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By investigating the localization-delocalization transition (LDT) in the instantaneous-normal-mode
spectrum of a simple fluid, we compare two numerical methods, the level-spacing statistics and the
multifractal analysis, for determining the LDT in vibrational spectra. Both methods are based on scale
invariance at the transition. Within numerical errors, our results of the two methods give a reasonable
agreement on the location of the transition.
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1. Introduction

Disorder-induced localization-delocalization transition (LDT),
also known as Anderson transition, has been an interesting topic
for over fifty years [1]. For infinite systems at the LDT, the correla-
tion length &, diverges with a power law with a critical exponent
v, indicating that there is no relevant length scale at the transition.
For finite systems of linear size L, as the cases in numerical calcu-
lations, the LDT is usually referred to the one-parameter scaling
theory [2], in which a macroscopic variable is a unique scal-
ing function of the ratio L/é-. The exponent v is universal and
characterized by the universality class of the disordered systems.
Meanwhile, strong fluctuations of the eigenfunctions at the LDT ex-
hibit a multifractal nature, due to the self-similarity of the system
on all length scales [3].

The location of LDT by spectral methods is usually determined
by two numerical methods: the level-spacing (LS) statistics and the
multifractal analysis (MA), commonly based on the scale invariance
of a system at the LDT. In the LS statistics, the correlations be-
tween the discrete levels at an LDT is independent of the system
size L [4]. In the MA, the multifractality at an LDT is described
by the singularity spectrum f(c), which is a set of the fractal di-
mensions for the points with the eigenfunction intensity scaled as
L~%. Generally, f(c) is a convex function with a maximum at o
equal to the space dimension of the system. Another feature point
in f(a) is the one where f(w1) =, so that the slope of f () at
o1 is one. The scale invariance of f(«) at an LDT suggests that the
constancy of the singularity strength o« and «; with L serves the
conditions for determining the location of the LDT [5].
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Recently, we have investigated the LDT in the instantaneous-
normal-mode (INM) spectrum of a truncated Lennard-Jones (TLJ)
fluid, which is a prototype of topologically disordered systems [6].
Generalized from the phonon concept in solid-state physics for de-
scribing the short-time dynamics of fluids, the INMs are referred
as the eigenmodes of the Hessian matrices evaluated at fluid con-
figurations [7]. By the LS statistics and the finite-size scaling, two
LDTs, one with a positive eigenvalue and the other with a negative
eigenvalue, are found in the INM spectrum. Within numerical er-
rors, the estimated critical exponents of the two LDTs agree with
each other and are close to that of the Anderson model in three di-
mensions. On the other hand, the LDT in the vibrational spectrum
of fcc lattices with force-constant disorder has been studied with
the MA [8]. Also, with the advance in computers and algorithms
for calculating the Anderson model (AM) in large scales, the accu-
racy for the singularity spectrum of the AM has been much im-
proved [9-11]. In this paper, using the two numerical approaches,
we further investigate the location of the negative-eigenvalue LDT
in the INM spectrum of the TL] fluid and the obtained results are
compared.

2. Level-spacing statistics

The thermodynamic state of the TLJ fluid is chosen at reduced
density p* = 0.972 and reduced temperature T* = 0.836 [12].
With the periodic boundary conditions for N particles confined in
a cube of length L, the fluid configurations are generated by Monte
Carlo simulation, and N is varied from 3000 to 96 000. The Hessian
matrices of the TLJ fluid are diagonalized with Lanczos algorithm
[13]. Presented in Ref. [6], the normalized INM spectrum consists
of two branches, corresponding to the positive and negative eigen-
values. With the LS statistics given below for N less than 3000, the
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Fig. 1. The second moment Iy of P(s) for INMs near the LDT in the negative-eigen-
value branch. N is the particle number in simulation. The symbols are obtained by
the numerical eigenvalues. The lines are the fit results of model (n,m) = (3,1) for
z within [0.3125, 0.75]. The inset shows the scaling function of Iy (z).

LDT in the negative-eigenvalue branch is found to occur between
—95 and —80.

For each system size, the INM eigenvalues A from —95 to —80
are unfolded to make the density of states of the unfolded eigen-
values z uniform. Then, these unfolded eigenvalues are further
divided into small sections. For each section, the second moment
Iy of the nearest-neighbor LS distribution P(s) is calculated; the
data as a function of z are presented in Fig. 1 for five system sizes.
For each N, Iy monotonically increases from the delocalized to
the localized region in the INM spectrum. Generally, due to the
size dependence of P(s), Iy increases with N in the localized re-
gion but decreases in the delocalized region. The scale invariance
of P(s) at the LDT indicates that Iy is independent of N at some
Z¢, which is the location of the LDT.

Since the crossing points of the Iy curves in Fig. 1 do not shift
systematically with N, In(z) generally follows the one-parameter
scaling theory and can be described by a function f(x(Z)L1/V),
where the relevent scaling variable x(Z) is a function of Z =
(zc — z)/z. that measures the deviation from the transition point.
The nonlinearity of the Iy curves in Fig. 1 implies that f(x) and
X (Z) should be nonlinear functions of their variables [14]. We ap-
proximate f(x) and x (Z) with the Taylor series up to order n and
m, respectively.

n m
Fx@LY) =3 aix @)L, x(@)=)_ bz’ (1)
i=0 j=1
where b; = 1. Each model with the approximated f(x) and x(Z)
is specified with (n,m), and the fitting parameters of the model
include all expansion coefficients, z. and v.

With the models (n,m) = (2,2), (3,1), (2,3) and (3, 2), which
numbers of fitting parameters are less than eight, we fit the Iy
data within a region of z chosen differently. An accepted fit is de-
termined by two criterions: the goodness Q of the fit is larger than
0.01 [14] and the error bar of v is less than 0.2. Shown in Fig. 1,
the best fit, with Q = 0.092, is the one with (n,m) = (3,1) for z
within [0.3125, 0.75]. The best fit gives v = 1.57 & 0.04, which is
consistent with that of the AM [15], and the location of the LDT at
Ac = —86.96 £ 0.05. After the system sizes are scaled by the cor-
relation length &(z) = C|x(Z)|”", where C is a constant, the Iy
data of the five system sizes indeed collapse onto a single scaling
function.
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Fig. 2. Scaling of ap (a) and a (b) with (InL)~'. Indicated with different symbols,
the data from top to bottom for ¢y and in reversed order for «; are averaged for
INMs within eigenvalue intervals centered from —91.1 to —83.1 and with AA =1.
The symbols close to the LDT have different colors. The lines are the linear fit for
the data of each interval.

3. Multifractal analysis

In MA, the eigenvectors of INMs are needed. For a configura-
tion of N particles, there are 3N INM eigenvectors, correspond-

ing to discrete eigenvalues As (s=1,...,3N). Generated with the
JADAMILU package [16], the 3N components of a normalized INM
eigenvector are denoted as ej for j=1,...,N, where € is the

three-dimensional projection vector of particle j in the INM [17].
Following the box-counting procedure [3], we divide the simula-
tion box of size L into N, = n~3 smaller boxes of size I, with
n =1/L. The measure for the squared vibrational amplitudes of
INM s in the k-th small box is given as

wm= Y | 2)
jebox k

The singularity strength oy is, therefore, defined as

N
1 [N (ugm)d
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where PZ(’?) is a summation of (Mf{(n))q over all small boxes and
(--+) denotes an arithmetic average over the INMs with As within
an interval of width AA centered at A. It is impossible to take
the limit in Eq. (3) for the finite-size systems. Alternatively, the o
value can be obtained by the slope of a linear fit for the average
value in Eq. (3) versus In7. In our calculations, 1 is set between
0.1 and 0.5 for each L.

Fig. 2 shows oy, with ¢ =0, 1, versus the inverse of InL for N
from 3000 to 96000, with each data point obtained by averaging
1.5 x 103 INMs within an interval of Ax = 1. By taking for granted
the A. value from the LS statistics, the center of the eigenvalue in-
terval is chosen from —83.1 to —91.1. Following Ref. [8], we define
gi =da;/d(InL)~! as the slope of the linear-fit function in Fig. 2
for each eigenvalue interval. The constancy of «; with L gives the
Ac value. Indicated by the zero-value of g; in Fig. 3, A is estimated
near —86.6, with an error equal to one.

4. Conclusions

In summary, using the LS statistics and the MA, we have in-
vestigated numerically the LDT in the negative-eigenvalue INM
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Fig. 3. Variation of g; with A. The circles and triangles, with the lines to guide the
eye, are for go and gi, respectively. The zero-crossing point of the g; line predicts
Ac =—86.6+0.5.

spectrum of a TLJ fluid. Scale invariance at the LDT is the fun-
damental theme of the two methods. Within numerical errors, the
two methods give a reasonable agreement on the location of the

LDT. The LS statistics makes a profit on the critical exponent; the
MA is economic in computer time.
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