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We successfully used the tight binding theory to derive the extended discrete nonlinear Schrödinger
equation to describe the soliton propagation and to obtain the soliton propagation criteria (SPC) in
the nonlinear photonic-crystal waveguides (PCWs) and coupled resonant optical waveguides (CROWs)
containing Kerr media. From these criteria, we obtain the soliton-propagating region of CROWs in
different numbers of separated rods and strengths of self-phase modulation (SPM). The defined soliton-
propagating regions coincide with the regions of modulation instability in the CROWs. In the PCWs, the
positive Kerr coefficient medium needs to be added to support the pulse propagation in low frequency
or low wave vector region of the dispersion curve; while negative Kerr effect is for high frequency case.
Due to the linear combination of various cosine harmonic functions in the dispersion relations of both
CROWs and PCWs, the pulse broadening which is mainly caused by the third-order dispersion at SPC is
the lowest at the boundary of dispersion curves. However, due to the different magnitudes of coupling
coefficients in CROWs and PCWs, the group velocity, dispersion and strength of SPM in CROWs are all
smaller than those in PCWs.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Photonic crystal waveguides (PCWs) [1] are the optical devices
carved from perfect photonic crystals (PCs) by sequentially mod-
ifying a linearly unit cells; on the other hand, the coupled res-
onator optical waveguides (CROWs) [2] are created by arranging
the cavities, made of point defects, periodically. Light that propa-
gates in either PCW or CROW with a frequency within the band
gap of the crystal is confined to the defects, and can be con-
ducted along the defects with a very low loss even through a sharp
bend [3–5]. Several simulation methods such as the plane-wave-
expansion method (PWEM) [6,7] and finite-difference-time-domain
(FDTD) [8,9] method were usually used to design the waveguides
with variety of functions, but they cannot provide an efficient and
analytic method for understanding the physical properties of the
waveguides. Therefore, the tight-binding theory (TBT) is widely
used to analytically study the electromagnetic (EM) wave propa-
gation in linear or nonlinear waveguides [10–15].
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The amplitude evolution of the electric field in the nonlinear
CROWs containing Kerr media, in which the refractive indices are
proportional to the intensity of the EM wave, often leads to the
discrete nonlinear Schrödinger equation (DNLSE) derived by the
TBT [16,17]. By solving the DNLSE under long-wavelength approx-
imation this equation reduces to a nonlinear Schrödinger equation
(NLSE). Spatiotemporal discrete solitons can propagate undistorted
along the defects by balancing the effects of discrete lattice dis-
persion with material nonlinearity [17]. However, as the pulse
becomes narrow, the long-wavelength approximation will be bro-
ken and the high-order dispersions should be considered [16]. The
more general criteria for solitons propagation in different struc-
tures of CROWs, e.g., different numbers of separation rods between
two cavities or different pulse widths, are still leaking.

In the PCWs, however, the defect rods are so close that the
next nearest-neighbor coupling cannot be neglected [12]. The gov-
erned equation of motion is termed the extended discrete nonlin-
ear Schrödinger equation (EDNLSE) to distinguish the DNLSE in the
CROWs in which only the nearest-neighbor coupling coefficient is
considered. There are rare reports on pulse propagation in nonlin-
ear PCWs using the TBT but the Green-function approach [18–20].
Although the equations obtained from these two approaches are
quite similar [21], it still lacks on the research about the dynamic
or criteria of soliton propagation in the PCWs especially under the
high-order influence. Therefore, it is needed to take the advanced
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Fig. 1. The structures of (a) a PCW, (b) a CROW with one separation rod, and (c) a CROW with two separation rods. Here a is the length of successive defect points and aL is
the lattice constant of a PC.
discussion about criteria of solitons propagation of different kinds
of CROWs and PCWs, and to derive the EDNLSE for describing the
dynamic properties or the high-order dispersion of solitons with
different nonlinear strengths and pulse widths. It can provide a
physical concept to design PCWs or CROWs allowing pulse propa-
gation with low pulse broadening.

We will first use the TBT to derive the EDNLSE in this paper.
Second, by considering the Taylor expansion of the pulse enve-
lope, the soliton criteria in different kinds of CROWs and PCWs
are derived and discussed. Third, the pulse broadening of soliton
propagation at the soliton criteria is discussed. Finally, by using
the fourth-order Runge–Kutta method, a CROW and a PCW with
triangular lattices were proposed to demonstrate the soliton prop-
agation. We found the simulation results can be well explained by
the analytic analyses.

2. Theory

To describe the solitons propagating in CROWs or PCWs, we
consider a PC with the lattice constant aL and the waveguides con-
sisting of a periodic sequence of identical single-mode defects. The
distance between successive defect points or cavities is a, and the
Kerr media is localized in the defect regions as shown in Fig. 1.
Assuming the eigenfrequency of the isolated point defect is ω0,
we can express the electric and magnetic fields in the waveg-
uides as the linear combination of the isolated cavity mode E0 and
H0, i.e., E′

0(r, t) = ∑
bm(t)E0m and H′

0(r, t) = ∑
bm(t)H0m , where

E0m = E0(r − ma) and H0m = H0(r − ma). Under the tight-binding
approximation, we can get the EDNLSE as [17]

i
dbn

dt
+ (−ω0 + c0)bn +

M∑
m=1

cm(bn+m + bn−m) + γ |bn|2bn = 0.

(1)

The upper limits M of summations representing the considered
maximal coupling neighbors for Eqs. (1) and (4) to describe the EM
wave propagation should be 1 in the CROWs but 2 in the PCWs.
Here the linear coupling coefficient cm is defined as

cm = ω0
∫∫∫

dυ �εE0n · E0n+m∫∫∫
dυ (μ0|H0n|2 + ε|E0n|2) (2)

with �ε(r) = ε′(r) − ε(r) being the difference of unperturbed and
perturbed total permittivity and c0 representing a small shift in
the eigen frequency ω0 that arises from present of the neighbor
defects or cavities. The self-phase modulation (SPM) strength γ is
given by

γ = 2n0n2ε0ω0
∫∫∫

dυ |E0n|4∫∫∫
dυ (μ0|H0n|2 + ε|E0n|2) (3)

with n2 being the Kerr coefficient. Let the plane wave with fre-
quency ω, propagation wavevector k, and amplitude φ in site n as
bn = φ exp(inka − iωt) be the solution of Eq. (1). The dispersion
relation of the nonlinear PCW or CROW can be derived as

ω(ka) = ω0 − c0 −
M∑

m=1

2cm cos(mka) − γ |φ|2

= ω′(ka) − γ |φ|2. (4)

Here, ω′ is the frequency of the PCWs without nonlinear media
and the Kerr media make the dispersion curve a constant fre-
quency shift in all wave vectors [22].

In order to get the soliton solution and to give the advanced
analysis of high-order dispersion as pulse propagating, we let
x = na and bn = φei(kx−ω′t) . Taking the Taylor expansion of φ, [16]

φ(x + a) = φ +
∑
n=1

an

n!
∂nφ

∂xn , (5)

Eq. (1) can be written as an NLSE:

i
∂φ

∂t
−

∑
n=1

(−i)n

n! βn
∂nφ

∂xn + γ |φ|2φ = 0. (6)

The dispersion coefficients, βn , equal to ∂nω(k)/∂kn or

β2n−1 = 2a2n−1(−1)n+1
∑
m=1

m2n−1cm sin(mka), (7)

β2n = 2a2n(−1)n+1
∑
m=1

m2ncm cos(mka). (8)

Therefore, the angular frequency of the waveguides can also be
expressed as the Taylor’s expansion sum of dispersion coefficients,
i.e.,

ω(k) = ω0 + β1�k + β2(�k)2/2! + β3(�k)3/3! + · · · , (9)

where β1 is the group velocity (v g ) of the solitons in these waveg-
uides as the high-order terms are neglected. When the variation
of the pulse amplitude is smooth enough, i.e., βn(�k)n/n! ≈ 0 or

βn
∂nφ
∂xn ≈ 0 for n > 2, Eq. (6) has a soliton solution as

b = φ sech

(
x − β1t

x0

)
ei(kx−ωt). (10)

The criterion to support a soliton propagation is thus γ φ2 = β2/x2
0

or

γ φ2 = 2a2(c1 cos(ka) + 4c2 cos(2ka) + 9c3 cos(3ka) + · · ·)/x2
0.

(11)

From Eq. (10), the dispersion relation of the solitons is the same
as a plane wave incident into the nonlinear waveguides. The re-
lationship between x0 and φ is determined by β2 and γ (n2 or
χ(3)). The sign of β2 and γ must be the same to support a soliton
propagation and SPM strength (γs) is β2/(x2φ2).
0
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Fig. 2. (a) The electric field distribution (Ez) of a point defect mode simulated by the plane wave expansion method in the triangular lattice with the dielectric constant,
radii of dielectric rods and the radius of the defect rods being 12, 0.2aL and 0.1aL for a frequency ( f ) = 0.333c/aL . (b) The field distribution of the blue dash line in (a). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
The soliton propagation region of the CROW with different separation rods.

Separation rods Sign of c1 Sign of n2(γ ) Region (ka)

Odd − + > π/2

− < π/2

Even + + < π/2

− > π/2

3. Soliton propagation condition

In this section, we will further discuss the soliton-propagation
region (in k or ω) in different structures, e.g., PCWs and CROWs
with different separated rods as shown in Fig. 1 containing Kerr
media with different signs and Kerr coefficients. The electric field
distribution (Ez) of a single point defect simulated by the PWEM
in the triangular lattice with the dielectric constant, radii of dielec-
tric rods and the radius (rd) of the defect rods being 12, 0.2aL and
0.1aL for the frequency f = 0.333c/aL is shown in Fig. 2. The field
profile along the blue dash line in Fig. 2(a) is plotted in Fig. 2(b); it
has the opposite sign when extending to the odd nearest-neighbor
rod(s) (E0(0,0) ∗ E0(xa,0) < 0, x = 1,3,5, . . .) and has the same
sign when extending to the even nearest-neighbor rods. To main-
tain a single mode propagating in the waveguides, the radii or the
refraction indices of the rods in the waveguides are reduced, there-
fore �ε are negative in the following discussion. Since the electric
field is mainly localized around the dielectric rods of the waveg-
uides, we can use the maximum values to replace the integral
values for a simple estimation of Eq. (2). Therefore, c1 is positive in
even-separated-rod CROWs [23], in which E0(0,0) ∗ E0(xa,0) < 0,
x = 1,3; c1 is negative in odd-separated-rod CROWs. In the PCWs,
c1 and c3 are positive and c2 and c4 are negative.

In the CROWs, c2 is two orders of magnitude smaller than c1,
so c2 can be neglected in considering β2 and the soliton propaga-
tion criterion (SPC) in Eq. (11) can be further reduced to x2

0/a2 =
2c1 cos(ka)/(γ φ2). In the CROWs with even separated rods, c1 is
positive so γ should be positive in order to achieve the SPC when
ka < π/2 and should be negative as ka > π/2; however, in odd
separated rod(s), c1 is negative so γ should be negative (positive)
when ka < π/2 (ka > π/2) to reach the SPC that corresponds to
the modulation instability in these nonlinear waveguides [23] and
the Kerr media should switch their signs when ka crosses π/2.
The soliton propagation region of the CROWs is shown in Table 1.
In PCWs, c1 is positive and c2 is negative with its value being an
order of magnitude smaller than c1 [23]. Therefore, positive Kerr
media should be put in the waveguides as a low wave vector or
low frequency EM wave is incident, and vice versa. When the cou-
pling coefficients cn (n > 2) are neglected for a simply estimation,
Eq. (11) can be written as cos(ka) = −4|c2/c1| if γ = 0. Therefore,
the border of switching sign of Kerr medium for soliton propaga-
tion in PCWs occurs at ka > π/2. However, if the dielectric defect
is used, in which �ε > 0, the signs of c’s should be changed and
the type of Kerr media would also be changed accordingly.

4. High-order dispersion effect

To estimate the influences of high-order linear dispersion which
makes the pulse broadening, we took the Fourier transform of the
soliton solution, sech(x/x0), and calculated the standard deviation
of k’s distribution as �k = 1/x0. Taking derivative of Eq. (9) with
respect to k, the group velocity can be expressed as

∂ω/∂k = β1 + β2(�k) + β3(�k)2/2! + β4(�k)3/3! + · · · . (12)

When the dispersion of β2 is balanced by the SPM and x0 > a,
the pulse broadening will be mainly dominated by β3. The
group velocity dispersion (GVD) arising from β3 is determined
by 0.5β3�k2 = 0.5β3�(1/x0)

2 so that it can be neglected when
0.5β3�k2t ≈ 0. Similarly, from Eq. (7),

β3 = −2a3
∑
m=1

m2n−1cm sin(mka), (13)

which means the pulse broadening is minimized when ka = 0 or
π/a no matter in CROWs or PCWs. In the CROWs, only c1 term
needs to be considered so β3 = −2a3c1 sin(ka) and the largest dis-
persion occurs at ka = π/2. In the PCWs, c2 term also contributes
to the dispersion and has opposite sign with c1 so the largest dis-
persion happens as ka exceeds π/2.

5. Simulation results and discussion

We consider triangular-lattice PCs with the dielectric constant
and radius of the dielectric rods being 12 and 0.2aL . The radius
(rd) of the defect rods is reduced to 0.1aL and the Kerr media are
introduced in the defects between one separation rod to create the
CROW and sequentially to create the PCW. The dispersion curves,
which were simulated by the PWEM, and dispersion coefficients
(βn) of the CROW and PCW in TM polarization (the electric field
parallels the rod axis) without Kerr media are shown in Fig. 3. The
coupling coefficient of c1 is −0.00652 (2πc/a) in the CROWs and
c1, c2 and c3 are 0.02041, −0.00205 and 0.00026 (2πc/a) in the
PCWs, respectively.

Due to the magnitude of the coupling coefficient in the CROW
is smaller than those in the PCW, the magnitude of the group ve-
locity (β1) and the higher dispersion coefficients (β2,3,4) in CROWs
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Fig. 3. The dispersion relations and dispersion coefficients of (a) a CROW with one separation rod and (b) a PCW in triangular lattices calculated by the plane wave expansion
method.

Fig. 4. The hyperbolic-secant (HS) pulse (x0 = 2a) propagates in the CROWs of different wave vectors at t = 400a/c (a) without Kerr medium and (b) at the soliton propagation
criterion by using the fourth-order Runge–Kutta method. The black solid line in (a) is the incident pulse.
would be smaller than in PCWs. However, because the signs of
c′

1s are different so that the EM waves in these two structures
will propagate in the opposite directions. The neglected c2 term
in CROWs makes β2 ≈ 0 and the values of β3 are almost symmet-
ric at ka = π/2, leading to soliton propagations at k and 1 − k (in
π/a unit) would be similar if different signs of Kerr media were
introduced in the defects. However, it would behave quite differ-
ently in the PCWs. The border of switching sign of Kerr medium
for soliton propagation occurs at ka > π/2, and the high-order dis-
persion coefficients (β3) in high k are larger than those in low k
due to the negligible 2nd and 3rd next-neighbor coupling coeffi-
cients.

We will use the fourth-order Runge–Kutta method to solve
Eq. (1) to simulate an initial hyperbolic-secant (HS) pulse, i.e.,
φ sech(x/x0)eikx , propagating in the PCW and CROWs because the
HS pulse is a soliton solution. The advantage of using this method
is to directly solve Eq. (1) without the requirement of calculat-
ing the dispersion coefficients due to all order dispersions are
contained in this equation. However, when the split-step Fourier
method [16,24] is used to solve Eq. (6), all orders of the disper-
sion coefficients are required to take into consideration for short
pulse. On the other hand, if a Gaussian pulse is incident into the
nonlinear waveguides with the same energy of the HS pulse at the
SPC with small high-order GVD, the Gaussian pulse will initially
develop into HS envelope, then finally the pulse becomes broad-
ened due to the high-order dispersions that behaves like initially
launching the HS pulse into the nonlinear waveguides.

To observe the pulse broadening without Kerr media or un-
der the SPC, where γ s = 2c1a2 cos(ka)/(φ2x2

0) in the CROWs with
one separation rod and γs(n2) is positive as ka > π/2, we sent
an HS wave with x0 = 2a into the CROWs and let it propagate
400a/c in different k’s as shown in Fig. 4. It can be seen that the
pulse spreads seriously without Kerr medium but spreads slightly
or even preserve at the SPC. Because β2 = 0 at ka = π/2, the pulse
would not spread even without Kerr medium, whereas, the dis-
Fig. 5. The broadening factors of ka = 0.6π and 0.75π and x0 = 2a and 4a of the
HS envelopes at the SPC.

persive waves were observed at the farther distance wing with
the larger x in Fig. 4(a) due to the higher-order dispersion. From
Fig. 3(a) we noticed that |β2| is largest at ka = π so without Kerr
medium the pulse becomes the broadest shown as Fig. 4(a). At the
SPC, however, β2 can be balanced by SPM and thus the pulse is
basically preserving the same shape without broadening except for
the larger β3 as ka approaches π/2. Because β3 = 0 at ka = 0 or π ,
it makes soliton propagation almost with no dispersive waves and
the pulse disperse symmetrically in the waveguides even contain-
ing no Kerr media.

Now we turn to the pulse propagation in the PCWs. In order to
further evaluate the degree of the pulse broadening arising from
high-order dispersions, we define the broadening factor (BF) as
σ/σ0, where σ is the root-mean-square energy of output pulse
and σ0 is that of the input pulse. From the BF of PCWs at different
propagating time (T ) for ka = 0.6π and 0.75π as shown in Fig. 5,
the BF is proportional to T 2 as BF is small, but it is proportional
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to T when BF � 1 that is similar to the Gaussian pulse propagat-
ing in the fiber [24]. Since β3 is the largest around ka = 0.75π ,
BF(ka = 0.75π) > BF(0.6π) initially, but becomes the other way
around with BF(0.6π) > BF(0.75π) after the pulse propagates a
span of 60a/c for x0 = 2a. This is because the BF is mainly dom-
inated by β3 at the SPC but dominated by β2 after having been
severely distorted by β3. When the width of pulse increases, the
pulse broadening is greatly depressed.

The broadening mechanism and the formula to define the SPCs
in CROWs and PCWs are similar, but the conditions γ and k to
support the SPC are quite different due to differences in their cou-
pling coefficients. Once the coupling coefficients are obtained from
the PWEM, the pulse broadening and the SPC can be well analyzed
by the derived equations. The simulation results obtained from the
fourth-order Runge–Kutta method agree well with our analyses in
both the CROWs and PCWs.

6. Conclusion

The soliton propagation in the CROWs and the PCWs contain-
ing optical Kerr media was studied using the tight-binding the-
ory. By considering the coupling between the defects, we derived
an extended discrete nonlinear Schrödinger equation to describe
the wave propagation in these nonlinear waveguides. By solving
this equation we obtained the criterion that supports the soliton
propagation if the dispersions more than three orders can be ne-
glected or the dispersion can be highly depressed at the criterion
if the high-order dispersions cannot be neglected. The dispersion
in CROWs with odd or even separated rods at different wave vec-
tors before or after π/2a is identified that can be balanced by
positive or negative Kerr medium to support solitons propagation,
separately. In PCWs with air defect, positive Kerr media must be
added in the low wave vector or low frequency to support a soli-
ton propagation and vice versa. Due to the coupling coefficients
of the PCW are larger than those in the CROW the group velocity
and the dispersion should also be larger in the PCWs that requires
larger self phase modulation to support solitons propagation in the
PCWs. When the pulse width becomes shorter, the effect of the
high-order dispersion is enhanced and the third-order dispersion
β3 dominates the pulse broadening. The broadening is the low-
est as the center frequency of the incident pulse located at the
boundary of the dispersion curve (ka = 0 or π ) of both PCWs and
CROWS. However, the largest broadening occurs around ka = π/2
only in CROWs due the negligible next nearest-neighbor coupling
coefficient c2.
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