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ABSTRACT 
 
In this paper, a Bayesian framework is proposed for image 
enhancement. We model the image enhancement problem as 
a maximum a posteriori (MAP) estimation problem and the 
posteriori distribution function is formulated based on the 
local structures and local gradients of the given image. By 
solving the MAP estimation problem, image contrast gets 
properly enhanced while image noise gets suppressed at the 
same time. Moreover, since directly solving an MAP 
estimation problem is impractical for real-time applications, 
we further simplify the process to generate an intensity 
mapping function that achieves comparable performance in 
image enhancement. Simulation results have demonstrated 
the applicability of the proposed method in providing a 
flexible and efficient way for image enhancement. 
Index Terms— Image Enhancement, MAP estimation 
 

1. INTRODUCTION 
Capturing images under inappropriate illumination may 
produce images with insufficient contrast. To improve the 
quality of poorly illuminated images, an effective image 
enhancement algorithm is usually needed. Due to its 
simplicity, histogram equalization (HE) [1] is a widely used 
method for image enhancement. However, since the HE 
method only considers global statistics but neglects local 
information, it may cause undesired drawbacks, like over-
enhancement, noise amplification, and loss of fine details.     

In [2][3], the authors claim that the over-enhancement 
problem of HE could be prevented by preserving the 
intensity mean of the image. In [4], the authors formulate 
the mean-preserving HE problem as a constrained 
optimization problem and adopt variational calculus to find 
the optimal solution. Even though these mean-preserving 
enhancement methods may alleviate the over-enhancement 
problem, the performance of enhancement is somewhat 
restrained by the mean-preserving constraint.  
Some other authors [5][6] claim that the over-enhancement 
problem of HE is due to some extremely high peaks in the 
histogram. Hence, they modify the shape of the histogram 
before the histogram equalization process is executed. In [5], 
a nonlinear transformation is applied for histogram 
modification. In [6], additional prior information is included 

for the adjustment of the histogram shape. Even though 
these histogram modification-based approaches may 
effective avoid the over-enhancement problem, some 
drawbacks, like noise amplification and detail loss, still 
exist in these approaches.       

On the other hand, retinex-based algorithms are also 
popular in image enhancement [7][8]. The key concept of 
these approaches is to apply different operations for the 
luminance component and the reflectance component of the 
given image. These retinex-based approaches usually offer 
impressive enhancement results. However, halo effects may 
appear around strong edges and noise component in the 
dark regions may get amplified after enhancement.    

Unlike the aforementioned approaches, a few algorithms 
[9][10] adopt DCT-based approaches for the sake of 
compatibility with existing compression standards. The 
strategy of most DCT-based approaches is to adaptively 
scale the DC coefficients and AC coefficients for image 
enhancement. However, these approaches could generate 
undesired blocking artifacts that greatly degrade the visual 
quality of the image.   

In this paper, we propose a Bayesian framework for 
image enhancement. The proposed approach takes into 
account both local structures and local gradients of the 
image. Consequently, the proposed method can efficiently 
enhance the contrast of the image but avoid the occurrence 
of undesired artifacts. Besides, based on the proposed MAP 
formulation, we further propose a much efficient process to 
automatically generate an intensity transfer function that can 
achieve comparable performance in image enhancement. In 
this paper, the basic concept of the proposed method is first 
introduced in Section 2 and 3. Simulation results are then 
presented in Section 4. Finally, conclusions are drawn in 
Section 5. 

2. PROPOSED METHOD 
In this paper, a Bayesian methodology is applied for image 
enhancement. Here, we aim to infer a well illuminated 
image f from the given image data d by maximizing a 
posterior probability p(f|d). In mathematics, we have 

)|(maxarg* dfpf
f

.                      (1) 

After applying the Bayes’ rule, we have 
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In (2), p(d|f) is the likelihood model that represents the 
relationship between the expected image f and the observed 
image d; p(f) is the prior model that represents the statistical 
properties of an well illuminated image. In the next section, 
we will introduce the proposed likelihood model and prior 
model for the task of image enhancement. 
2.1. Likelihood model 
We construct the likelihood model based on the simple but 
widely used image formation model: an image f can be 
expressed as the product of its luminance component L and 
reflectance component R. If ignoring the cases of over-
exposure and under-exposure, the main difference among 
images with different illumination levels is the L component. 
Moreover, if we assume uniform illumination over the 
image, L can be modeled as a constant. Based on the 
concept of linear algebra, we have the following relation:                

                               0|||| dfdf ,                       (3) 
where f  and d  are the 1-D vector representations of f and 
d, and “ ” and “| |” indicate the inner product and l2-norm 
operators, respectively. In a real image, since it is 
reasonable to assume uniform illumination over a local 
region, we propose the following likelihood model:  
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In (4), i denotes the pixel index; ,id is the 1-D vector 

representation of the p p image data centered at pixel i; ,if  

is the 1-D vector representation of the p p desired image 
data centered at pixel i;  fi,m and di,m are the mean values of 
the elements in ,if and ,id ; 1  is the 1-D vector whose 

dimension is the same as ,if  and whose elements are all 

equal to 1; w  is a weight that controls the influence of the 
likelihood information; and c is a constant specially 
designed for flat regions. In (4), we aim to reconstruct a 
well-illuminated image f whose local structures are similar 
to that of the observed image d. Since for flat regions  

1,, mii dd   is zero and )|( fdp  will always be 1 for any 

realization f, we add in the constant c to avoid the 
convergence into an erroneous reconstruction result.  
2.2. Prior model 
On the other hand, we assume that the prior probability p(f) 
in (2) satisfies the Markov random field (MRF) model. That 
is, we model p(f) as 
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where Ni is the collection of 8-connectivity neighbors of the 
pixel i; wp is a weigh that controls the influence of the prior 
information; and Vc(f) is a clique potential function 

depending on fi and fi’. Here we propose the following 
simple but effective definition for Vc(f): 
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where  fi and di are the desired intensity value and the 
original intensity value at pixel i, respectively; we and ws are 
positive weighting constants that depend on the 
enhancement strategy; and Th is a predefined threshold to 
distinguish noise variation from image detail. In (6), if the 
magnitude of the local gradient |di-di’| is smaller than Th, a 
smoothness prior  )( 2

'ii ff is applied for noise suppression. 
On the contrary, if the local gradient magnitude is larger 
than Th, an enhancement prior 2

' )( ii ff  is adopted to 
enlarge gradient magnitude.  
2.3. Bayesian restoration 
Based on the aforementioned likelihood model and prior 
model, we get the following optimization formula for image 
enhancement:  
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In (7), we aim to find an enhanced image f whose local 
structures are similar to the original one but with adjusted 
local gradients. By properly choose the setting of the 
controlling parameters, we may manipulate the gradients of 
the image to achieve improvement of image quality. 

3. ALGORITHM SIMPLIFICATION 
However, solving (7) is time-consuming. In this section, we 
present the way to alleviate the computational complexity of 
the proposed MAP approach. Here, we first reformulate the 
optimization problem (7) by assuming that the relationship 
between fi and di can be approximately expressed by an 
intensity transfer function T. Under such an assumption, the 
number of unknown variables in the optimization process 
can be greatly reduced. Besides, in order to efficiently 
obtain a transfer function T for image enhancement, we also 
propose a simplified procedure for the finding of T. More 
details about the simplification of the proposed MAP 
approach will be explained in the following sections.  
3.1. Reformulation of the optimization problem 
In order to reduce the computational complexity, we assume 
that the relationship between fi and di can be expressed by a 
monotonically increasing intensity transfer function T: 

)( ii dTf   and                               (8) 

0)(' idT .                                   (9) 
Strictly speaking, the transfer function T is a continuous 
function. However, in a typical 8-bit imaging system, what 
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we really care about is the output intensity values of T at 
each discrete input intensity level L. That is, we focus only 
on the finding of T(0), T(1), …,T(255). Under such a 
condition, the set of unknown variables are reduced to   
{T(0), T(1), …,T(255)} and the computational complexity of 
the optimization process can be greatly reduced. Moreover, 
the monotonically increasing constraint in (9) can be 
expressed as a system of linear inequality equations: 

}255.....,2,1{   where,0)1()( LLTLT .          (10) 
Combining (7) and (10), together with the discrete transfer 
function assumption, we can get the following constrained 
optimization formula:  
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subject to: and    ;255)(),(0 'ii dTdT          (12)  
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Here, 
Tid ,,

 is a 1-D vector representation of the p p 

transformed image data centered at pixel i; and 
Tmid ,,

is the 
mean of the elements in 

Tid ,,
. By solving (11)-(13), we can 

generate a discrete transfer function for enhancement. 
3.2. Efficient solver of the optimization problem 
In this subsection, we further introduce an efficient process 
to solve the constrained optimization problem defined in 
(11)-(13). The proposed procedure includes the followings 
steps:  

1. Let k = 0. 
Initialize the set T 

0 {T(0)0, T(1)0, …,T(255)0} as  
T(L)0 = L , for L = 0, 1, …, 255.  

2. Update Tk {T(0)k, T(1)k, …,T(255)k} by 

k

LT
C

LTLT kk
TT

T |)
)(
)(()()( 1  ,                    

for  L = 0, 1, …, 255.                                           
3. If the set Tk+1 violates the constraint in (12) or (13), we 

refine Tk+1 as follows: 
        3a. Calculate the gradient of T(L)k+1, which is defined 

as  
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3b. Project S(L) onto non-negative domain to satisfy  
the  constraint in (13). Here, we define  
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3c. Rescale the magnitude of S*(L) to satisfy the 
constraint in (12). Here, we define 
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3d. Get the refined Tk+1 by integrating S**(L): 
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In the proposed process, C(T) is the cost function defined in 
(11); is the step size; kLTC TTT |))(/)((  is the 

gradient of C(T) with respect to T(L); and T(L)k is the 
feasible solution obtained at the kth step. The iteration stops 
when the change between two successive steps is 
sufficiently small. In our procedure, the partial derivative of 
C(T) with respect to T(L), kLTC TTT |))(/)(( , can be 

obtained by 
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where    
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partial derivative of C(f) with respect to the pixel value fi. 
Due to the limited space, we omit the lengthy expression of 
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, which can be obtained via   straightforward 

deduction. On the other hand, Step 3b represents an 
Euclidean projection of S(L) onto the constraint set (13) [11]. 
This operation guarantees the monotonically increasing 
property of the transfer function T. Besides, the dynamic 
range constraint in (12) is restated as  

                . 0)1(   with  , 255))1()(( 
255

0
TLTLT

L

(15) 

The combination of Step 3c and Step 3d can be viewed as a 
projection of S*(L) onto the constraint set (15) while keeping 
the constraint (13) unchanged.  

4. SIMULATION RESULTS 
In our simulations, each RGB-valued test image is 
converted into the HSI color space. Only the I-component is 
processed for image enhancement. The values of p, w , wp, 
ws, we and th are set to be 3, 10, 2, 1, 0.5 and 6, respectively. 
Figures 1 and 2 show the results of the proposed method, in 
comparison with the HE method, the method in [3], the 
method in [10], and the MSR (Multi-Scale Retinex) method 
in [7]. We can find that the proposed method provides 
effective and natural-looking enhancement results. In 
comparison, the results provided by [3] are restricted due to 
the mean-preserving constraint; the results provided by [10] 
are polluted by some blocking artifacts, like the face region 
in Fig. 1(d); and the results provided by MSR [7] possess 
more apparent noise inference, like over the background 
region in Fig.2 (e). The MSR method may also cause 
undesired color shifts, like the color tone in Fig 1(e) and 2(e) 
becomes bluish after the enhancement. We also compare the 
Matlab implementation of the proposed MAP-based method 
(7) (Method-1) and the simplified method (11)-(13) 
(Method-2) defined in Section 3.2. Since Method-1 is 
basically a local processing, we can find that the 
enhancement results of Method-1 in Fig.1(f) and 2(f) are 
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somewhat better than that of Method-2 in Fig.1(g)-1(i) and 
Fig.2(g)-2(i)). However, since the local structure and local 
gradients have been taken into account in Method-2 to 
deduce the global intensity transfer function, the 
performance of Method-2 is still much better than the HE 
method. Moreover, if Method-2 is iteratively performed 
over the processed image, the enhancement performance 
gets improved. The result in Fig. 1(g) looks somewhat over-
enhanced. This is because in the first iteration the 
information mainly comes from the prior model due to the 
initial settings. As the iteration proceeds, the likelihood 
model contributes more and the enhancement result gets 
improved. We also list in Table 1 the comparison of the 
execution time between Method-1 and Method-2. This 
indicates the feasibility of Method-2 in real-time 
applications.  

5. CONCLUSION 
In this paper, we propose an effective Bayesian framework 
for image enhancement. The proposed posteriori 
distribution function merges both local structure and local 
gradient information into the enhancement process. With 
proper simplification, we deduce an efficient method to 
generate an intensity transfer function that may achieve 
similar enhancement performance with much lower 
computational complexity. Simulation results have 
demonstrated the feasibility and effectiveness of the 
simplified MAP-based method for image enhancement. 
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Table 1 Comparison of Execution time 
 Image in Fig. 1 Image in Fig.2 

Method-1  
(using fmincon in 

Matlab) 
657.14 seconds 2202.65 seconds 

Method-2 
(1 iteration) 0.93 seconds 0.97 seconds 

Method-2 
(3 iterations) 0.98 seconds 1.17 seconds 

Method-2 
(5 iterations) 1.02 seconds 1.24 seconds 

 

   
(a) Original image (b) HE (c) Method [3] 

   
(d) Method [10] (e) MSR [7] (f) Method-1 

   
(g) Method-2; 

1 iteration 
(h) Method-2; 

3 iterations 
(i) Method-2; 
   5 iterations 

Figure 1.  Comparison of enhancement results  

   
(a) Original image (b) HE (c) Method [3] 

   
(d) Method [10] (e) MSR [7] (f) Method-1 

   
(g) Method-2; 

  1 iteration 
(h) Method-2; 

3 iterations 
(i) Method-2; 

5 iterations 
Figure 2.   Comparison of enhancement results 
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