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The process of the coherent creation of particle–hole excitations by an electric field in graphene is
quantitatively described beyond linear response. We calculate the evolution of the current density and
the number of pairs in the ballistic regime using the tight binding model. While for small electric fields
the I–V curve is linear characterized by the universal minimal resistivity σ = π/2(e2/h), for larger fields,
after a certain time interval, the linear regime crosses over to a quadratic one and finally at larger times
Bloch oscillations set in.

© 2010 Elsevier B.V. All rights reserved.
It became increasingly evident that electronic mobility in
graphene is extremely large exceeding that in best semiconductor
2D samples. Since the system is so clean, the transport becomes
ballistic especially in the suspended graphene samples [1]. The

flight time can be estimated as tbal = L/v g , where v g =
√

3
2

aγ
�

is
the graphene velocity characterizing the “relativistic” spectrum of
graphene near Dirac points and L is the length of the sample.

Electrons in graphene are described by the 2D tight binding
model of nearest neighbor interactions:
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with γ being the hopping energy, a the distance between C atoms,
b = 2 cos(akx/2), and the sum is over the Brillouin zone. We con-
sider the system in a constant and homogeneous electric field
E along the y direction switched on at t = 0 described by the
minimal substitution p = �k + e

c A, A = (0,−cEt). A convenient
formalism to describe the pair creation is the “first quantized”
formulation described in detail in [2,3]. To consider the ballistic
transport at zero temperature, T = 0, one starts at time t = 0
from the zero field state in which all the negative energy one-
particle states, −|hk| ≡ −εk , are occupied. The second quantized
state which evolves from it is uniquely characterized by the first
quantized amplitude,
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ψk(t) =
(

ψ1
k(t)

ψ2
k(t)

)
, (3)

which is a “spinor” in the sublattice space. It obeys the matrix
Schrödinger equation

i�∂tψk = Hpψk. (4)

It is a peculiar property of the tight binding matrix Eq. (1) that
the solution for an arbitrary ky can be reduced to that for ky = 0
and has the Fourier series:
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where t = t − �

eE ky and ωs
m = ωs + 3Ωm with the frequency Ω =

ea
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E . The recursion relation for the Fourier amplitudes pm ,

pm = ωm − 2Ω
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has two solutions ps , s = ±1, with two Floquet frequencies ωs .
The recursion is easily solved numerically. It turns out that the
two Floquet frequencies obey the relation ω+ = 2Ω − ω− , again
peculiar to graphene, as can be checked by numerical results.

Evolution of the current density during the ballistic “flight time”
tbal is given by the integral over Brillouin zone (multiplied by factor
2 due to spin) [3]:
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Fig. 1. The time evolution of the scaled current density (divided by electric field) for various values of the dimensionless electric field.

Fig. 2. The time evolution of the scaled pair creation rate for various values of the dimensionless electric field.
J y(t) = −2e
∑

k

ψ
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The current density divided by electric field, σ(t) ≡ J y(t)/E , is
shown in Fig. 1 for various values of the dimensionless electric
field E = E/E0. Here the (microscopic) unit of electric field is E0 =
γ
ea , so that at realistic fields E � 1. After an initial fast increase on
the microscopic time scale tγ , σ(t) approaches the universal value

σ2 = π
2

e2

h and settles there, as was shown, using linear response,
in [3]. This is clearly seen for electric fields much smaller than E0,
E = 2−11–2−9, shown (up to 120tγ , tγ = h̄/γ ) in Fig. 1. Then at

tnl = 4

3
√

E
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the current rises linearly with time above the constant “universal”
value σ2:

J (t) = σ2
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E0 E 3/2 t
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This linear increase regime can be considered as a precursor of the
Bloch oscillations.

The number of pairs [4] is
Np(t) = 2
∑
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and the rate d
dt N p is shown in Fig. 2 as function of time for fields

E = 2−11–2−9. Immediately after the switching on of electric field
(times of order tγ ) the rate behaves as t3 and approaches the
“Schwinger” limit [5] after tnl , when the rate stabilizes approxi-
mately at

d
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Np = 3.5v−1/2
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(11)

and scales as the power E3/2.
It is not surprising since the power E3/2 is dictated by dimen-

sionality assuming ultra-relativistic approximation is valid. How-
ever the physical meaning is somewhat different. We have used
here a definition of the pairs number with respect to Fermi level
of the system before the electric field is switched on. This is differ-
ent not only from the Schwinger’s path integral definition in which
the Fermi level is “updated” along the work of electric field and
from the definition proposed recently in [6] in connection with
graphene also shown in Fig. 2. The two have the same continuum
limit (at t � tγ ).



114 H.C. Kao et al. / Computer Physics Communications 182 (2011) 112–114
At finite temperature, described by dimensionless parameter
θ = L

�v g
kB T , the conductivity is

σD = σ2
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If in addition the chemical potential is nonzero an additional
contribution appears
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where Q = μL
�v g

. Details of the calculation will be published else-

where.
To conclude, we have investigated the ballistic transport in
graphene using the dynamical approach beyond linear response
theory and found that there exists a novel time scale of transition
to a nonlinear regime which is within reach of current experimen-
tal techniques. On the other hand, the influence of temperature
and nonzero chemical potential in the nonlinear regime are ex-
pected to be similar to those in the linear response studied in [3].
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