending the lowest sub-band and 
combining high-band with maximum blending weight, we can synthesize novel facial 
expressions by collapsing pyramid. 

Due to our particular synthesis methods for high-band and low-band respectively, 
the proposed system can maintain more high frequency information for novel facial ex-
pressions with photorealistic facial details, such as wrinkles and pores. It also retains 
global geometry deformation, and mid-scale features, such as the wrinkle cross over 
forehead. In our experience, when the largest estimated weight is more than 0.65, maxi-
mum-effect enhancement is empirically appropriate for high-band synthesis. Otherwise, 
statistics-based feature matching provides better results.  
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5. EXPERIMENT AND RESULTS 

In our first experiment, we captured various facial expressions of a performer and 
selected those frames with representative expressions as our prototype images. We put 41 
markers on the performer’s face and use motion capture device to trace the motion of 
markers for more precise alignment. The positions of feature points were selected ac-
cording to motion variations on the face. After determining prototype images, we used 
image warping to align all example expressions with the neutral face. 

As mentioned in section 3, to synthesize more various expressions from a few ex-
ample expressions, we used normalized cuts to segment a face into regions. Consequent- 
ly, a face was divided into 12 different regions, as show in Fig. 4. A region can only be 
affected by feature points within its territory. 

In our research, we employed the modified steerable pyramid to analyze image in-
formation for synthesizing high-band and low-band of novel expression respectively. We 
integrated the statistics-based feature matching and maximum-effect enhancement for 
maintaining high-band information in synthetic procedure. We evaluated our system by 
cross-validation, where the ground-truth images are not included in the prototype image 
set. Fig. 6 demonstrates a comparison between our results with those of feature-point- 
driven blend shape [3]. Our results maintain more details around the cheeks and corners 
of mouth. Since our goal is mainly at wrinkles or creases, we omit the eyes and lips, 
which require more feature points for editing. Fig. 7 demonstrates synthetic texture of 
another performer without post-warping. 
 

   

   
Fig. 6. The left images are the ground truth expressions. The center images are the result by blend 

shape. The right images are results by our approach. The synthesized images are post-warped 
to fit feature points. 

Fig. 8 demonstrates an example of Mandrill. Figs. 8 (a) and (b) are Mandrill’s ex-
pression with mouth closing and mouth opening respectively. We use those images as 
prototypes for synthesizing Mandrill’s expression with half opening mouth. Figs. 8 (c) 
and (d) are synthesized results by our approach and blend shape respectively. The result 
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(a) Our approach.     (b) Blend shape.      (c) Our approach.     (d) Blend shape. 

Fig. 7. Comparison of expression textures, where feature points are aligned to the neutral face with- 
out post-warping; (a) and (c) are synthetic results by our approach; (b) and (d) are the cor-
responding synthetic results by blend shape. Under the same blending weight, using our ap-
proach can generate more apparent facial wrinkles than those by blend shape.  

    
(a)                 (b)                (c)                 (d) 

Fig. 8. Detail-preserved image editing1; (a) and (b) are prototype images; (c) and (d) are synthetic 
results by our approach and blend shape respectively. 

    
Fig. 9. Editing expression of chimpanzee1; (a) and (b) are prototype images of chimpanzee; (c) and 

(d) are synthetic results by our approach and blend shape respectively. 

 
by our approach is with more details than that of blend shape, especially around the re-
gion of Mandrill’s cheeks and mouth. Fig. 9 shows another example, using our approach 
can maintain more obvious wrinkle and contour of chimpanzee’s face. Please refer to 
authors’ web pages for demo images at higher resolutions. 

Furthermore, to evaluate the effectiveness of the proposed method, we performed 
user evaluation for three issues: detail quality, faithfulness, and artificiality. Eleven sub-
jects with experiences in image editing participated in these tests. 

The first issue “detail quality” is to evaluate how much detail is preserved. We pro-
vided prototype images blurred by various magnitudes of Gaussian filtering as reference 
images. The scores of original images were 10; scores of images blurred by 0.3-pixel- 
radius Gaussian filtering were 9; scores of images blurred by 0.6-pixel-radius Gaussian 
filtering were 7, and so forth. Subjects were asked to evaluate 12 pairs of synthesized 

1 Image source: http://www.arkive.org/. 
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images by the proposed method and blend shape with a random order. In the second is-
sue “faithfulness”, subjects were asked to compare 12 pairs of the synthesized images 
with the ground-truth. Score 10 was perfect; 8 was satisfactory; 6 was acceptable; 4 was 
artificial, and so forth.  

In the third test “artificiality”, 10 real prototype images, 10 images by our methods 
and 10 images by blend shape were mixed and shown one-by-one in a random order. 
Subjects were asked to distinguish whether an image was synthesized. The score was the 
number of images that were regarded as artificial ones.  

The results of three tests are shown in Table 1. For detail quality and faithfulness, 
the proposed method got better grades than the blend shape. For artificiality evaluation, 
even 3 of 10 ground-truth images were regarded as artifact. Our score 3.27 was close to 
the real data set. 

Table 1. User evaluation of images by our method, blend shape and ground-truth. 
 Detail quality Faithfulness Artificiality 

ground-truth − − 3 
The proposed method 7.87 7.62 3.27 

Blend shape 7.10 7.07 3.73 

6. CONCLUSION AND FUTURE WORK 

The goal of the proposed work is to synthesize feature-point-driven expression with 
only a few examples. A novel detail-preserved multi-layer framework is herein presented. 
Given a set of prototype images of a subject, normalized-cut-based clustering is first ap-
plied to segment the face according to motion correlations. The segmented face is further 
decomposed into multiple frequency and orientation sub-bands. For the lowest-level- 
band, optimization-based blend shape is utilized to synthesize the large to mid scale ge-
ometry features, e.g. bulges or coarse creases. Statistic-based feature matching and en-
hancement are proposed to synthesize detail wrinkles and other highly-textural features, 
where high-frequency properties are retained. 

Our experiments and user evaluation show that more detail features are preserved 
by the proposed methods than by blend shape. The proposed method can be extended to 
3D surface editing. It can also be extended to synthesize more detailed lips and eyes by 
more precise contour mapping. In our future work, we plan to combine our approach 
with spatial-temporal constrains and alignment for detail-preserved facial animation.  
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