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Static and dynamic distribution of the superconducting condensate order parameters and current density
is studied by numerical simulation of the 2D time-dependent Ginzburg–Landau equations. The vortex
flux lattice in layered type-II superconductors under magnetic field above the lower critical field is
described by the order parameters. Moreover, the pinning effect has been considered in this work. The
Abrikosov lattice which is hexagonal in the static case is deformed due to the size of pinning centers.
The dynamical order parameters distribution shows that the vortex transport (flux flow) is conducted via
diffusive motion of the so-called interstitial vortices. The trajectories for interstitial vortices with different
sizes of pinning centers are shown.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The great interest in the problem of magnetic flux pinning in
type-II superconductors is associated with its relevance to techno-
logical applications of superconductivity. An important challenge in
applications of type-II superconductors is achieving optimal critical
currents under given magnetic fields. This requires preventing de-
pinning of Abrikosov vortices during the formation of the resistive
state under the applied current. The critical current can be signifi-
cantly increased at a matching field when the number of Abrikosov
flux lines is equal to the number of pinning centers. When the
current exceeds the critical value, the vortices move thus induc-
ing voltage. The dynamic behavior of the Abrikosov flux lattice
is strongly influenced by the pinning array. In early experiments
the distances between the pinning centers, d, were larger than
magnetic penetration depth. Correspondingly the magnetic fields
were mostly close to Hc1 [2], so that vortices were well isolated
within the applicability range of the London approximation [3];
more recently the trend was in the direction of smaller distances
between the pinning centers, approaching the coherence length
ξ and consequently larger fields approaching Hc2. Two strategies
were employed. The standard one is reducing d, and the second is
increasing the coherence length by tuning the field towards Hc2(T )

[1]. In this region the London approximation is not valid and one
has to use the more appropriate time-dependent Ginzburg–Landau
(TDGL) approach. In the present note we address this problem.
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2. Model

The order parameter characterizing the superconducting state is
calculated numerically for a periodic array of pins (i.e. “nanosolid”).
The configurations of the vortex lattice under different pinning
arrays (triangle, square) and different pinning center sizes are stud-
ied. In addition the trajectory of interstitial vortices are calculated.
The relaxation dynamics of Abrikosov vortices in a superconductor
with an electric field is described by TDGL equation

∂

∂τ
ψ = − ∂

∂ψ∗ fGL, (1)

where the dimensionless free energy is
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The dimensionless parameter is ψ = 1√
2Ψ0

Ψ , Ψ0 = √
αTc/β with

standard notations for the GL coefficients, see [4,5]. The unit of
length is ξ , while the unit of time characterizing the relaxation is
tGL = γ ξ2/2, where γ is an inverse diffusion constant, t ≡ T /Tc
denotes the dimensionless temperature. The dimensionless mag-
netic and electric fields are h = B/Hc2 and ε = E/EGL , where
EGL = ctGL Hc2/ξ . Pinning is described by W (r) = ∑

a w(r − ra).
We assume that κ = λ/ξ � 1. This means that the magnetization
is smaller than the field by a factor 1/κ2 and consequently (for
magnetic few times larger then Hc1) B ≈ H . The magnetic field
B = ∇ × A therefore is homogeneous and constant, where A is the
vector potential. The current density j = jn + js has the normal and
the supercurrent components

jn = ε, js = i (
ψ∗Dψ − ψDψ∗), (3)
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Fig. 1. Vortex distribution, pinning site locations (the black square), for the rectan-
gular pinning array. The sizes for pinning centers are one (points), the magnetic
field h = 0.4, and the temperature t′ � 0. The vortex lattice has hexagonal symme-
try when electric filed ε = 0.

where the unit of current density is JGL = cHc2/(2πξκ2) and the
conductivity will be given in units of σ0 = c2γ /(4πκ2).

The continuum TDGL equation (Eq. (1)) is discretized using link
variables

Uμ
n1,n2 = exp

(
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)
, (4)
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2
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2
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)
, (5)

where μ = x, y is the link direction. The electric field is applied
in the y-direction and we use a symmetric gauge. The discretized
TDGL equation is,
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where aμ is the lattice spacing in the x- and y-direction. Periodic
boundary conditions with magnetic translations [6] are used. The
order parameters in the strong pinning centers are forced to be
zero (always in normal state), while weak pinning are represented
by step functions.

3. Simulation results

We consider three different pinning arrays. The pinning loca-
tions are on a square lattice in the first case and on a triangle in
the second and the third cases. The pinning center sizes are one
(point) in the first and second case and nine (points) in the third
case. The magnetic field h = 0.4 and the electric field are applied
in the y-direction for all systems. Fig. 1 shows the configuration
of a static vortex lattice with a rectangular pinning array (pinning
size – one point); the vortex lattice still has a hexagonal symme-
try, even though the pinning array is anisotropic. With the applied
electric field, the interstitial vortices which parallel the pinning
sites can flow along the x-direction, while the interstitial vortices
between the pinning sites are obstructed by the pinned vortices,
shown in Fig. 2. Fig. 3 shows a static vortex lattice with a triangu-
lar pinning array (pinning size – one point); the vortex lattice has a
hexagonal structure. Like with rectangular pinning arrays, only the
interstitial vortices can flow parallel the pinning sites, see Fig. 4.
Fig. 2. Vortex distribution, pinning site locations (the black square), and vortex
trajectories (the black lines, arrows are the direction) for the rectangular pinning
array. The parameters are the same as in Fig. 1. The electric field is applied in the
y-direction, the interstitial vortices which between the rows of pinning sites are
moving in the x-direction, while the interstitial vortices in the rows of pinning sites
cannot move.

Fig. 3. Vortex distribution, pinning site locations (the black square) for the triangular
pinning array. The sizes for pinning centers are one (points), the magnetic field
h = 0.4, and the temperature t′ � 0. The vortex lattice has hexagonal symmetry
when electric filed ε = 0.

Fig. 4. Vortex distribution, pinning site locations (the black square), and vortex tra-
jectories (the black lines, arrows are the direction) for the triangular pinning array.
The parameters are the same as in Fig. 3. When the electric field is applied in the
y-direction, the interstitial vortices which between the rows of pinning sites are
moving in the x-direction, while the interstitial vortices in the rows of pinning sites
cannot move.
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Fig. 5. Vortex distribution, pinning site locations (the black square). The sizes for
pinning centers are one (points), the magnetic field h = 0.4, and the temperature
t′ � 0. The vortex lattice has hexagonal symmetry when electric filed ε = 0.

Fig. 6. Vortex distribution, pinning site locations (the black square), and vortex
trajectories (the black lines, arrows are the direction) for the triangular pinning ar-
ray. The parameters are the same as in Fig. 5. The electric field is applied in the
y-direction, the interstitial vortices which between the rows of pinning sites are
moving in the x-direction, while the interstitial vortices in the rows of pinning sites
cannot move.

Fig. 5 shows the static vortex lattice with a triangular pinning ar-
ray (pinning size – nine points); the configuration of the vortex
lattice has a triangular symmetry, since the pinned vortices are
larger than the interstitial vortices. Under electric field, unlike the
previous cases, all the interstitial vortices are moving (Fig. 6). No
vortices are effectively pinned. The shape of the pinned vortices is
also influenced by the electric field and the interstitial vortices.

The ε– j characteristics with pinning effect are shown in Fig. 7.
The number of pinning centers is equal to that of the vortices,
which means that the system is at the first matching field. The
resistivity is zero when the supercurrent density J < 1.58, since
the vortices are caught by the pinning centers (the driving force
being smaller than the pinning force), while when the supercur-
Fig. 7. The ε– j characteristic with pinning effect. The I–V curve approaches linear at
large fields and exhibits pinning at a critical field.

rent density J > 1.58, the resistivity does not remain zero, since
the vortices start moving (the driving force larger than the pinning
force). When the supercurrent (density) equal to critical current
(density), the driving force equal the pinning force.

4. Conclusion

The configurations of vortex lattice above the first matching
field for artificial pinning arrays are studied in this work. The vor-
tex lattices are deformed by the pinning centers. For small pinning
sizes, the vortex lattice has hexagonal symmetry wether in rect-
angular or triangular pinning arrays. For bigger pinning sizes (nine
points), the symmetry for vortex lattices is no long hexagonal and
becomes triangular. The trajectories of interstitial vortices for small
size pinning arrays like a line, only the interstitial vortices between
the rows of pinning sites can move. The interstitial vortex tra-
jectories for rectangular and triangular pinning arrays are similar.
However, the trajectories for interstitial vortices with bigger size
pinning array like a wave, the flowing interstitial vortices avoid the
pinned vortices. For the vortices are caught by pinning array, the
resistivity is zero when the supercurrent smaller than critical cur-
rent, while the resistivity not remain zero when the supercurrent
larger than the critical current.
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