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This study developed a stochastic dynamic programming model to optimize airline deci-
sions regarding purchasing, leasing, or disposing of aircraft over time. Grey topological
models with Markov-chain were employed to forecast passenger traffic and capture the
randomness of the demand. The results show that severe demand fluctuations would drive
the airline to lease rather than to purchase its aircrafts. This would allow greater flexibility
in fleet management and allows for matching short-term variations in the demand. The
results of this study provide a useful reference for airlines in their replacement decision-
making procedure by taking into consideration the fluctuations in the market demand
and the status of the aircraft.
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1. Introduction

The ability to match fleet capacity to passenger demand is one of the crucial factors deciding the profitability of an airline.
The extent to which economic cycles influence air transportation demand is quite apparent. An economic recession usually
accompanies reduced air demand, resulting in insufficient revenue and surplus capacity that further burdens the airlines
with fleet idle costs, thereby lowering profits. On the other hand airlines also suffer a great profit loss under a quick economic
recovery, when the fleet capacity may not be able to expand in time to satisfy the high demands, due to the time lag between
ordering, receiving and operating of extra aircraft. Although aircraft replacement decisions can be made in advance in order
to match future demand, the fluctuating and cyclical nature of passenger demand complicates the fleet capacity manage-
ment problem.

Decisions about fleet capacity management are classified under airline strategic planning, which involves decisions such
as when to purchase, lease or dispose of aircraft. Fleet expansions and reductions are achieved through aircraft purchase,
lease or by disposing of the surplus airplanes. Leasing an airplane gives the airlines flexibility in capacity management. How-
ever, airlines must pay a risk premium to leasing companies for bearing the risks (Oum et al., 2000). Also, the lease cost for an
airplane may be very high when there is a high demand for them in the market. The scrapping and replacing of an existing
aircraft is generally motivated by the physical deterioration of the aircraft or the availability of newer, more efficient ones.
However, the decision to replace can be scheduled in advance to coincide when the airline market is forecasted to going into
downward trend, thereby reducing the operating and maintenance costs. How to schedule capacity expansion or reduction
decisions in advance is an essential and critically important task for the airlines, since the aircraft fleet must not only serve
current but also future demands. Although any particular replacement decision is necessarily influenced by the current
fleet composition as well as any possible future demand, it still has a long-term impact on the airline fleet. Under these
. All rights reserved.
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circumstances, accurate demand forecasts are required to enable the airlines to properly schedule their aircraft replacement
decisions in response to the fluctuating and cyclical demands.

Past studies have investigated the issues in the context of fleet capacity problems, such as decisions on aircraft type, flight
frequency (e.g. Kanafani and Ghobrial, 1982; Teodorovic and Krcmar-Nozic, 1989) and optimal combinations of owned and
leased capacity (Oum et al., 2000). Researchers have studied fleet management problems at operational and tactical levels in
addition to the strategic level (e.g. Powell and Carvalho, 1997; Jin and Kite-Powell, 2000). There is scant literature available
on replacement cost in relation to fleet capacity management over different time periods, or for revenue loss associated with
dynamic and cyclical demand.

In this study, the cost of operating an aircraft is dependent upon its status, as defined by type of aircraft, age and total
mileage traveled. The fleet is composed of different number and status of purchased and leased aircraft. On the demand side,
this study employs the Grey topological forecasting method combined with the Markov-chain model to forecast passenger
traffic and capture the random and cyclic demand. The decision periods are identified according to the pattern of the pas-
senger demand cycles over the length of the study period. For each decision period, the airline makes decisions not only
on whether and which aircraft to be replaced with a purchased or leased one, but also on whether or not to purchase or lease
an aircraft as an entirely new addition to the fleet.

This study aims to determine an optimal replacement schedule for an airline by considering the randomness in airline
operations and the cyclical demand through the use of stochastic dynamic programming. This study will also determine
the optimal candidate aircraft to be recruited or disposed of. The stochastic dynamic programming method is solved with
backward dynamic programming in which the impact of replacement decisions made at a specific period under uncertain
passenger demand on airline operation can be fully considered. This study first formulates airline cost function of a decision
period assuming independent decision-making results between periods. These costs include operating cost, replacement
cost and penalty cost. The operating cost is the cost related to the operation of the existing fleet. The replacement costs arise
from the replacement decisions made at a specific period. In addition, a penalty cost is introduced to reflect losses in revenue
associated with the difference between the forecasted and realized passenger demand. The expected cost function of the per-
iod is further formulated by taking into consideration the cost dependent relationship between decisions made in neighbor-
ing periods and the probabilities of different variations in the forecasted and realized passenger demand. Then, the stochastic
dynamic programming model for the replacement schedule can be formulated to determine the optimal replacement sche-
dule by minimizing the total expected cost of each period over the study period.

The remainder of this paper is organized as follows: Section 2 reviews the literature on fleet capacity and equipment
replacement problems. Section 3 formulates the cost functions based on a single period operation. Section 4 provides the
stochastic dynamic programming model for determining the optimal schedule of the replacement decisions. A numerical
example is provided in Section 5, to illustrate the application of the models and the effects of changes in key parameters
on the optimal solutions. In section 6, we make our concluding remarks.
2. Literature review

The fleet capacity of an airline is the total number of different types of aircraft purchased, leased and scrapped over a per-
iod of time. Relevant studies have focused mainly on choosing the right type of aircraft, route, and flight frequency using
deterministic mathematical programming methods (e.g. Kanafani and Ghobrial, 1982; Teodorovic and Krcmar-Nozic,
1989; Yan et al., 2006). Wei and Hansen (2007) considered the factors of competition in the decisions on both aircraft size
and service frequency. They examined the impact of these decisions on both the cost and the demand of air transportation.

Equipment replacement problems in industries with high capital assets have been widely discussed in industrial engi-
neering and operations research literature (e.g. Hartman, 2004, 1999; Rajagopalan, 1998; Jones et al., 1991). Hartman
(2001) examined the effect of probabilistic asset utilization on the replacement decision making process, using dynamic
programming. Powell and Carvalho (1997) dealt with the multi-commodity fleet problem and formulated the problem as
a dynamic control problem. Jin and Kite-Powell (2000) explored the replacement problem for a fleet of ships for a profit-
maximizing operator, assuming a homogenous fleet and uniform demand. Wu et al. (2005) addressed a rental fleet-sizing
problem in the truck-rental industry. They combined both operational and tactical decision levels, subject to uncertain
customer travel time and non-stationary customer demand. Oum et al. (2000) developed a model for the airlines to deter-
mine the optimal mix of leased and owned capacity, taking into consideration that the demand for air transportation is
uncertain and cyclical. The empirical results suggested that the optimal demand for the airlines would range between
40% and 60% of their total fleet. The financial status of the airline and the passenger demand are critical factors when it
comes to leased and owned capacity decisions. Although the uncertainty in demand has been included and investigated
in the literature, research regarding the schedules of the above decisions and their impacts on airline operation and the total
cost over a time horizon is scant. Furthermore, the cost dependent relationships between subsequent periods due to replace-
ment decisions made in previous periods have not been discussed yet.

When it comes to methods to forecast airline passenger demand, the multi-regression model and the time-series model
are the most widely employed. Horonjeff and McKelvey (1994) generalized past literature and classified airline passenger
traffic forecasting models into four categories: judgment prediction, trend projection and speculation, market analysis
and econometric modeling method. However, the number of available traffic observations has usually not been large enough
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due to a short accumulation time, particularly city-pair data (Horonjeff and McKelvey, 1994). Collecting a large number of
data to develop a conventional statistical forecasting model is difficult.

The Grey topological forecasting model was developed based on the Grey system theory (Deng, 1985, 1986), and is also
called the Grey pattern prediction or system trend prediction model. The Grey theory deals with systems with poor infor-
mation. Other related models have also been used in many applications (e.g. Deng and Guo, 1996; Deng, 1999; Hsu and
Wen, 1998). Hsu and Wen (1998) applied the Grey theory to forecast airline passenger traffic. They constructed an improved
GM(1, 1) time-series model and showed that the forecasted result from the Grey model is more accurate than those pre-
dicted by the regression model or the ARIMA model. However, there is no literature available that applies the Grey topolog-
ical model for forecasting airline passenger traffic influenced by the economic cycle. The advantage of employing the Grey
topological model lies not only in that it requires only little historic data to formulate a prediction model, it is also con-
structed to forecast system data with pattern development, making it suitable for pattern or economic cycle forecasting. This
makes the Grey topological forecasting model suitable for predicting airline passenger traffic, since international city-pair air
passenger data is usually not sufficient, and airline market traffic shows a pattern of being influenced by the economic cycle.
Passenger demand forecasts are inherently uncertain because of assumptions about random future demand. Any forecast
result involves a potential variance or bias.

In sum, few have combined the Grey topological forecasting model with the Markov-chain to investigate the demand
fluctuations and the stochastic demand realizations. This study integrates Grey topological forecasting model, Markov-chain
model and dynamic programming method to investigate the replacement schedule for an airline by considering the random-
ness in airline operations and the cyclical demand.

3. Cost function

Consider an airline that operates various routes, with R and r representing the set of these routes and a particular route,
respectively, r e R. Let T be the study period with n number of decision periods t, t = 0, 1, 2, . . . , n. The duration of the decision
periods may vary from each other and from different routes due to different economic cycles. Let’s suppose that there are
three possible future demand trends forecasted by the Grey topological forecasting model, upward, equal and downward,
respectively. Let w represent three possible fluctuations for the demand, with w = 1, 2 and 3. We let w = 1 represent a rising
demand; w = 2 a similar demand; and w = 3 a declining demand of the period, as compared with that of the previous period.
Let pt

w represent the probability of the demand fluctuation labeled as w at period t. It must be noted that pt
w P 0 andP3

w¼1pt
w ¼ 1. In addition, Ft

r represents the forecasted passenger demand on route r at period t. The values of pt
w and Ft

r

are then determined by the Grey topological forecasting method combined with the Markov chain and they are summarized
in Appendix A.

Let NBt
qym and NLt

qym be the number of aircraft associated with the replacement decisions made at period t, where super-
scripts B and L represent the aircraft being purchased and leased, while the subscripts q, y and m describe the status of
an aircraft as its type, remaining available years and mileage traveled, respectively. The remaining available years of an air-
craft, y, is determined by its number of years of maximum usage, Y, and the age of the aircraft, y0, such that y = Y � y0. Note
that NBt

qym and NLt
qym are both integers. The decision of whether the fleet being expanded or reduced in terms of aircraft being

recruited or disposed of, is judged by the value of NBt
qym and NLt

qym. When the variables NBt
qym and NLt

qym are positive, the airlines
will decide to expand their fleet capacity through purchasing and/or leasing, and the numbers of recruited aircraft with sta-
tus (q, y, m) are NBt

qym and NLt
qym, respectively. Otherwise, the optimal decision will result in a capacity reduction with negative

values for NBt
qym and NLt

qym. Since the total number of aircraft scrapped cannot be larger than the existing scale, the following
inequalities hold:
EBt
qym P jNBt

qymj

ELt
gym P jNLt

gymj

8<: if
NBt

qym < 0

NLt
gym < 0

ð1Þ
where EBt
qym and ELt

qym represent the total number of purchased and leased aircraft with status (q, y, m) at period t, respectively,
in the airline fleet. Let St be the set of all aircraft operated by the airline during period t,
St � fEBt

qym; E
Lt
qym;8q; y;mg; EBt

qym; E
Lt
qym 2 Iþ [ f0g. Let dt�1 denote the set of aircraft recruited or disposed of at period (t � 1)

and these aircraft will be operated at period t, dt�1 � fNBðt�1Þ
qym ;NLðt�1Þ

qym ;8q; y;mg;NBt
qym;N

Lt
qym 2 I and t = 1, 2, . . . , n. Then, the fleet

operated at period t, St, can be specifically formulated as follows:
St ¼ St�1 þ dt�1 t ¼ 1;2; . . . ;n ð2aÞ

EBt
qym ¼ EBðt�1Þ

qym þ NBðt�1Þ
qym t ¼ 1;2; . . . ; n ð2bÞ

ELt
qym ¼ ELðt�1Þ

qym þ NLðt�1Þ
qym t ¼ 1;2; . . . ; n ð2cÞ
which show that the fleet capacity and composition of period t are the result of the replacement decisions made at period
(t�1).
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The total fleet capacity of an airline can change according to the different numbers of seats offered by different aircraft
types. Let Qq represent the capacity of aircraft type q and let Ktr

qym be the total flight frequencies on route r offered by the
aircraft with status (q, y, m) during period t. Then the total capacity, i.e. the number of seats on route r during period t, At

r

can be formulated as
At
r ¼

X
8q

X
8y

X
8m

dtr
qymQ qðEBtr

qym þ ELtr
qymÞK

tr
qym 8r ð3Þ
where dtr
qym is an indicator variable; and dtr

qym ¼ 1 for an aircraft with status (q, y, m) during period t serving route r; otherwise,
dtr

qym ¼ 0. Moreover, the inequality
P
8q

P
8y

P
8mdtr

qym P 1 8r must hold to ensure every route is being served by at least one
aircraft. In practice, the airline may set an ideal load factor on each route, and then the minimized fleet capacity can be ob-
tained. The realized fleet capacities on the routes, depending on the average load factor, must be equal to or larger than the
forecasted demand of decision period t, which yields
ltrA
t
r P Ft

r 8r ð4Þ
where lt
r denotes the average load factor on route r during period t. From Eq. (3), Eq. (4) can be further revised asP

8q

P
8y

P
8mdr

qQqðEBt
qym þ ELt

qymÞK
tr
qym P Ft

r

ltr
. The fact that not all aircraft can be assigned to a flight due to factors such as main-

tenance and turnover accounts, should be considered in the aircraft utilization model. Let Br
q denote the block time of type q

aircraft on route r, including the time spent in various aircraft trip modes, and let ut
qym represent the maximum possible uti-

lization of the aircraft with status (q, y, m) during period t, respectively. A maximum possible utilization also implies a max-
imum possible daily use of the aircraft for a certain period of time (Kane, 1990; Teodorovic, 1983). For all aircraft with
different status, the total aircraft utilization must be less than or equal to the maximum possible utilization. This study uses
the relation of Teodorovic et al. (1994), such as

P
8r

P
8q

P
8y

P
8mBr

qKtr
qym 6

P
8q

P
8y

P
8mðE

Bt
qym þ ELt

qymÞut
qym. For a specific aircraft

type with status (q, y, m), the inequality
P
8rB

r
qKtr

qym 6 ut
qym must hold. Any surplus capacity from an aircraft not reaching the

maximum possible operation time can be relocated to routes with an aircraft of insufficient capacity. Therefore, an aircraft
might be shared on two routes.

The direct operating costs are all those expenses associated with operating a fleet of aircraft, including depreciation costs,
maintenance costs and flying costs. The depreciation costs reflect the reduction in the value of the existing fleet and can be
calculated based on the purchase or lease price of the aircraft. In some ways, the depreciation costs depend on the market
demand when the aircraft is originally purchased or leased. For instance, when most airlines forecast an upward trend in
future demand, the original purchase or lease cost will be high, resulting in a high depreciation cost. However, since the total
lease expense decreases with the total duration of the lease period, the foregoing can be neglected when the leased period is
contracted for a long time, thereby yielding a constant average lease cost. Let Pqym represent the average purchase cost for an
aircraft with status (q, y, m) and Rtd

qym denote the average lease cost for an aircraft with status (q, y, m) with a total leased per-
iod d at period t, respectively. Then, the depreciation cost related to the existing fleet of period t can be formulated as
X

8q

X
8y

X
8m

EBt
qymPqymXt

g þ
X
8q

X
8y

X
8m

ELt
qymRtd

qym 8t ð5Þ
where Xt
g denotes the average remaining resale ratio of the original purchase price with an average yearly interest rate g of

period t.
Maintenance cost can be further divided into fixed maintenance cost and variable maintenance cost. Fixed maintenance

costs includes maintenance overhead including the maintenance of the building and equipment as well as land rental, none
of which vary with the number of aircraft. On the other hand, variable maintenance costs change with the status of the air-
craft, and the number of aircraft. Generally speaking, the running and preventive maintenance costs increase with the age of
the aircraft and the mileage traveled. In addition, there are economies of scale that allow airlines with many aircraft of a
similar type in their fleet to operate more efficiently than those with several different types. The maintenance cost of period
t can then be expressed as
Mt þ
X
8q

X
8y

X
8m

Vt
qymðE

Bt
qym þ ELt

qymÞ ð6Þ
where Mt represents the fixed maintenance cost (overhead) of period t and Vt
qym denotes the variable maintenance cost of the

aircraft with status (q, y, m) during period t. The flying cost related to the total flight frequencies on all routes is
X
8r

X
8q

X
8y

X
8m

bt
qrd

r
qKtr

qym ð7Þ
where bt
qr represents the average flying cost of an aircraft of type q on route r during period t. The total direct operating cost

of the airline for operating the existing fleet during period t, Ct
D, can be formulated as
Ct
D ¼

X
8q

X
8y

X
8m

ðEBt
qymPqymXt

g þ ELt
qymRtd

qym þ Vt
qymðE

Bt
qym þ ELt

qymÞÞ þ
X
8r

X
8q

X
8y

X
8m

bt
qrd

r
qKtr

qym þMt ð8Þ
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The total indirect operating cost as a result of serving passengers at period t, Ct
I can be expressed as follows:
Ct
I ¼

X
8r

Ft
rH

r ð9Þ
where Hr denotes the average indirect cost per passenger on route r. Summing up the total direct and indirect operating costs
in Eqs. (8) and (9) yields the total operating cost of the airline during period t, Ct.

When disposing of a purchased aircraft, the airline will receive the salvage value of the aircraft, which is its remaining
value after depreciation. The salvage value is inversely related to the age and mileage traveled. When terminating the con-
tract of a leased aircraft, the airline has to pay a penalty for returning the aircraft earlier than stipulated in the lease contract.
The longer the remaining lease period, the higher the penalty will be. Moreover, both salvage value and penalty cost as a
result of fleet reduction are dependent upon the demand for aircraft in the market. If most airlines forecast a boom in de-
mand in the near future, the tendency towards expanding fleet capacity will be high, resulting in a higher price for aircraft,
i.e. lower salvage cost borne by the airline. Conversely, it costs the airline a lot of time and effort to dispose of their excess
capacity when the demand is low, resulting in an increased loss of salvage value. Let Dt

qym and Zte
qym represent the salvage

value and penalty cost of an aircraft with status (q, y, m) and with a remaining lease period e at period t, respectively. Let
Pt

qym and Yt
qym denote the original purchase price and total depreciation cost of an aircraft with status (q, y, m) at period t,

respectively. The airline suffers a loss if it disposes of an aircraft when Dt
qym < Pt

qym � Yt
qym, while on the other hand

Dt
qym > Pt

qym � Yqym would imply a revenue gain. The total replacement cost for disposing of an aircraft during period t can
be expressed as

P
8q

P
8y

P
8mjN

Bt
qymjðP

t
qym � Yt

qym � Dt
qymÞ, where jNBt

qymj is the number of purchased aircraft to be disposed of.
On the other hand, the penalty cost for disposing of an aircraft during period t can be expressed asP
8q

P
8y

P
8mjN

Lt
qymjZ

t
qym;e, where jNLt

qymj is the number of aircraft whose lease will be terminated. Taking into consideration both
salvage and penalty costs, the replacement cost during period t with demand fluctuations labeled w can be expressed as
Ut ¼
X
8q

X
8y

X
8m

aBt
qymjN

Bt
qymjðP

t
qym � Yt

qym � Dt
qymÞ þ

X
8q

X
8y

X
8m

bLt
qymjN

Lt
qymjZ

te
qym ð10Þ
Indicators aBt
qym and bLt

qym are both binary variables, and their relationship with the replacement decisions are as follows:
aBt
qym ¼ 1

bLt
gym ¼ 1

(
if

NBt
qym < 0

NLt
gym < 0

else
aBt

qym ¼ 0

bLt
gym ¼ 0

ð11Þ
In the study, the decisions on whether or not, and which aircraft should be disposed of depend mainly on the sum of oper-
ating cost, replacement cost and penalty cost. However, an airline that has safety as its highest priority should immediately
dispose of or terminate the lease of any aircraft once its age and mileage traveled has reached the safety threshold. The uti-
lization of an aircraft is only influential if the two factors of remaining years and mileage traveled, are within the safety
parameters. The relationship between the optimal candidate aircraft to be disposed of and its remaining years as well as
its mileage traveled can be expressed as
Wt
qym ¼

0
1

�
if

min Aq

y ;
Gq

m

n o
6 1

min Aq

y ;
Gq

m

n o
> 1

ð12Þ
where Wt
qym is an indicator variable; and where Wt

qym ¼ 0 refers to the aircraft with status (q, y, m) being disposed of at per-
iod t, otherwise, Wt

qym ¼ 1. And, Aq and Gq represent, respectively, the maximum years of expected service and the maximum
allowable mileage to be traveled by a type q aircraft.

The actual demand may be underestimated, overestimated or be correct, regardless of the demand fluctuation labeled as
w, since label w represents the cyclical demand fluctuation. Let f t

r be the actual passenger demand on route r during period t.
If the actual demand is less than the forecasted result, i.e. f t

r � Ft
r < 0, then the airline bears an increased total indirect oper-

ating cost for serving their passengers due to the unsold seats. The punishment associated with an overestimation is included
in Eq. (9). On the contrary, there will be unsatisfied passengers for f t

r � Ft
r P 0 due to insufficient fleet capacity as determined

in accordance with the forecasted demand. Let It
r represent the average revenue loss associated with one unit of insufficient

seats on route r during period t, which can be estimated by the average fare on the route. The penalty cost function due to the
inaccurate forecast on route r at period t, ‘t, can then be formulated as
‘t
r ¼ ðf t

r � Ft
rÞI

t
r ð13Þ
The total penalty cost of the airline during period t is Lt ¼
P
8r‘

t
r . The total cost during period t, Qt, given by the operating

cost, the replacement cost and the penalty cost can be formulated as follows:
Q t ¼ Ct þ Ut þ Lt ð14Þ
Note that Qt is independent of the fleet operated in previous period and depends on the fleet being operated and the deci-
sions made in period t.
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4. Stochastic dynamic programming model

Section 3 formulates the cost function of the airline for a single period. From Eqs. (2a)–(2c), the fleet operated during per-
iod t is the result of the replacement decisions made at period (t � 1) and in addition, the fleet capacity during period t is
determined based on the demand forecast at period (t � 1) towards period t. That is to say, the replacement decisions made
and the demand forecast executed at period (t � 1) have a certain level of involvement with the operating cost, Ct, and the
penalty cost, Lt, of period t. Similarly, the demand forecast result for period (t + 1) served as the reference of the replacement
decisions made at period t, which resulted in the replacement cost, Ut in Eq. (14). These cost dependent relationships be-
tween decisions made at neighboring periods are explained as ‘‘recursions”, and are depicted graphically in Fig. 1 by taking
into consideration the demand fluctuation. The circular node represents the set of aircraft operated during period t, St, while
the square node is the set of aircraft recruited or disposed of at period t when the demand of period (t + 1) is forecasted as
label w, dw

t , respectively. As shown in Fig. 1, the resulting fleet St is the result of the decision made during period (t � 1) with
respect to different demand fluctuations labeled w.

For a given period t, the airline makes the replacement decisions in accordance with the forecasted result for period
(t + 1), including the three possible demand trends, the demand of period (t + 1) forecasted to be upward, equal and down-
ward compared with the demand of period t. However, the realization of the demand might fall short of the forecasted result.
In other words, the total cost of period (t + 1), given by the sum of operating, replacement and penalty costs, is directly af-
fected by the decision made at period t and the forecasted demand for period (t + 1).

As for dynamic programming, the stage and the state in this study refer to decision period t and operating fleet St, respec-
tively. Let Ct(St, dt) represent the total cost from period t forward, where dt denotes the replacement decision. Given St and t,
let dt

� denote any value of dt that minimizes Ct(St, dt), and let Ct
�ðS

tÞ be the corresponding minimum value of Ct(St, dt). Then,
Ct
�ðS

tÞ ¼min
dt

CtðSt; dtÞ ¼ CtðSt ;dt
�Þ ð15Þ
In order to consider the stochastic feature of future demand even further, the minimum expected sum from period t for-
ward, Ct(St, dt), given that the fleet and replacement decision in period t are St and dt, can be formulated as follows:
CtðSt;dtÞ ¼
Xw¼3

w¼1

pt
w½Q

t þ Ctþ1
� ðS

tþ1Þ� ð16Þ
where Ctþ1
� ðS

tþ1Þ ¼mindtþ1 Ctþ1ðStþ1; dtþ1Þ is the recursive relationship that identifies the optimal decision for period (t + 1),
given that the optimal decision for period (t + 2) has been made.

The objective for the aircraft replacement schedule problem is to determine p = [d1, d2, . . . , dt, . . . , dT] so as to
0
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The recursive relationship for the problem is Ctþ1
� ðS

tþ1Þ ¼mindtþ1 Ctþ1ðStþ1; dtþ1Þ. The optimal decision at period t is found
by solving by backwards induction starting at t = n and using Eq. (16) at each step to find the optimal decision for the periods.
The replacement decisions include when, how many, and how many different types of aircraft are to be recruited through
lease or purchase, as well as when and which aircraft, leased and purchased, with various statuses are to be disposed of.
Moreover, the duration of each period may be different for different city-pairs due to variations in the length and trend
of the economic cycle. The fleet operating on the routes, depending on the average load factor, must be equal or larger than
the forecasted demand of the period. Only two routes with identical duration and number of periods can share an aircraft.

5. Example

This study further presents a case study to demonstrate applications of the models, based on available data from EVA Air-
ways (EVA). For the sake of simplification, nine cities in seven countries were selected from all the cities currently being
served by EVA. The eight city-pairs (routes) are Taipei (TPE)–Los Angeles (LAX), –Seattle (SEA), –San Francisco (SFO), –Tokyo
(TYO), –Hong Kong (HKG), –Singapore (SIN), –Bangkok (BKK) and –Sydney (SYD). There are 15 wide-body aircraft including 6
Boeing 747–400 combi, 4 Boeing 767–300, 4 Boeing 747–400 and 1 MD11 flying on these routes. Tables 1 and 2 list the basic
data of the fleet and the aircraft in the fleet, respectively.

In the present study, the forecast results from the Grey topological forecasting model represent the demands on the
routes carried by all airlines on the market. This study further estimates the demand carried by EVA based on their market
share. According to Teodorovic and Krcmar-Nozic (1989), the market share of airline i on route r, MSir can be estimated by
MSir ¼
Ka

irP
8i

Ka
ir

ð18Þ
ta of the fleet. Source: http://www.evaair.com/html/b2c/english/

aft, r Number Average capacities
(numbers of seat)

Average age (year) Number of purchased
and leased aircrafts
(purchased/leased)

–400 combi 6 272 7.5 0/6
–300 4 221 10.1 0/4
–400 4 363 6 0/4
1 1 271 7.3 1/0

Table 2
Basic data of aircrafts in the fleet. Source: http://www.evaair.com/html/b2c/english/

Leased aircraft Average lease cost
per month (US$)

Contracted lease period

B767–300 600,000 1998/07–2004/03
B767–300 600,000 1998/08–2004/04
B767–300 550,000 1997/12–2002/12
B767–300 550,000 1997/12–2002/12
B747–400 combi 1,300,000 2000/10–2008/04
B747–400 combi 1,300,000 2000/10–2007/10
B747–400 combi 1,100,000 1997/12–2002/12
B747–400 combi 1,200,000 1997/12–2002/12
B747–400 combi 1,130,000 1999/07–2007/01
B747–400 combi 1,040,000 1999/08–2006/08
B747–400 1,125,000 1997/12–2002/12
B747–400 1,290,000 1997/12–2002/12
B747–400 1,400,000 1998/04–2005/04
B747–400 1,200,000 1998/05–2005/11

Purchased
aircraft

Purchase
date

Total purchase cost
(US$)

Salvage value at the end of 2000
(US$)

MD11 1994/08 3,345,313,186 2,220,935,549

http://www.evaair.com/html/b2c/english/
http://www.evaair.com/html/b2c/english/


48 C.-I. Hsu et al. / Transportation Research Part E 47 (2011) 41–60
where Kir represents the flight frequencies of airline i on route r and a is an empirically obtained constant which value is
approximately 1.2 (Teodorovic and Krcmar-Nozic, 1989). Table 3 describes the supply parameters for the routes as related
to aircraft type, frequencies, block time and fares. The parameter values related to the market shares and the load factors on
the different routes are also shown in Table 3, where MSr represents the market share of EVA. For the sake of simplification,
the impacts of the newly developed aircraft types such as Boeing 787 and Airbus A380 on the optimal replacement decisions
are not discussed in the current case study.

The study period in this study totals eight years, from 2002 to 2009. Table 4 shows the optimal replacement decisions
made in the first period, including the duration of the decision periods and the fleet compositions.

As shown in Table 4, the airline tends to simplify the fleet compositions to three types of aircraft, such that each of the
routes is served by only one type of aircraft, although with different numbers of aircraft. Through this strategy, operating and
maintenance costs are decreased due to the realization of economies of scale. Moreover, as shown in Table 4, during the sec-
ond period the aircraft serving these 8 routes are all leased. The reason for this is that the severe demand fluctuation encour-
ages airlines to choose lease arrangements for their aircraft. This allows them to manage their fleet size and composition, in
as flexible a manner as possible to match the demand. It should be noted that there is a time lag between purchase/lease and
the delivery of these aircraft. Hence, after having determined the fleet compositions for each period using our proposed mod-
el, airlines can then estimate the time lag using past experience, and include that in their plan for purchasing, leasing or dis-
posing of aircraft thereby satisfying the demand for aircraft in different periods.

Although the replacement decisions made for each period are affected by the forecasted demand, the total expected cost
of the airline is increased with each inaccurate forecasted result. Fig. 2 shows the cost of route TPE–BKK with different fluc-
tuating demands for different periods, where the first and second number in the parentheses represent label w and the prob-
ability, pt

w, respectively. From left to right, the costs represent the total expected cost over the study period, and the expected
cost of the first and second decision periods, respectively.

As shown in Fig. 2, there are three demand forecast results, but with different probabilities. For each decision period, there
is a minimized cost when the forecasted demand is totally matched to the realized one, i.e. w = 2, and while there are
Table 3
Parameter values related to routes. Source: http://www.evaair.com/html/b2c/english/

Route, r Aircraft type, q Weekly flight frequencies
(one-direction)

Block time
(hours)

Fare (US$/person-
trip)

Market share, MSr

(%)
Load factor, ltr
(%)

TPE–LAX B747–400, B747–400 combi 14 12.67 820 100 80.69
TPE–SEA B747–400 combi 7 11.67 882 18.94 76.03
TPE–SFO B747–400 combi 10 12.00 882 30.68 78.90
TPE–TYO B767–300 21 3.08 423 5.62 77.43
TPE–HKG B747–400 combi, B767–300 26 1.75 341 23.70 73.90
TPE–SIN B747–400 combi 7 4.33 417 22 67
TPE–BKK B747–400, MD11 25 3.58 402 12.7 70.98
TPE–SYD B767–300 2 9.25 817 77.09 35.99

Table 4
The optimal purchase and replacement decisions made in the first period.

The first period, t = 1 The second period, t = 2

Route, r Fleet composition Purchase and replacement decisions Fleet composition

Duration Aircraft type Number Aircraft type Number Duration Aircraft type Number

TPE–LAX 2002–2005 B747–400 3 (leased) – – 2005–2009 B747–400 4 (leased)
TPE–SEA 2002–2004 B747–400 combi 2 (leased) – – 2004–2007 B747–400 combi 2 (leased)
TPE–SFO 2002–2005 B747–400 combi 2 (leased) B747–400 combi 1 (leasing) 2005–2009 B747–400 combi1 3 (leased)
TPE–TYO 2002–2005 B767–300 2 (leased) B767–300 1 (leasing) 2005–2007 B767–3002 3 (leased)
TPE–HKG 2002–2005 B767–300 1 (leased) B767–300 1 (disposing of) 2005–2007 B747–400 combi 1 (leased)

B747–400 combi 1 (leased)
TPE–SIN 2002–2006 B747–400 combi 1 (leased) – – 2006–2009 B747–400 combi 1 (leased)
TPE–BKK 2002–2004 MD11 1 (purchased) MD11 1 (disposing of) 2004–2007 B747–400 2 (leased)

B747–400 1 (leased) B747–400 1 (leasing)
TPE–SYD 2002–2005 B767–300 1 (leased) – – 2005–2009 B767–300 2 (leased)

Total B747–400 combi 6 (leased) B747–400 combi 1 (leasing) 747–400 combi 7 (leased)
B747–400 4 (leased) B747–400 1 (leasing) B747–400 5 (leased)
767–300 4 (leased) B767–300 1 (leasing) B767–300 4 (leased)
MD11 1 (purchased) MD11 1 (disposing of)

B767–300 1 (disposing of)

1 8% of the capacities from the B747–400 combi are shared with route TPE–LAX.
2 11% of the capacities from the B767–300 are shared with route TPE–SYD.

http://www.evaair.com/html/b2c/english/
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Fig. 2. The costs of route TPE–BKK with different fluctuated demand at different periods.
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increased costs with either an overestimated or an underestimated demand, i.e. w = 1 and w = 3. However, the impact of the
forecast results on total cost rely not only on the difference between forecasted and realized demand, but also on the prob-
ability that the forecast results in fact occur. As shown in Fig. 2, the high probability that the forecasts are an increasing or
decreasing demand, p1

w¼1 and p1
w¼3, respectively, combined with the increased costs leads to a relatively high expected cost

over the study period.
In the present study, the airline serves the routes entirely with leased aircraft because that way the airline is exempt from

the high depreciation cost and only needs to pay the lease cost. However, high maintenance cost places a heavy financial
burden on the airline when the aircraft become older and have high mileage. When that happens, the airline may prefer
to purchase rather than lease these older aircraft since the flexibility of leasing may not compensate for the high mainte-
nance cost. Next we perform a sensitivity analysis to investigate how changes in the age of the aircraft and the average lease
cost per year affect the decisions to purchase or lease. Fig. 3 shows the threshold of the purchase and lease decision by com-
paring various lease costs and the age of the B747–400 combi aircraft.

Compared to just leasing or terminating the lease of an aircraft, the purchase or the disposal of an aircraft requires a much
longer time. Hence, airlines tend to lease aircraft rather than purchasing them in order to satisfy short-term fluctuations in
demand. To simplify the problem, the time until receiving a new aircraft that has been purchased or leased is neglected in
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this study because aircraft replacement decisions are made earlier in order to match future demand. The benefits of leasing
include savings in depreciation cost and greater flexibility in matching the demand in the short run. Moreover, the older the
aircraft the less the benefits of leasing, and the higher the costs of leasing. As seen in Fig. 3, the threshold of leasing an aircraft
decreases with the increase in the age of the aircraft. Nevertheless, leasing is an optimal alternative if there is a substantial
decrease in lease cost. Also, the effect of lease cost on purchase and lease decisions is marginal for B747–400 combi aircraft if
they are older than five years, as shown in Fig. 3. The value of an aircraft depreciates exponentially from the moment the
aircraft has been manufactured and is being operated. In other words, the purchase cost of the aircraft decreases with its
age, and so does the depreciation cost. In addition, a low salvage price is of no consequence to the airline once the aircraft
is scrapped because it is being replaced or simply because of fleet reduction. When the airline expands the fleet capacity by
adding a used but not aged aircraft, these advantages explain why an airline may prefer to purchase rather than lease. The
results provide a reference for the airline in their decision making process of replacement decisions in accordance with the
aircraft age and in negotiating with the leasing company for the lease price of different aircraft.

The maintenance cost depends on the status of the aircraft, including type, age and mileage. In this study, the cost of oper-
ating an aircraft is dependent on its status, as defined by type, age and total mileage traveled. Given the passenger demand,
an aircraft should be disposed of and replaced with a new aircraft when the maintenance requirements become excessive.
On the other hand, all things being equal, it pays to keep an aircraft if it is in good condition, i.e. low maintenance cost. Fig. 4
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shows the threshold of whether or not to dispose of an older aircraft and replace it with a new one by comparing the main-
tenance cost and the age of the B747–400 combi aircraft. The left-hand and right-hand sides of the solid line in Fig. 4 rep-
resent the decisions regarding disposing of the existing aircraft and replacing with a new one, and do-nothing, respectively.

As shown in Fig. 4, the threshold of the replacement increased with the increased age of the aircraft. As an aircraft be-
comes older, the annual depreciation decreases with the accumulated depreciation being spread over an increasing number
of service years. Hence, airlines are more inclined to retain older aircraft despite their high maintenance cost. As shown in
Fig. 4, the threshold for a replacement increases with the age of the aircraft. If the maintenance cost of an aircraft does not
exceed the threshold, the airline should retain the aircraft; while if the maintenance cost keeps increasing, the tendency to
dispose of the aircraft will also increase. With other words, if the maintenance cost of the aircraft does not exceed the thresh-
old, the result suggests that the airline keeps the aircraft. However, the tendency towards disposing of the aircraft is high
once the aircraft has a high maintenance cost.

In this study, the total cost of the airline is affected by disturbance of demand fluctuations. An overestimated demand
leads to excess capacity, while an underestimated demand results in insufficient capacity. Variables pt

w¼1; p
t
w¼2 and pt

w¼3 rep-
resent, respectively the probabilities that the following occur, the demand of period t is fluctuated to be increasing, the same
and decreasing, as compared with that of period (t � 1). Fig. 5 shows the total expected cost of the routes under different
occurrence of forecast results. The X-axis in Fig. 5 represents different criteria regarding the combinations of the three prob-
abilities, and from left to right, the X-axis indicates (1) the original probabilities from the Grey topological model and the
Markov-chain; (2) three forecast results exist evenly, i.e. pt

w¼1 ¼ pt
w¼2 ¼ pt

w¼3 ¼ 0:33; (3) the future demand is exclusively
increasing, i.e. pt

w¼1 ¼ 1; (4) the future demand is exclusively decreasing, i.e. pt
w¼3 ¼ 1; and (5) the future demand is the same

with that of the previous period, i.e. pt
w¼2 ¼ 1.

As shown in Fig. 5, there is a similar cost pattern among the routes, where the future demand is the same with that of the
previous period shows the lowest, i.e. label (5) in X-axis while the demand being exclusively increasing and decreasing are
the highest. The total cost when the three forecast results exist equally is moderate between all criteria. The results demon-
strate the importance of stochastic future demand. Accurate demand forecasts will enable the airline not only to schedule
aircraft replacement decisions in response to fluctuating and cyclical demands, but will also achieve an overall minimized
cost. The forecasted demand of the route is calculated based on the market share of that route. The market share is positively
affected by the flight frequencies provided. An increased flight frequency leads to a higher market share and a higher pas-
senger demand carried by the airline. Supposing EVA intends to increase its market share of route TPE–HKG from 5.62% up to
30%, by increasing its flight frequency. Table 5 shows the optimal replacement decisions of route TPE–HKG with market
shares of 5.62% and 30%, respectively.

Due to the limited utilization of the aircraft, the total number of aircraft should be increased with the increased total flight
frequencies. As shown in Table 5, the fleet should obtain 3 additional leased B747–400 combi if the airline expects an in-
crease in market share from 5.62% to 30%. The additional costs, such as the costs related to the aircraft and the costs orig-
inated from the passengers, the total expected cost is substantially increased as shown in Table 5.

In this study, the realized fleet capacities, i.e. the numbers of seats on the routes are influenced by the load factor, which is
determined based on historical data. Assume the service performance remains the same under different settings of the load
factor. As Eq. (4) shows, under a constant demand, a larger value of the load factor leads to a lower capacity requirement,
thus a lower number of aircraft and lower total expected cost. Supposing EVA decides to increase the average load factor
of route TPE–SYD from 71% to 80%. Table 6 shows the optimal replacement decisions of route TPE–SYD with the average load
factors of 71% and 80%, respectively.
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Table 5
The optimal purchase and replacement decisions of route TPE–HKG with market shares of 5.62% and 30%.

The first period, t = 1 The second period, t = 2 Total expected cost (US$)

Market share Fleet composition Purchase and replacement decisions Fleet composition

Aircraft type Number Aircraft type Number Aircraft type Number

5.62% B767–300 1 (leased) B767–300 1 (disposing of) B747–400 combi 1 (leased) 3,460,846,000
B747–400 combi 1 (leased)

30% B767–300 1 (leased) B767–300 1 (disposing of) B747–400 combi 4 (leased) 6,453,704,000
B747–400 combi 1 (leased) B747–400 combi 3 (leasing)

Table 6
The optimal purchase and replacement decisions of route TPE–SYD with the average load factors of 71% and 80%.

The first period, t = 1 The second period, t = 2 Total expected cost (US$)

Average load factor (%) Fleet composition Purchase and replacement decisions Fleet composition

Aircraft type Number Aircraft type Number Aircraft type Number

71 B767–300 1 (leased) – – B767–300a 2 (leased) 450,932,700
80 B767–300 1 (leased) – – B767–300 1 (leased) 433,195,100

a One of which is shared with route TPE–TYO.
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Because the load factor is as low as 71%, route TPE–SYD requires 2 leased B767–300 to provide the services. One of these
aircraft is shared by route TPE–TYO with 89% of its capacity. As Table 6 shows, there is only 1 leased B767–300 required to
serve the route under the increased load factor, i.e. 80%. Because there are fewer aircraft being operated, the total expected
cost is correspondingly reduced.
6. Conclusions

Past studies have investigated the equipment replacement problems in the field of industrial engineering and operations.
Other studies have discussed fleet management problems at both operational and tactic levels, in addition to the strategic
level. However, there is scant literature available on replacement cost in relation to fleet capacity management over different
time periods, or for revenue loss associated with dynamic and cyclical demand. Therefore, the contribution of this paper to
the literature is to fill in the above gap. Moreover, the decision on whether to expand a fleet by purchasing new aircraft or
lease them, or to reduce a fleet through disposal of the purchased or leased aircraft are also investigated.

The application of our proposed dynamic programming model is illustrated with a case study involving EVA airlines. It
was found that EVA tends to simplify its fleet composition by using a single type of aircraft for each route served. To max-
imize capacity utilization and reduce any related costs, some aircraft are assigned to two routes. In addition, severe demand
fluctuations have driven EVA to lease rather than purchase their aircraft. This is allowing EVA greater flexibility in fleet man-
agement and in matching short-term variations in demand. In addition, the total cost for a particular decision period can be
minimized by providing a perfect match of the forecasted demand with the actual demand, instead of overestimated or
underestimated forecasts that will lead to increased costs. However, the impact of forecasted results for total cost varies
not only with the difference between forecasted and actual demands, but also on the probability that a demand forecast will
occur. In other words, although an accurate demand forecast avoids a penalty cost, the total cost will still be high if the pre-
cise estimation occurs only rarely. Hence, the total cost for the airline can only be minimized if all the impacts of the demand
fluctuations and cyclic demands on the airline’s fleet management are fully captured.

As a leased aircraft becomes older, the benefits of leasing will decline further, resulting in a smaller tendency towards
leasing the aircraft. Leasing an older aircraft is an optimal alternative only if there is a substantial reduction in lease cost.
In addition, the threshold of the replacement decision increases with the increase in age of the aircraft. In other words, if
the increased maintenance cost of an older aircraft does not exceed the threshold, the aircraft should be retained and vice
versa. The results of this study provide a useful reference for airlines in their airplane replacement decision-making taking
into account the fluctuations in market demand and the status of the aircraft.

The study period in the case study is set to be eight years, and involves only replacement scheduling for a short run. Fu-
ture studies can extend the study period to explore medium- and long-term replacement scheduling. A limitation of our
study is the fact that it considers only passenger demand while neglecting the demand for air cargo, which makes up a very
important portion of the demand for air transport. To get an overall picture of the actual operation of an airline it is worth
exploring the replacement scheduling considering both passenger and air cargo demands. The case study in this research is
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focused on a single airline, and the effect of strategic alliances with other airlines has been neglected. It would be interesting
to examine if airlines that have formed strategic alliances have a different approach to optimizing their replacement sched-
uling. This study employs the Grey topological forecasting method combined with the Markov-chain model to forecast pas-
senger traffic and to capture the random and cyclic demands. Nevertheless, air passenger demand is not only affected by the
economic situation but also by the threat of terrorism, airplane crashes, and the development of new routes and markets. The
impact of all these issues must be taken into account when assessing the fluctuation in passenger demand when deciding on
a replacement schedule. The computational difficulties are of the most challenges when solving larger scale-instances of the
problem. To make backwards computing possible, at each step the decision functions must be included in the computations
and stored until the end. Considerable storage capacity is therefore required, because these functions are, as a rule, obtained
only in tabular form (Bronshtein and Semendyayev, 1985).
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Appendix A. Grey topological model and Markov-chain

A.1. Grey topological model

The steps of constructing a Grey topological model are described as follows:

1. Plot a series of X(0) in two-dimensional X, Y-plane. Every X in X(0) has its own Y-axis coordinate, while a Y-axis coordinate
may be mapped to several X-axis coordinates. Let k represent the order number of the X-axis coordinates sharing the
same Y-axis coordinate and x(0)(k) represent the X-axis coordinates mapped by that Y-axis coordinate. Plot the curve,
X(0), in X, Y-plane, using [k, x(0)(k)].

2. According to the sequence x(0)(k), find the maximum value Max X(0) and minimum value min X(0). Select many reference
values fi at Y-axis, i = 1, 2, . . . , m. Note that the domain of the reference value is min Xð0Þ 6 fi 6 MaxXð0Þ; i ¼ 1;2; . . . ;m.

3. Find the corresponding Y-axis coordinate of fi, as fi : fXð0Þg ! fmtð0Þi g. Let mtð0Þi ðkÞ represent the k th tangent point of the
horizontal line, fi passing curve X(0). Then, all X-axis coordinates can form a set of P : fðmtð0Þi ðkÞ; fiÞg !
fmtð0Þi ðkÞg; k ¼ 1;2; . . . ;ni and mtð0Þi ¼ fmtð0Þi ð1Þ;mtð0Þi ð2Þ; . . . ;mtð0Þi ðniÞg.

4. Every fixed reference value should map to a coordinate set W ð0Þ
i , composed by i number of X-axis coordinates, it’s

mtð0Þi ðkÞ ¼W ð0Þ
i ðkÞ, and Pðmtð0Þi ðkÞ; fiÞ ¼W ð0Þ

i ðkÞ, therefore W ð0Þ
i ¼ fW

ð0Þ
i ð1Þ;W

ð0Þ
i ð2Þ; . . . ;W ð0Þ

i ðniÞg. And, W ð0Þ
i represents a

set of X-axis coordinates, which map to a fixed reference value fi in the Y-axis.
5. Perform an accumulated generating operation for set W ð0Þ

i , and obtain a new generating series W ð1Þ
i , it’s AGO : W ð0Þ

i !W ð1Þ
i .

6. Construct a GM(1, 1) model for each new generating series W ð1Þ
i , represented as GM : W ð1Þ

i ! cW ð1Þ
i .

Perform an inverse accumulated generating operation to each new GM model and obtain the predicting model
IAGO : cW ð1Þ

i ! cW ð0Þ
i . The whole procedure can be represented as follows:
GM � AGO � P � fiðfXð0ÞgÞ ¼ cW ð1Þ
i ðA1Þ

IAGO � GM � AGO � P � fiðfXð0ÞgÞ ¼ cW ð0Þ
i ðA2Þ
7. Every fixed reference value can develop a particular forecasting model as shown in step 6. According to these forecasting
models, find the X-axis coordinate corresponding to the fixed reference value fi in the Y-axis for i = 1, 2, . . . , m, then these
X-axis coordinates are
cW ð0Þ
1 ðn1 þ 1Þ;cW ð0Þ

2 ðn2 þ 1Þ; . . . ;cW ð0Þ
m ðnm þ 1Þ ðA3Þ
The forecasting value cW ð0Þ
i ðni þ 1Þ represents the distance from the origin to the (ni + 1)th data in the X-axis. The coordi-

nate is represented as ðcW ð0Þ
i ðni þ 1Þ; fiÞ in a two-dimensional plane. By linking these coordinates as a curve and the Topolog-

ical forecasting curve, bX ð0Þ can be obtained
bX ð0Þ ¼ fðcW ð0Þ
i ðni þ 1Þ; fiÞji ¼ 1;2; . . . ;mg ðA4Þ
A.2. Markov-chain

The Markov-chain theory is widely applied to predict a dynamic random system. A Markov-chain describes the states
of a system at successive times. At these times the system may have changed from the state it was in the moment before
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to another or remained in the same state. The changes of state are called transitions. The Markov property means that the
conditional probability distribution of the state in the future, given the state of the process currently and in the past, de-
pends only on its current state and not on its state in the past. A n-step Markov-chain is composed of a set of n-state and
one set of transition probability. There is only one state at one moment, and any further changes in the system can be
determined by the transition probability in each state at different moments. The transition probability of each state rep-
resents the level of effects incorporating every random factor. Therefore the Markov-chain is suitable for forecasting ran-
dom series.

This study combines the Grey topological and Markov-chain models for forecasting airline passenger demand with re-
spect to different economical situations. Previous literature has forecasted gross national product (GNP) based on Grey pre-
dicting GM (1, 1) combined with the Markov-chain model, and the result was shown to be more accurate than GM(1, 1)
alone. The implementation steps of the Markov-chain model are listed below.

A.2.1. Categorize the states
Categorize every moment in the Grey topological model into k states. Let the result of the Grey topological forecasting

model, cW ð0Þ
i in moment i be the central point of every state. Determine a proper percentage P% of cW ð0Þ

i to be the upper
and lower bounds of every moment in each state. Then, the boundary of the jth state in moment i, Eij can be represented
as
Eij 2 ½Aij;Bij�; j ¼ 1;2; . . . ; k ðA5Þ
where Aij and Bij represent the upper and lower bounds of the jth state in moment i, respectively. Linking the boundary of the
same states in every moment results in a function curve which is nearly parallel with the curve of the Grey topological fore-
casting model. The zone between every two adjacent curves form a state zone, so we can determine the state in which every
Grey topological predicting result will be at each moment. Classify those predicting results which are less than Ai1 as state
one, those which are larger than Bik as state k. The values of Aij, Bij, and k can be decided by research subject and the amount
of original data.

A.2.2. Establish a matrix of state transition probability
The state transition probability can be formulated as
PðmÞab ¼
MðmÞ

ab

Ma
ðA6Þ
where PðmÞab represents the probability of transition from state a to state b after m steps, MðmÞ
ab represents the frequency of tran-

sition from state a to state b after m steps, Ma is the frequency of state a. Due to the unknown transition from the last state to
its next state of the original series, the data of the last (m � 1) steps will be eliminated when calculating Ma. The state tran-
sition probability matrix, R(m) can be written as
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Fig. 6. Passenger demand of the routes from 1993 to 2001.
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RðmÞ ¼

PðmÞ11 ; P
ðmÞ
12 ; . . . ; PðmÞ1k

PðmÞ21 ; P
ðmÞ
22 ; . . . ; PðmÞ2k

..

.

PðmÞk1 ; P
ðmÞ
k2 ; . . . ; PðmÞkk

2666664

3777775 ðA7Þ
where PðmÞab represents the probability of transition from state a to state b after m steps. Considering m = 1, if the forecasted
data falls in the ath state, then check the ath row of matrix R(1). If MaxbPð1Þab ¼ PaL, then state L is the most likely state that the
series transfer to at the next moment.
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Fig. 7. Forecasted yearly demand of the routes.
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A.2.3. Compose a transition probability matrix table
Determine a number of r as the number of moments from the past to the forecasted moment. From the nearest to furthest

moments, the transition steps from the past moments to the forecasted moment are 1, 2, . . . , r. For all transition probability
matrices of the steps, extract the vector rows from the transition probability matrix mapped by the beginning state and com-
pose those as a new transition probability matrix. By summing up all the vectors in the column, the state of the forecasted
moment can be obtained as the state with the maximum value.
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A.2.4. Calibrate the forecasted values
After obtaining the transition state of the future moment of the series by step 3 the upper and lower bounds of the state

can be further determined. The forecasted value will be the average of the upper and lower bounds.
This study further applies the Grey topological model and the Markov-chain model formulated above to forecast the fu-

ture passenger traffic of the routes in the case study. The implementation steps are described as follows:

Step 1. Collect historical passenger traffic, construct a passenger demand forecasting model using the Grey topological
model. Compare the forecasted result with the actual data to verify its accuracy. Moreover, determine the decision peri-
ods for the routes according to the economic cycle.
Table 7
Comparison between forecasted demand based on Grey Topological model and the actual data.

Route Average yearly demand from 1993 to 2001 Average difference (%)

Actual Forecasted

TPE–LAX 994,253 989,203 0.47
TPE–SEA 139,766 141,034 5.51
TPE–SFO 547,829 557,762 3.64
TPE–TYO 1,727,317 1,718,283 0.26
TPE–HKG 4,816,613 4,798,122 0.36
TPE–SIN 876,060 883,171 1.05
TPE–BKK 1,241,295 1,218,530 0.95
TPE–SYD 134,629 139,271 4.05

Table 8
The boundaries of states and the state of the forecasted demand on route TPE–BKK.

Year Actual demand Forecasted demand A1 A2 = B1 A3 = B2 B3 State

1993 598,107 602,000 566,361 589,960 614,040 638,601 2
1994 1,060,692 1,100,000 1,034,880 1,078,000 1,122,000 1,166,880 1
1995 1,215,534 1,164,000 1,095,091 1,140,720 1,187,280 1,234,771 3
1996 1,178,071 1,188,000 1,117,670 1,164,240 1,211,760 1,260,230 2
1997 1,147,768 1,213,333 1,141,504 1,189,066 1,237,600 1,287,104 1
1998 1,201,234 1,230,000 1,157,184 1,205,400 1,254,600 1,304,784 1
1999 1,363,266 1,346,667 1,266,944 1,319,733 1,373,600 1,428,544 2
2000 1,626,603 1,550,769 1,458,963 1,519,753 1,581,784 1,645,056 3
2001 1,780,378 1,572,000 1,478,937 1,540,560 1,603,440 1,667,577 3

Table 9
Transition probability matrix of route TPE–BKK.

Original state State after transition

1 2 3

R1 1 0.33 0.33 0.33
2 0.67 0.00 0.33
3 0.00 0.50 0.50

R2 1 0.00 0.67 0.33
2 0.33 0.00 0.67
3 1.00 0.00 0.00

R3 1 0.33 0.00 0.67
2 0.00 1.00 0.00
3 1.00 0.00 0.00

R4 1 0.50 0.00 0.50
2 0.50 0.00 0.50
3 1.00 1.00 0.00

R5 1 0.00 1.00 0.00
2 0.50 0.00 0.50
3 0.00 0.00 1.00

R6 1 0.00 0.00 1.00
2 0.00 1.00 0.00
3 0.00 0.00 1.00



Table 10
The state transition probability matrix from year 2002–2009 on route TPE–BKK.

Year State Step State

1 2 3

Predicted year: 2002
1996 2 6 0.00 1.00 0.00
1997 1 5 0.00 1.00 0.00
1998 1 4 0.50 0.00 0.50
1999 2 3 0.00 1.00 0.00
2000 3 2 1.00 0.00 0.00
2001 3 1 0.00 0.50 0.50

Total 1.50 3.50 1.00

Predicted year: 2003
1997 1 6 0.00 0.00 1.00
1998 1 5 0.00 1.00 0.00
1999 2 4 0.50 0.00 0.50
2000 3 3 1.00 0.00 0.00
2001 3 2 1.00 0.00 0.00
2002 2 1 0.67 0.00 0.33

Total 3.17 1.00 1.83

Predicted year: 2004
1998 1 6 0.00 0.00 1.00
1999 2 5 0.50 0.00 0.50
2000 3 4 0.00 1.00 0.00
2001 3 3 1.00 0.00 0.00
2002 2 2 0.33 0.00 0.67
2003 1 1 0.33 0.33 0.33

Total 2.17 1.33 2.50

Predicted year: 2005
1999 2 6 0.00 1.00 0.00
2000 3 5 0.00 0.00 1.00
2001 3 4 0.00 1.00 0.00
2002 2 3 0.00 1.00 0.00
2003 1 2 0.00 0.67 0.33
2004 3 1 0.00 0.50 0.50

Total 0.00 4.17 1.83

Predicted year: 2006
2000 3 6 0.00 0.00 1.00
2001 3 5 0.00 0.00 1.00
2002 2 4 0.50 0.00 0.50
2003 1 3 0.33 0.00 0.67
2004 3 2 1.00 0.00 0.00
2005 2 1 0.67 0.00 0.33

Total 2.50 0.00 3.50

Predicted year: 2007
2001 3 6 0.00 0.00 1.00
2002 2 5 0.50 0.00 0.50
2003 1 4 0.50 0.00 0.50
2004 3 3 1.00 0.00 0.00
2005 2 2 0.33 0.00 0.67
2006 3 1 0.00 0.50 0.50

Total 2.33 0.50 3.17

Predicted year: 2008
2002 2 6 0.00 1.00 0.00
2003 1 5 0.00 1.00 0.00
2004 3 4 0.00 1.00 0.00
2005 2 3 0.00 1.00 0.00
2006 3 2 1.00 0.00 0.00
2007 3 1 0.00 0.50 0.50

Total 1.00 4.50 0.50
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Table 10 (continued)

Year State Step State

1 2 3

Predicted year: 2009
2003 1 6 0.00 0.00 1.00
2004 3 5 0.00 0.00 1.00
2005 2 4 0.50 0.00 0.50
2006 3 3 1.00 0.00 0.00
2007 3 2 1.00 0.00 0.00
2008 2 1 0.67 0.00 0.33

Total 3.17 0.00 2.83
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Step 2. Combine the Grey topological model with the Markov-chain model, to estimate the state transition probability
matrix between the decision periods. Then, the probability of the forecasted passenger traffic fluctuation status for every
period can be obtained from this state transition probability matrix. The obtained probability will be the probability of
the forecasted passenger demand fluctuation combinations of two adjacent decision periods in the case study.

Fig. 6 shows the passenger traffic data from June, 1993 to December, 2001 of the eight routes in the case study. As shown
in Fig. 6, although the total passenger traffic of these eight routes differs from each other, there is an upward trend that began
in 1993, reached a peak in 1995 or 1996, and started to fall starting in 1997 and 1998. After 1999, the passenger traffic in-
creased again. The results show that the airline passenger traffic indeed exhibits an economic cycle trend.

Fig. 7 represents the forecasted passenger demand of the routes from January, 2002 to December, 2009, showing the
duration of the decision periods. Table 7 calibrates the forecast results by comparing the forecasted results of the Grey topo-
logical model with the actual data from June, 1993 to December, 2001.

As shown in Table 7, the maximum difference between the forecasted demand from the Grey topological forecasting
model and the actual data is less than 6%. Moreover, the average differences on routes TPE–LAX, TPE–HKG, TPE–TYO and
TPE–BKK are less than 1%. It can be concluded that overall the result from the Grey topological forecasting model is accurate.
This study further combines the Grey topological forecasting results with the Markov-chain model, to investigate the de-
mand fluctuations and to determine the probability of the three demand realizations.

Let the forecasted results from the Grey topological model be the middle value and be denoted by X. The boundary values
of the three states, i.e. upward fluctuating demand, a demand similar to that of the previous period and a decreasing demand,
can be determined according to the middle value, X and a difference rate of 4%. The boundary values of these three states, A1,
A2, A3, and A4 can be expressed as follows:
A1 ¼ A2 � ð1� 0:04Þ ðA8aÞ
A2 ¼ X � ð1� 0:04=2Þ ðA8bÞ
A3 ¼ X � ð1þ 0:04=2Þ ðA8cÞ
A4 ¼ A3 � ð1þ 0:04Þ ðA8dÞ
For the demand fluctuation labeled as w = 1, 2 and 3, the future demand may lie between A1 and A2, A2 and A3, and A3 and
A4 and the realized demand is 1

2 (A1 + A2), 1
2 (A2 + A3) and 1

2 (A3 + A4), respectively. Take route TPE–BKK as an example. Table
8 shows the boundaries of the states and the results of the state of the forecasted demand. The transition probability of route
TPE–BKK can be further calculated based on Eqs. (A6) and (A7) and is shown in Table 9.

As shown in Table 9, R1, R2, R3, R4 and R5 represent the steps required for state i transferring to state j. For example, the
probability of transition from state 1 to state 2 by 1 step is 0.33. Table 10 shows the state transition probability matrix from
2002 to 2009 on route TPE–BKK.
Table 11
Transition probability of states of route TPE–BKK.

Year (State) State

1 2 3

2002 (2) 0.27 0.47 0.27
2003 (1) 0.50 0.25 0.25
2004 (1) 0.63 0.06 0.31
2005 (1) 0.56 0.13 0.31
2006 (3) 0.30 0.15 0.55
2007 (3) 0.14 0.31 0.56
2008 (2) 0.18 0.51 0.31
2009 (2) 0.27 0.47 0.27
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Take year 2002 as an example. As shown in Table 10, the largest total probability of state 2 of 3.5 shows that there is every
likelihood that the forecasted demand is precise without fluctuation. The probabilities of the demand being overestimated,
precisely estimated and underestimated can be further calculated as 1.5/(1.5 + 3.5 + 1.0), 3.5/(1.5 + 3.5 + 1.0), and 1.0/
(1.5 + 3.5 + 1.0). Then, the probability of the transition from the current state of the year to different states can be restated
as shown in Table 11.
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Glossary of symbols

Notation: Definition
pt

w: the probability of demand fluctuation labeled w at period t
Ft

r : the forecasted passenger demand on route r at period t
f t
r : the actual passenger demand on route r at period t

NBt
qym: the number of purchased aircraft with status (q, y, m) associated with the replacement decisions made at period t

NLt
qym: the number of leased aircraft with status (q, y, m) associated with the replacement decisions made at period t

EBt
qym: the total number of purchased aircraft with status (q, y, m) at period t in the airline fleet

ELt
qym: the total number of leased aircraft with status (q, y, m) at period t in the airline fleet

Qq: the capacity of a q type aircraft
Ktr

qym: the total flight frequencies on route r offered by aircraft with status (q, y, m) during period t
dtr

qym: an indicator variable denoting whether the aircraft with status (q, y, m) during period t is serving route r or not
Br

q: the block time of a q type aircraft on route r
ut

qym: the maximum possible operating time of an aircraft with status (q, y, m) during period t
Pt

qym: the average purchase cost for an aircraft with status (q, y, m) at period t
Xt

g : the average remaining resale ratio of the original purchase price with an average annual interest rate g in period t
Rtd

qym: the average lease cost for an aircraft with status (q, y, m) with a total leased period d in period t
Vt

qym: the variable maintenance cost of the aircraft with status (q, y, m) during period t
Mt: the fixed maintenance cost (overhead) of period t
bt

qr : the average flying cost of an aircraft of type q on route r during period t
Ot

D: the total direct operating cost for the airline for operating the existing fleet during period t
Ot

I : the total indirect operating cost as a result of serving passengers at period t
Hr: the average indirect cost per passenger on route r
Ct: the total operating cost of the airline during period t
At

qym: the maximum usage of the aircraft with status (q, y, m) at period t
Gt

qym: the maximum allowable mileage traveled of an aircraft with status (q, y, m) at period t
Dt

qym: the salvage cost of an aircraft with status (q, y, m) during period t
Zte

qym: the penalty cost of an aircraft with status (q, y, m) and with a remaining lease period e during period t
Ut: the replacement cost during period t
Wt

qym: the indicator variable representing whether the aircraft with status (q, y, m) should be disposed of at period t
It
r : the average revenue loss associated with one unit of insufficient seats on route r during period t
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