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Abstract
Sound source localization is an important function in robot audition. Most existing works perform sound
source localization using static microphone arrays. This work proposes a framework that simultaneously
localizes the mobile robot and multiple sound sources using a microphone array on the robot. First, an
eigenstructure-based generalized cross-correlation method for estimating time delays between microphones
under multi-source environments is described. Using the estimated time delays, a method to compute the far-
field source directions as well as the speed of sound is proposed. In addition, the correctness of the sound
speed estimate is utilized to eliminate spurious sources, which greatly enhances the robustness of sound
source detection. The arrival angles of the detected sound sources are used as observations in a bearing-
only simultaneous localization and mapping procedure. As the source signals are not persistent and there
is no identification of the signal content, data association is unknown and it is solved using the FastSLAM
algorithm. The experimental results demonstrate the effectiveness of the proposed method.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2011

Keywords
Sound source localization, microphone array, time delay estimation, bearing-only SLAM, generalized cross
correlation

1. Introduction

An audition system is a very important feature for an intelligent robot. The funda-
mental requirement of this system allows a robot to interact with humans through
speech dialog. Under this requirement, there are several research issues currently
active in the robotics community. These issues include speaker localization, speech

* To whom correspondence should be addressed. E-mail: lhoney.ece95g@nctu.edu.tw

© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2011 DOI:10.1163/016918610X538525
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136 J.-S. Hu et al. / Advanced Robotics 25 (2011) 135–152

separation and enhancement, speech recognition and natural dialog, speaker identi-
fication and multi-model interaction, etc. [1–5]. Among them, speaker localization
using either the biological hearing principle [5] or a microphone array [1] has drawn
a lot of attention for many years [6].

The underlying principle to localize a sound source using a microphone array
is based on the time difference of arrival (TDOA) among spatially distributed mi-
crophones. For distance localization, the method of triangulation is used, and the
accuracy depends on the ratio between the microphone spacing and the distance.
Since the array spacing on a mobile robot is usually small compared with the dis-
tance to the source, it is unlikely to obtain accurate distance information [7]. Hence,
most sound source localization research on mobile robots emphasized detecting the
source directions. Hardly any work tried to solve the problem of localizing the
robot and multiple sound sources simultaneously. Mobility is a unique advantage
of the robot over a stationary microphone array. When moving in space, the ro-
bot effectively increases the array spacing and it is possible to compute the source
distance by using the source direction information only. This is equivalent to the
standard bearing-only localization problem [8]. However, it is more complicated
when dealing with multiple sources as the signals are mixed together in the ar-
ray measurement. Secondly, the sound source signals may not be persistent all the
time. Unless the contents of source signals can be clearly identified, there will be
a source association problem. The data association becomes more difficult for non-
persistent and moving sources. Although other types of sensors such as vision can
be incorporated, exploring the technological boundary of localization using sound
measurement alone is still needed. For example, occlusion or a sudden lighting
variation could make visual recognition fail easily.

The first issue of sound source localization is the robustness of source detec-
tion, especially under a multi-source environment with reverberation. Generalized
cross-correlation (GCC) [9] is one of the common methods discussed for robot
localization application [10]. For multiple sources, MUSIC [11] is used for elimi-
nating the coherence problem and it has been applied to the robot audition system
[12]. Walworth et al. [13] proposed a linear equation formulation for the estimation
of the three-dimensional (3-D) position of a wave source based on the time delay
values. Valin et al. [1] gave a simple solution for the linear equation in Ref. [13]
based on the far-field assumption. Yao et al. [14] presented a source linear equa-
tion similar to Ref. [13] to estimate the source location and velocity by using the
least-squares method. This paper presents a method of computing arrival delays of
multiple sources by combining the idea of MUSIC and GCC. Further, the source
linear equation of Ref. [14] is modified for direction estimation of far field sources.
The distinct advantage of the method is that the information about the number of
sources and speed of sound is not needed. In fact, the speed of sound is computed
for each possible source and the value is used to check if it is a valid one. This
greatly enhances the robustness of source detection.
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J.-S. Hu et al. / Advanced Robotics 25 (2011) 135–152 137

The source directions obtained from the proposed method serve as the observa-
tion data for the bearing-only localization framework. Since there is no additional
information about the content of the source signals, the observation data sequences
require association. The problem is solved by using the FastSLAM algorithm [15],
where incorrect associations of sound sources tend to possess inconsistent posi-
tions. Experiments were conducted using an eight-channel microphone array on a
mobile robot. It is shown that the overall system effectively localizes the robot and
sound sources in a room environment.

2. Sound Source Direction Estimation

In this section, a method of estimating directions of multiple unknown sound
sources using a microphone array is introduced [15]. The novelty of this method
is the ability to separate source arrival angles simultaneously without knowing the
speed of sound. Further, the estimated speed of sound associated with each source
is used to verify the existence of such a source. This is necessary since there is no
information about the number of sources in the measurement.

2.1. Near-Field Influence Factor and Field Distance Ratio

The work in Ref. [14] provides a close form solution for estimating the source
locations and sound propagation speed using multiple microphones. The accuracy
depends on the aperture of the microphone geometry as well as the distance to the
source. In our case, microphones are installed only on the robot. This makes the
aperture relatively small compared with the source distance in most cases. As a
result, it is necessary to consider the far-field scenario. Let the source location be
rs = [xs ys zs]T, the ith sensor locations ri , and the relative time delays, ti − tj ,
between the ith sensor and j th sensor. The original equation of the delay relation
(from (15) of Ref. [14]) is:

−(ri − r0) · (rs − r0)

v|rs − r0| + |ri − r0|2
2v|rs − r0| − v(ti − t0)

2

2|rs − r0| = (ti − t0), (1)

where j = 0 without loss of generality and v is the speed of sound. Define r̂s and
ρi as:

r̂s = rs − r0

|rs − r0| and ρi = |ri − r0|
|rs − r0| , (2)

where r̂s represents the unit vector in the source direction, and ρi means the ratio
of the array size (aperture) to the distance between the array and source, i.e. for
far-field sources, ρi � 1. Substituting (2) to (1), we have:

−(ri − r0)
r̂s

v
+ |ri − r0|

v

ρi

2
− 1

v

v2(ti − t0)
2

|ri − r0|
ρi

2
= (ti − t0). (3)
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The term v(ti − t0) means the difference between the sound source to the ith and
the 0th microphones. Let the difference be di , i.e.:

di = v(ti − t0) = |rs − ri | − |rs − r0|. (4)

Equation (3) can be rewritten as:

−(ri − r0)

v
· r̂s + fi

ρi

2
= (ti − t0), (5)

where:

fi = |ri − r0|
v

− |di |
v

|di |
|ri − r0| . (6)

It is straightforward to see that fi � 0 since:

di � |ri − r0|. (7)

Also, fi achieves its maximum of |ri − r0|/v when di = 0 (i.e., when the source
is located along the line passing through the midpoint of the segment connecting
microphone i and 0, and perpendicular to them). This also means that fi has an
order of magnitude less than or equal to the vector (ri − r0)/v. Therefore, from (5),
it is clear that for far-field sources (ρi � 1), the delay relation approaches:

−(ri − r0)

v
· r̂s = (ti − t0). (8)

Equation (8) can also be derived from the plane wave propagation perspective [1].
However, the derivation above can clearly explain the far-field term and near-field
influence of the delay relation on the left-hand side of (5). We define ρi as the
field distance ratio and fi as the near-field influence factor for their roles in source
localization using an array of sensors.

2.2. Least-Squares Solutions

For an array of M sensors, (8) becomes a system of linear equations:

Asws = b, (9)

where:

ws ≡ [w1 w2 w3 ]T = rs

v|rs| = r̂s

v
(10)

As ≡ [−(r1 − r0) −(r2 − r0) · · · −(rM−1 − r0) ]T (11)

b ≡ [ t1 − t0 t2 − t0 · · · tM−1 − t0 ]T . (12)

It is, therefore, easy to estimate the speed of sound:

v = 1

|ws| = 1

|(AT
s As)−1AT

s b| . (13)
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The sound source direction can be given by:

r̂s = ws

|ws| = (AT
s As)

−1AT
s b

|(AT
s As)−1AT

s b| . (14)

As a result, the bearings of the source to the sensors can be computed by:

r̂s = [ cos θs sinϕs sin θs sinϕs cosϕs ]T , (15)

where θs and ϕs are azimuth and elevation angle, respectively. It is straightforward
to verify that As reduces rank if the vectors constructed by sensor pairs do not
span the 3-D space (i.e., a planar array), meaning the delay relation is satisfied
by more than one source direction. Secondly, (8) is actually an approximation by
considering plane wave propagation. Please refer to Ref. [15] for detailed analysis
of the approximation errors and array geometry issues.

The solutions of (13) and (14) are useful only when the delay among micro-
phones can be estimated within a certain accuracy. For multiple sources, the estima-
tion becomes more difficult as the signals are mixed together in the measurements.
In the next section, an eigenstructure-based (ES)-GCC method is presented to cope
with this issue.

2.3. Delay Estimation of Multiple Sources

Consider an array with M microphones on a mobile robot. The received signal of
the mth microphone that contains d sources can be described by short-term Fourier
transform (STFT) as:

Xm(ωf , k) =
d∑

p=1

ampSp(ωf , k)e−jωf τmp + Nm(ωf , k), f = 1,2, . . . ,F, (16)

where amp is the amplitude from the pth sound source to the mth microphone, τmp

is the associated delay, Nm(ωf , k) is the interference, ωf is the frequency band and
k is the frame number. Rewrite (16) in matrix form:

X(ωf , k) = A(ωf )S(ωf , k) + N(ωf , k), (17)

where:

XT(ωf , k) = [X1(ωf , k), . . . ,XM(ωf , k)]
NT(ωf , k) = [N1(ωf , k), . . . ,NM(ωf , k)]
ST(ωf , k) = [S1(ωf , k), . . . , Sd(ωf , k)]

A(ωf , k) =
⎡

⎣
a11e−jωf τ11 · · · a1de−jωf τ1d

...
...

aM1e−jωf τM1 · · · aMde−jωf τMd

⎤

⎦ .

The received signal correlation matrix with eigenvalue decomposition can be de-
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140 J.-S. Hu et al. / Advanced Robotics 25 (2011) 135–152

scribed as:

Rxx(ωf ) = 1

N

N∑

k=1

X(ωf , k)XH(ωf , k)

=
M∑

i=1

λi(ωf )Vi(ωf )VH
i (ωf ), (18)

where λi(ωf ) and Vi(ωf ) are eigenvalues and corresponding eigenvectors with
λ1(ωf ) � λ2(ωf ) � · · · � λM(ωf ), and V1(ωf ) is the principal component vector
of the sound source at frequency ωf , which is defined as:

V1(ωf ) = [V11(ωf ) V12(ωf ) · · · V1M(ωf ) ]T . (19)

The principal component vector contains the directional information of the principal
sound sources at each frequency. As a result, the principal component matrix at each
frequency can be established as:

E1 =

⎡

⎢⎢⎣

V11(ω1) V11(ω2) · · · V11(ωF )

V12(ω1) V12(ω2) · · · V12(ωF )
...

...
...

V1M(ω1) V1M(ω2) · · · V1M(ωF )

⎤

⎥⎥⎦ . (20)

The f th column can be considered as the distribution vector of the received signal
on M microphones at frequency ωf . Hence, the eigenstructure-based GCC function
between the ith and j th microphone can be represented as:

Rxixj
(τ ) =

∫ ωF

ω1

V1i (ω)V1j (ω)ejωτ dω. (21)

The time delay can be estimated by finding the peaks of the ES-GCC function:

τ̂ES-GCC = arg max
x

Rxixj
(τ ). (22)

2.4. Direction Estimation for Multiple Sources

For multiple sources, there will be multiple peaks in the GCC function of (21) for
each pair of microphones and multiple delays are obtained at each STFT frame.
The question is how to combine these delays among microphone pairs to form
the vector b of (12). Denote τjk as the kth delay of the microphone pair (j,0),
k = 1, . . . , qj , where qj is the total number of delays (peaks) of this pair. Note
that qj may be different for different pairs (depending on the threshold level of the
peak value). For M microphones, there will be (q1 × q2 × · · · × qM−1) number
of possible combinations of the vector b. However, since the minimum number
of microphone pairs to solve (9) is 3, we can sort out the combination by starting
from three pairs and iteratively adding additional pairs. Without loss of generality,
assume the indices of microphone pairs are arranged in the order such that q1 �
q2 � q3 � q4 � · · · � qM−1. Then the delay vector of each source can be found
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by minimizing the error between the associated sound speed estimation and the
nominal one (e.g., 340 m/s). Specifically, a set of possible sound sources can be
found as:

S = {(l,m,n) | |elmn| � ē for 1 � l � q1,1 � m � q2,1 � n � q3}, (23)

where

elmn = 1

|(AT
3 A3)−1AT

3 blmn| − v̄ (24)

Ai =
⎡

⎣
x1 − x0 y1 − y0 z1 − z0

...
...

...

xi − x0 yi − y0 zi − z0

⎤

⎦ . (25)

blmn = [τ1l τ2m τ3n]T and v̄ is the nominal speed of sound. Note that the error
bound ē is imposed so that some of the delay vectors with unreasonable speed of
sound can be eliminated. This is the advantage of the proposed method comparing
with classical methods like MUSIC to screen out sources that are not real (e.g.,
electronic noise). Secondly, the possible number of sound sources can be greater
than q1 since multiple sources could result in the same delay for a microphone pair.
Next, the delays from microphone pair 4 to pair (M − 1) can be added similarly.
The process is quite straightforward and the explanation is omitted here. Laboratory
experience showed that a correct number of sources can be obtained repeatedly for
the error bound ē = 15 m/s [15].

The resulting delay vectors computed through this process can be used to obtain
the source directions by (14) and (15).

3. Localization of Sources and Robot

The simultaneous localization and mapping (SLAM) problem is the procedure of
recognizing a set of feature landmarks and localizing the sensor odometer with re-
spect to the landmark set. A microphone array platform carried by a two-wheeled
robot was used in this paper to perform the localization of the robot and feature
landmarks (sound sources). According to Section 2, the microphone array is capa-
ble of recognizing an unknown number of sound sources as the feature points and
obtaining the associated angles of arrival. The angles are considered as the bearing
measurements and this becomes a standard bearing-only SLAM problem [8]; the
FastSLAM algorithm [16, 17] is adopted. FastSLAM estimates the robot path us-
ing a particle filter and the map feature locations are estimated using the extended
Kalman filter (EKF). Each particle possesses its own set of EKFs for all feature
points. Particles in FastSLAM are denoted as:

Y[k]
t = (X[k]

t ,μ
[k]
1,t ,�

[k]
1,t ,μ

[k]
2,t ,�

[k]
2,t , . . . ,μ

[k]
d,t ,�

[k]
d,t ), (26)

where [k] is the index of the particle; X[k]
t = [(x, y, θ)T][k]

t is the pose estimate of
the robot at time t, and μ

[k]
p,t and �

[k]
p,t are the mean and covariance of the pth land-

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

8:
34

 2
4 

A
pr

il 
20

14
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Figure 1. Robot position posterior estimation.

mark location, which is assumed to be Gaussian. The algorithm can be separated
into the following three steps:

3.1. Step 1: Sampling New Pose According to Path Posterior

For each particle at time t , the control input ut is used to estimate the Y[k]
t from

Y[k]
t−1. It samples the new robot position X[k]

t according to the posterior:

X[k]
t ∼ p(X[k]

t |X[k]
t ,ut ), (27)

where X[k]
t−1 is the posterior estimate of robot location at time t − 1. The sampling

step can be seen graphically in Fig. 1.

3.2. Step 2: Use the Observation to Update the Feature Estimation

At this step, the posterior of the feature point is estimated. The update is stated here
with the normalizer η denoted by:

p(m|X1:t ,Z1:t ) = η · p(Zt |Xt ,m)p(m|X1:t−1,Z1:t−1), (28)

where m are the feature landmarks and Zi:j is the observation from time step i

to j . The probability distribution of landmarks p(m|X1:t−1,Z1:t−1) at time t − 1
is represented by a Gaussian distribution with mean μ

[k]
p,t−1 and covariance �

[k]
p,t−1.

For the new estimation, FastSLAM linearizes the perceptual model p(Zt |Xt ,m) in
the same way as the EKF. The measurement function h could be approximated by
a Taylor expansion:

h(m,X[k]
t ) ≈ h(u[k]

t−1,X[k]
t ) + h′(X[k]

t ,u[k]
t−1)(m − μ

[k]
t−1)

= Ẑ[k]
t + H[k]

t (m − μ
[k]
t−1). (29)
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Here the derivative h′ is taken with respect to the feature landmarks m. The approx-
imation is tangent to h at X[k]

t and u[k]
t−1. The new mean and covariance could be

obtained using the standard EKF measurement update.

K[k]
t = �

[k]
t−1H[k]

t (H[k]T
t �

[k]
t−1H[k]

t + Rt )
−1 (30)

μ
[k]
t = μ

[k]
t−1 + K[k]

t (Zt − Ẑ[k]
t ) (31)

�
[k]
t = (I − K[k]

t H[k]T
t )�

[k]
t−1. (32)

After repeating Steps 1 and 2 M times, the temporary set of M particles is created.

3.3. Step 3: Resampling

In the final step, FastSLAM resamples the set of the M particles. First, we will
calculate the importance factor of each particle. The factor is given by:

w
[k]
t ≈ η|2πQ[k]

t |−1/2e−(1/2)(Zt−Ẑ[k]
t )T(Q[k]

t )−1(Zt−Ẑ[k]
t ), (33)

with the covariance:

Q[k]
t = H[k]T

t �
[k]
p,t−1H[k]

t + Rt , (34)

which means the closer the particle’s estimation is to the observation, the more
important it is. After all the weighting is computed, the real probability distribution
is described by this weighting.

One of the key features of FastSLAM is that as long as a small subset of the
particles is based on the correct association, data association is not as fatal as in EKF
approaches. Particles with incorrect data association tend to possess inconsistent
feature positions, which increases the probability that will be sampled away during
the resampling phase of the algorithm.

4. Experimental Results

An eight-channel omni-directional microphone array was constructed using digital
microphones. The digital microphone integrates an electric condenser microphone
core, an analog output amplifier and a sigma–delta modulator on a single chip [15].
The digital bit-stream transmission achieves minimum interference compared with
conventional analog microphone signals. The microphone array topology and the
mobile robot for the experiment are shown in Fig. 2. Note that it is a 3-D mi-
crophone array that is able to estimate the sound source elevation angle. In this
experiment, however, this angle is ignored since the localization concerns 2-D lo-
cations of the robot and the sound sources.

The sampling rate of the microphone array is 16 kHz and each STFT frame
contains 512 samples with 256 overlapping samples. The sound arrival angles are
computed after collecting 20 frames, which is about 3 times per second. The pro-
gram procedure for calculating ES-GCC and FastSLAM is shown in Fig. 3.
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Figure 2. Digital microphone array mounted on the robot.

The algorithm needs to accumulate a certain time frame to get solid delay in-
formation between microphones. Only those delay combinations with reasonable
sound speed generate a DOA estimation. Furthermore, the DOA estimation is not
necessary correct, which may be eliminated in the Outlier Elimination step. For all
the reasons above, the DOA estimation will not be correct when the robot is mov-
ing. Thus, we program the algorithm to update the estimation only when the robot
stops.

Experiments were performed in two different cases. The room size for the two
experiments was 4750 mm × 3600 mm and height of 3600 mm approximately, and
its reverberation time at 1000 Hz was 0.52 s. Room temperature was approximately
20◦C. In the following, we test the ES-GCC part and the whole algorithm in two
different cases C1 and C2.

4.1. Reliability of Direction Estimation for Multiple Sources (C1)

In case C1, we first evaluate the time delay estimation (TDE) performance of the
ES-GCC part for a single-source case and then we compare the direction estimation
results for a multiple-source case.

There are six speech sources played by loudspeakers and a white noise gener-
ated from an air conditioner. The speech sources are Chinese speech (female and
male). The relative locations between the sources, noise and microphone array are
described in Fig. 4. The distances between these sound sources and the microphone
array are all 2400 mm. Note that the microphone array in C1 is not moving. In
Fig. 4, the microphone locations are the following (mm):

Mic. 1 = [ 200 100 0 ] , Mic. 2 = [ 200 −100 0 ]
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Figure 3. Algorithm procedure.

Mic. 3 = [−200 −100 0 ] , Mic. 4 = [−200 100 0 ]

Mic. 5 = [ 0 100 100 ] , Mic. 6 = [ 0 100 −100 ]

Mic. 7 = [ 0 −100 100 ] , Mic. 8 = [ 0 −100 −100 ] .

The air conditioner, which is 4000 mm from the first microphone, is turned on
during this experiment (noise in Fig. 4).

The TDE of the ES-GCC part is compared with two GCC-based algorithms,
GCC-PHAT and GCC-ML [9]. The microphone array is divided into seven pairs to
implement the GCC-based algorithms (i.e., (Mic. 1, Mic. 2), . . . , (Mic. 1, Mic. 8)),
and the TDEs are calculated separately. Here, we use a performance index, root
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Figure 4. Sound source locations relative to the microphone array for C1.

mean square error (RMSE), to evaluate the performance of the proposed method,
which is defined as:

RMSE =
√√√√ 1

NT

NT∑

i=1

(D̂i − Di)2, (35)

where NT is the total number of estimations (i.e., total number of estimated time
delays for six sources and seven microphone pairs), D̂i is the ith time delay esti-
mation and Di is the ith correct delay sample. Figure 5 shows the RMSE results
as a function of SNR for three different TDE algorithms. The total number of es-
timation NT is 300. The SNR is defined as the average energy ratio between each
speech source and the noise:

SNR = 1

6L

6∑

i=1

L−1∑

l=0

(
S2

i (l)

N2(l)

)
, (36)

where L is the number of samples. As seen from Fig. 5, GCC-PHAT yields better
TDE performance than GCC-ML at higher SNR. This is because the experimental
environment is reverberant and GCC-ML suffers significant performance degrada-
tion under reverberation.

Compared to GCC-ML, GCC-PHAT is more robust with respect to reverberation.
However, the GCC-PHAT method neglects the noise effect and, hence, it begins to
exhibit dramatic performance degradation as the SNR is decreased. Unlike GCC-
PHAT, GCC-ML does not exhibit this phenomenon since it has a priori knowledge
about the noise power spectra that can help the estimator to cope with distortion. ES-
GCC achieves the best performance. This is because the ES-GCC method does not
focus on the weighting function process of the GCC-based method and it directly
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Figure 5. TDE RMSE results versus SNR.

takes the principal component vector as the microphone received signal for further
signal processing.

Secondly, the direction estimation results of the proposed algorithm are com-
pared to the wideband incoherent MUSIC algorithm [11] with arithmetic mean.
Ten major frequencies, ranging from 0.1 to 3.4 kHz, were adopted for the MU-
SIC algorithm. The RMSE measurements of the sound source direction estimations
are shown in Fig. 6. For fair comparison, the RMSE is calculated when the sound
source number estimation is correct. Figure 6 shows that the MUSIC algorithm
becomes worse as the sound source number is increased since the MUSIC algo-
rithm is sensitive to coherent signals, especially when the environment has multiple
sound sources and reverberant. The MUSIC algorithm assumes the sound source
number is known. However, the sound source number is usually unknown in practi-
cal environments and the incorrect sound source number for the MUSIC algorithm
would cause the worse performance. In our method, we use FastSLAM to solve the
unknown data association.

4.2. Localization Accuracy (C2)

In the second case (C2) (depicted in Fig. 7), we combine ES-GCC and FastSLAM
algorithms to estimate the locations of the sound sources and the robot. The robot
(P3-DX) is moving through a specifically designed path to avoid some improper sit-
uations for DOA estimation and bearing-only SLAM. Let the origin be at 1500 mm
from two sides of the wall (where the robot starts to move). Three loudspeakers at
a height of 400 mm are installed at (−900,2380), (1500,2350) and (3320,625).
Female and male voices are broadcast simultaneously through these speakers to
simulate the sources. These speech signals contain silence periods so the number
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Figure 6. Sound source directions estimation result.

Figure 7. Spatial relation of the speaker, robot and laser range finder for C2.

of active sources varies in no particular order. The robot stops at 10 waypoints to
record the acoustic data. The method in Section 2 is used to calculate the sound
source arrival angles.

The path recording result is shown in Fig. 8, where the dark gray dots indicate the
ground truths measured by the laser range finder. The path recorded by the mobile
platform (plotted in triangles) is considered as the input of the particle filter. There
will be a biasing error between the encoder data and the real ground truth. The light
grey dots are the position estimations of the robot performed by FastSLAM. The
estimated path is more likely to follow the path of the encoder data, since it was
considered as the real input of the filter. The clustering result of the light grey dots
is because the robot stopped at these points to perform the method in Section 2. It
stopped for around 5 s to ensure the calculation of the sound emitting angle is stable.
Also, the filter will perform only the predict phase while it is moving between the
clusters. The update phase is performed at the waypoints.
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Figure 8. Experimental result of FastSLAM.

Table 1.
Localization result of the sound sources

Source Laser range
data (mm)

EKF estimates

Using ground truth path Using encoder data

Estimated
location (mm)

Distance
error (mm)

Estimated
location (mm)

Distance
error (mm)

1 (−900, 2380) (−854.2,2443) 77.89 (−969, 2511.5) 148.5
2 (1500, 2350) (1851,2352.6) 351.01 (1662, 2242.9) 194.2
3 (3320, 625) (3336.7,214.3) 411.04 (3157.3, 741.7) 200.23

Another important effect of FastSLAM is that it simultaneously estimates the
locations of sound sources using the EKF. The squares in Fig. 8 are the estimated
mean of the three sound landmarks using encoder data and the stars are the estima-
tions using the true path. The ground truths of the sound source are pointed by the
black arrows. Figure 8 shows that the encoder data may cause a bias error on the
estimations of the landmarks. Table 1 shows the estimated distances between sound
sources and the laser range finder, and compares them with the mean distances
computed from the laser range finder’s data.
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A very important feature of FastSLAM is that it will filter out unreasonable data
in the resample state. Once the data (particle) is associated with the wrong landmark
index, the importance factor of that particle will be diminished and cause particle
elimination. Note that there has not been an algorithm that estimates the locations
of the sound sources and the robot using only a microphone array on the robot under
the multiple sound sources case. The microphone array on the robot in Ref. [4] is
only utilized for estimating the directions of the sound sources and the localization
is mainly done by the room microphone array. In this paper, we try to solve the
multiple sound source localization problem by using the DOA estimation with a
microphone array on the robot and the moving information of the robot.

5. Conclusions

This work proposes a method that is able to simultaneously localize a mobile robot
and unknown number of multiple sound sources in the environment. The method is
based on a combinational algorithm of DOA estimation and bearing-only SLAM.
The DOA estimation using delay information is able to estimate the speed of sound
as well as the far-field source direction. While the emitting angles are estimated,
they are considered as the observation of a particle filter. The FastSLAM algorithm
is used to solve the bearing-only SLAM problem for unknown data association.
Experimental results show the effectiveness of the proposed method.
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