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Presented is the HLLG (Harten, Lax and van Leer with Gradient inclusion) method for application to
the numerical solution of general Partial Differential Equations (PDEs) in conservation form. The HLLG
method is based on the traditional HLL method with formal mathematical inclusion of gradients of
conserved properties across the control volume employed for flux derivation. The simple extension
demonstrates that conventional higher extensions of the HLL method are mathematically inconsistent
and produce various numerical instabilities. The HLLG method, with higher order extensions consistent
with the flux derivation, is absent of (or less affected by) the said numerical instabilities. The HLLG
method is then applied to solutions of the Euler Equations and the simulation of 1D argon RF plasma
simulation.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The finite volume method for solution to partial differential
equations forms the mainstay of modern Computational Fluid Dy-
namics (CFD). One of the early pioneering methods of the Finite
Volume Method (FVM) was the HLL (Harten, Lax and van Leer)
method. The original HLL method was developed by Harten, Lax
and van Leer [1] as an approximate Riemann solver for use in a
Godunov solver. Rather than solving the Riemann problem ana-
lytically with knowledge of the behavior of the system (in many
cases, an ideal gas), the HLL method solves for the flux in an in-
termediate region (or star region) between cells directly from the
governing partial differential equations. Through the introduction
of the star region bounded by two propagating waves, the flux
across the interface can be mathematically determined. This allows
for the flexible solution of a various number of conservative hyper-
bolic systems, such as the Shallow Water Equations and the Euler
Equations.

Presented here is a modification to the HLL method where al-
lowance is made for the mathematical inclusion of gradient terms
within the flux expressions. The integral form of the HLL expres-
sions is presented and then re-evaluated allowing conserved quan-
tities to vary linearly in space. The resulting fluxes form the basis
of the HLLG scheme, where the G represents the inclusion of gra-
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dient terms. This method is then applied to the solution of the
Euler Equations and finally the fluid modeling equations for a 1D
Argon RF discharge. The results show an improvement in the nu-
merical diffusion associated with the traditional HLL higher order
extensions without significantly increasing computational expense.

2. Harten, Lax and van Leer (HLL) method

The fluxes developed by Harten, Lax and van Leer [1] are pre-
sented here in their complete integral form. Fig. 1 shows a control
volume in x–t space covering the region between cells i and i + 1
centered on the interface separating the cells at x = 0. The region
is temporally bound by the limits t = 0 and t = T . At t = 0, waves
moving at velocities SL (< 0) and S R (> 0) move away from the
discontinuity between the cell interface. The conditions inside the
control volume in the region between [0, T ] and [xL, xR ] can be
described by the integral:
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where the subscripts L and R represent conditions in the left and
right cells respectively, while the superscripts 0 and T represent
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Fig. 1. Control Volumes (CVs) employed in HLL flux derivation.

conditions at time t = 0 and t = T respectively. The subscript ∗
represents conditions in the star region between the propagating
waves. This equation assumes nothing regarding variation of fluxes
F or conserved quantities U within space and time. The only as-
sumptions made are in the presence of the two propagating waves
surrounding a single intermediate region at x = 0. Fig. 1 shows the
revised x–t diagram focusing on the left cell only. Using the same
method of integrating conserved quantities over space and fluxed
quantities over time obtains:
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By assuming that the average state over the region between x =
SLT and x = SRT is the same as the average between the region x =
SLT and x = 0, we can substitute the equations together to obtain
the expression for the interface flux:
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(3)

By assuming that the quantities U remain spatially constant (i.e.
monotonic in nature) and the fluxes are temporally constant we
recover the original HLL flux expressions:

F∗ ≈ F (U L)S R − F (U R)SL − S R SL(U R − U L)

S R − SL
(4)

3. Extension of HLL to HLLG

Formal inclusion of gradients into Eqs. (1)–(3) provides the
HLLG flux expressions, which can be written in the form:
Fig. 2. Numerical schlierens for the 2D shock-bubble interaction problem, [top] HLL,
[bottom] HLLG. Both simulations employed the MINMOD limiter with a constant
maximum CFL = 0.5.

F∗ ≈ F (U 1
L )S R − F (U 1

R)SL − S R SL(U 2
R − U 2

L )

S R − SL
(5)

where superscripts 1 and 2 indicate spatial reconstruction at dis-
tances ST and ST/2 away from the cell interfaces respectively. The
resulting flux expressions differ from those of traditional higher
order extension which conventionally is performed at the cell in-
terfaces [2].

4. Results

Results are presented for the simulation of a shock wave pass-
ing over a low density bubble [3] and for a 1D RF argon plasma
problem. Numerical schlierens demonstrating spurious oscillations
in the conventional HLL result and the (less affected) HLLG result
are shown in Fig. 2. The solution of the 1D argon plasma sim-
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Fig. 3. Sample output from 1D simulation of an RF plasma showing number
densities, electron temperatures and potential field. A voltage (100 V, sin wave
13.56 MHz) is applied over two plates separated by distance 2 cm.
ulation is shown in Fig. 3. Solutions are comparable against the
traditional HLL results and a conventional TVD upwind scheme due
to the large Peclet numbers involved.

5. Conclusion

A recently developed finite volume method (HLLG) has been
applied to the solution of the Euler Equations and charged par-
ticle (plasma) transport equations. The HLLG scheme is based on
the consistent inclusion of gradients during the flux derivation. The
HLLG scheme demonstrates improved stability with fewer spurious
oscillations. Results for the simulation of the 2D Euler Equations
and a 1D Argon RF discharge are presented.
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