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In this article, a robust adaptive self-structuring fuzzy control (RASFC) scheme for the uncertain or ill-defined
nonlinear, nonaffine systems is proposed. The RASFC scheme is composed of a robust adaptive controller and a
self-structuring fuzzy controller. In the self-structuring fuzzy controller design, a novel self-structuring fuzzy
system (SFS) is used to approximate the unknown plant nonlinearity, and the SFS can automatically grow and
prune fuzzy rules to realise a compact fuzzy rule base. The robust adaptive controller is designed to achieve an L2

tracking performance to stabilise the closed-loop system. This L2 tracking performance can provide a clear
expression of tracking error in terms of the sum of lumped uncertainty and external disturbance, which has not
been shown in previous works. Finally, five examples are presented to show that the proposed RASFC scheme
can achieve favourable tracking performance, yet heavy computational burden is relieved.

Keywords: adaptive control; robust control; fuzzy system; structure adaptation

1. Introduction

A fuzzy system (FS), which adopts human experience
and human decision-making behaviour, has been widely
recognised as a powerful tool in industrial control,
commercial prediction, image processing applications,
etc. (Terano, Asai, and Sugeno 1992; Castro 1995;
Gil-Lafuente 2005). To build an FS, two different
phases are to be carried out. The first is the structuring
phase, which is used to construct the structure of the FS,
and the second is the parameter phase, which is used to
determine the parameters of the FS. Constructing the
structure of the FS is mainly to determine the optimal
partition of fuzzy sets and the minimum number of
fuzzy rules to achieve favourable performance. The
adjustments of the parameters involve the tuning of the
consequences of the fuzzy rules, the centres, widths,
slopes of membership functions, etc. Traditionally,
these two phases are performed by human experts or
experienced operators. However, consulting experts
may be difficult and expert knowledge may be either
unavailable or not helpful enough to achieve favourable
performance. Having achieved many practical suc-
cesses, fuzzy control (FC) using an FS has still not
been viewed as rigorous because it lacks a systematic
design procedure to determine proper membership
functions with fuzzy rules, and the way to guarantee
the global stability. Adaptive fuzzy control (AFC) has
been extensively studied to tackle this problem (Wang

1994; Lin and Hsu 2002; Li and Tong 2003; Chatterjee

and Watanabe 2005; Hsu and Lin 2005; Labiod,

Boucherit, and Guerra 2005). The AFC can approxi-

mate the unknown system dynamics or ideal controller

through learning in the Lyapunov sense, and thus the

global stability can be guaranteed.
Although the control performances Wang (1994),

Lin and Hsu (2002), Li and Tong (2003), Chatterjee

and Watanabe (2005), Hsu and Lin (2005), Labiod

et al. (2005) are acceptable, the structures of the FSs

need to be predefined by a time-consuming trial-

and-error process. Generally speaking, a more favour-

able performance requires more fuzzy rules, but this

may lead to heavy computational burden. On the

contrary, an FS with small fuzzy rule base may result

in a poor approximation.
To solve the problem of structure determination,

many researchers have focused their efforts on the

self-structuring or self-evolving FSs, which have both

parameter and structure adaptations. Some valuable

results are obtained (Shann and Fu 1995; Pal and Pal

1999; Angelov and Filev 2004; Lin and Lin 2004; Meng

and Chang 2004; Lin and Chen 2005; Juang and Tsao

2008). In Lin and Chen (2005), the structure learning

phase aims at minimising the number of rules

generated and the number of fuzzy sets in the universe

of discourse. A structure learning algorithm is

proposed based on fuzzy similarity measure and
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fuzzy rules can be created from the training data. In
Meng and Chang (2004), the structure identification is
accomplished automatically based only on Q-learning,
which is the most important category of reinforcement
learning algorithm. The basic fuzzy rules are used as
starting points to reduce the number of iterations used
to find an optimal fuzzy controller. In Lin and Lin
(2004), the firing strength of a rule is used as the degree
measure to judge whether or not to simultaneously
generate a new membership function for every input
variable (or equivalently, to generate a new rule).
Then, if the newly generated membership of the first
input variable fails to pass the similarity checking, all
new membership functions are abandoned. In Shann
and Fu (1995), parameter and structure learning are
performed sequentially for the proposed fuzzy neural
network. That is, the fuzzy neural network is initially
constructed to contain all possible fuzzy rules, and then
after the parameter training is done, a pruning process
is performed to delete redundant rules for obtaining
a concise fuzzy rule base. Note that the initially
constructed rule base contains incompatible rules, i.e.
the rules with the same antecedent but different
consequents. The rule pruning strategy is that if the
centroid of a set of incompatible rules is in the support
of a consequent (an output fuzzy set), the correspond-
ing fuzzy rule is retained and all other incompatible
rules are pruned. In Pal and Pal (1999), the authors
modified the fuzzy neural network proposed in (Shann
and Fu 1995) and proposed a rule pruning scheme that
always produces a rule set without incompatible rules.
In Juang and Tsao (2008), a self-evolving interval
type-2 fuzzy neural network (SEIT2FNN) is proposed.
An online clustering method is used to generate
Takagi–Sugeno–Kang type fuzzy rules that flexibly
partition the input space. A fuzzy set reduction method
is proposed to avoid highly overlapping fuzzy sets. A
gradient descent algorithm and rule-ordered Kalman
filter algorithm are used to tune the antecedent and
consequent parts of the fuzzy rules, respectively. In
Angelov and Filev (2004), an evolving Takagi–Sugino
(ETS) model is proposed. The potential of a new data
point is used for the rule generation criterion and
shown to be more reasonable than the criterion based
on the distance to a rule centre because the spatial
information and history are not ignored. Both
SEIT2FNN and ETS can start learning without a
priori information and only one data sample. However,
although some achievements have been made in these
works, there are still some problems that need to be
solved. In Lin and Chen (2005), the performance of the
proposed neural FS is acceptable, but the back
propagation learning algorithm cannot guarantee the
global stability. In Meng and Chang (2004), during the
training process, prior knowledge of fuzzy rules is

needed to keep safe operation of the controlled system
with fast convergence speed of parameters. In Lin and
Lin (2004), the simplified similarity checking to reduce
the complexity of the algorithm may weaken the power
of the checking itself. In (Shann and Fu 1995), because
the connection weights of the network are unrestricted
in sign, incompatible rules may be retained even when
the rule pruning process is performed. This is contra-
dictory to the basic design philosophy of FSs. Besides,
the proposed sequential learning scheme is suitable for
offline instead of online operation. In Pal and Pal
(1999), although the fuzzy neural network in Shann
and Fu (1995) is modified to guarantee a compatible
rule base, the searching space for the connection
weights is restricted to Rþ. This may harm the
capability of the proposed network to lower the value
of residual square error. In Juang and Tsao (2008), the
consequent part parameters are determined by experi-
ence rather than by theoretical analysis. In addition,
although the proposed fuzzy set reduction method to
avoid the generation of highly overlapping fuzzy sets
reduces the number of parameters, it does not remark-
ably release the computational burden. The common
drawback in Shann and Fu (1995), Pal and Pal (1999),
Angelov and Filev (2004), Lin and Lin (2004), Meng
and Chang (2004), Lin and Chen (2005) and Juang and
Tsao (2008) is that the structuring learning phase
conducts either rule generation or rule reduction,
instead of both.

Recently, control system design for nonlinear
systems has attracted a lot of research interest. Many
remarkable results have been obtained, including
feedback linearisation (Isidori 1989), adaptive back-
stepping design (Krstic, Kanellakopoulos, and
Kokotovic 1995), neural network control (Lewis,
Jagannathan, and Yesildirek 1999), fuzzy logic control
(Wang 1994) and fuzzy neural control (Leu, Lee, and
Wang, 1999). Most of these works deal with the
control problems of affine nonlinear systems, i.e.
systems characterised by inputs appearing linearly in
the system state equation. However, relatively few
results are available for nonaffine, nonlinear systems
where the control input appears in a nonlinear fashion
(Ge and Wang 2002). In practice, there are many
systems falling into this category, such as Van der Pol
oscillator (Wang and Krstic 2000; Pourhiet, Correge,
and Caruana 2003; Mahmoud and Farghaly 2004),
magnetic servo levitation systems (Gutierrez and Ro
2005), aircraft flight control systems (Hunt and Meyer
1997) and biochemical process (Krstic,
Kanellakopoulos, and Kokotovic 1992). Comparing
to affine nonlinear systems, nonaffine, nonlinear
systems are more complex and general, and we can
say that affine systems can be viewed as a special kind
of nonaffine systems (Ge and Zhang 2003). Thus, the
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control system design for nonaffine, nonlinear systems
is not an easy task.

Reviewing some literature on nonaffine, nonlinear
system control, we find some problems left to be
addressed. In Labiod and Guerra (2007) and Park and
Kim (2005), although system stability is guaranteed in
the Lyapunov sense in Labiod and Guerra (2007), the
unmeasurable term in the adaptive law needs to be
approximated which will make the system stability
questionable. Even if the system stability can be
guaranteed, the tracking error is only ultimately
uniformly bounded in Labiod and Guerra (2007). In
Park and Kim (2005), the tracking error is uniformly
asymptotically stable, but the robust controller to
compensate the external disturbance causes the chat-
tering of control input. Although the authors Park and
Kim (2005) suggested some remedies to reduce the
chattering, the tracking error may not be uniformly
asymptotically stable due to these remedies.

To fix the drawbacks mentioned above, this article
first proposes a novel SFS, which is used to approx-
imate the unknown plant nonlinearity. The SFS
considers both the growing and the pruning of fuzzy
rules. In fact, it is possible that some rules are less or
never fired throughout the operation of FS. These
redundant rules, which make no meaningful contribu-
tions to the system output, are insignificant and thus
should be removed to ease computational load.
Second, a robust adaptive self-structuring fuzzy con-
trol (RASFC) scheme is proposed for a single-input
and single-output (SISO) nonlinear, nonaffine system.
Robust design is needed to guarantee the robust
performance under of the RASFC scheme under
system uncertainties and external disturbances. As
well known, linear matrix inequality (LMI) techniques
are widely used for robust design from 1990s (Boyd,
Gahoui, Feron, and Balakrishnan 1994; Da, Cheng,
and Tang 2000; Ramos, Alberto, and Bretas 2003).
However, considering the complexity of LMI-based
robust design procedure, in this article, a simple but
powerful robust adaptive controller is merged into the
control law to achieve L2 tracking performance with a
designed attenuation level. This L2 tracking perfor-
mance can provide a clear expression of tracking error
in terms of the sum of lumped uncertainty and external
disturbance, which has not been shown in previous
works (Park and Kim 2005; Labiod and Guerra 2007).
Moreover, all control parameters of the RASFC
system are tuned online by the adaptive laws derived
in the Lyapunov sense to achieve favourable fuzzy
approximation. Finally, five examples are presented.
For the purpose of interpreting the novel
self-structuring algorithm, approximations of
unknown nonlinear functions are performed in
Examples 1 and 2 to illustrate the rule generation

and pruning capabilities of the SFS. In Examples 3–5,

tracking controls are provided to verify the effective-

ness of the proposed RASFC scheme. To highlight the

power of the proposed SFS, an adaptive FS with fixed

number of rules and an SFS which can only automat-

ically grow rules are also adopted in the Examples 3–5

for comparisons. Simulation results show that the

proposed RASFC can achieve favourable tracking

performance with a compact fuzzy rule base profited

from the self-structuring algorithm. Comparing adap-

tive FS with fixed number of rules and SFS which can

only grow rules, the proposed SFS with both rule

growing and pruning capabilities can relieve computa-

tional load, yet maintain good tracking performance.

2. Problem formulation

Consider a SISO nonaffine, nonlinear system

xðnÞ ¼ f ðx, uÞ þ d, ð1Þ

where x ¼ ½x _x � � � xðn�1Þ�T is the measurable state

vector of the system on a domain :x � Rn,

f ðx, uÞ : :x � R! R is the smooth unknown non-

linear function, u is the control input and d is the

bounded external disturbance. Here, the single output

is x. It should be noted that f(x, u) is an implicit

function with respect to u. Feedback linearisation is

performed by rewriting (1) as

xðnÞ ¼ cuþ Dðx, uÞ þ d, ð2Þ

where c is a constant to be designed and

Dðx, uÞ ¼ f ðx, uÞ � cu. Here, we assume that

@f ðx, uÞ=@u is nonzero for all ðx, uÞ 2 :x � R with a

known sign. Without losing generality, we further

assume that (Calise, Hovakimyan, and Idan 2001;

Hovakimyan Nardi, Calise, and Kim 2002; Park and

Kim 2005)

@f ðx, uÞ

@u
4 0 ð3Þ

for all f ðx, uÞ 2 :x � R. Note that for the nonaffine

systems with property @f ðx, uÞ@u5 0, the control

scheme can be easily defined with minor modifications

discussed in Section 4. The control objective is to

develop a control scheme for the nonaffine, nonlinear

system (1) so that the output trajectory x can track a

given trajectory xc closely. The tracking error is

defined as

e ¼ xc � x: ð4Þ

If the system dynamics and the external disturbance

are well-known, the ideal feedback controller can be

International Journal of Systems Science 151
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determined as

uid ¼
1

c
½ulc � d� Dðx, uÞ�, ð5Þ

where

ulc ¼ xðnÞc þ kTe ð6Þ

with e ¼ ½e _e � � � eðn�1Þ�T and k ¼ ½kn kn�1 � � � k1�
T.

Applying (5) to (2) and using (4) yields the following

error dynamics

eðnÞ þ k1e
ðn�1Þ þ � � � þ kne ¼ 0: ð7Þ

If ki, i¼ 1, 2, . . . , n are chosen so that all roots of the

polynomial HðsÞD sn þ k1s
n�1 þ � � � þ kn lie strictly in

the open left half of the complex plane, then

limt!1 eðtÞ ¼ 0 can be implied for any initial condi-

tions. However, since D(x, u) and the external distur-

bance d may be unknown or perturbed, the ideal

feedback controller uid in (5) cannot be implemented.

Thus, to achieve the control objective, an

SFS is designed to estimate the system uncertainty

D(x, u) in (2).

3. Self-structuring fuzzy system

3.1. Description of fuzzy system

FSs are attractive candidates for the systems that are

structurally difficult to model due to inherent non-

linearity and model complexities. Typically, an FS

includes four well-known stages: a fuzzifier, a rule

base, an inference engine and a defuzzifier. The rule

base is the collection of fuzzy rules which characterise

the simple input–output relation of the system. Note

that the self-structuring algorithm introduced in this

section is applicable to a multi-input and multi-output

(MIMO) FS. However, without losing generality and

to simplify the notation, a MISO FS is adopted to

describe the algorithm. A MISO FS can be expressed

as (Terano et al. 1992):

Rulei1,i2,...,im : IF X1 is F
i1
1 and X2 is F

i2
2 and . . . and

Xm is Fim
m . . . THEN y is �i1,i2,...,im ð8Þ

where Xj, j¼ 1, 2, . . . ,m are input variables; y is output

variable; �i1,i2,...,im is the crisp singleton consequent; and

F
ij
j is the fuzzy sets characterised by the fuzzy

membership function F
ij
j ðXj Þ, with ij 2 1, 2, . . . ,Nj

� �
being the ordinal number of membership functions of

Xj. Define a set : which collects all possible fuzzy rules

: ¼ Rulei1,i2,...,im ji1 ¼ 1, 2, . . . ,N1; i2 ¼ 1, 2, . . . ,N2;
�
im ¼ 1, 2, . . . ,Nmg ð9Þ

The output of the FS can be expressed as (Terano

et al. 1992):

y ¼

P
Rulei1,i2,...,im2:sub

�i1,i2,...,im

hQm
j¼1 �F

ij
j

ðXj Þ

i
P

Rulei1,i2,...,im2:sub

hQm
j¼1 �F

ij
j

ðXj Þ

i , ð10Þ

where :sub � : is the rule base. From (10), the output

of the FS can be represented as a linear combination of

fuzzy basis functions defined as

�i1,i2,...,im ¼

Qm
j¼1 �F

ij
j

ðXj ÞP
Rulei1,i2,...,im2:sub

hQm
j¼1 �F

ij
j

ðXj Þ

i ,
ij 2 1, 2, . . . ,Nj

� �
, j ¼ 1, 2, . . . ,m: ð11Þ

That is, (10) can be rewritten as

y ¼ �Tm ð12Þ

where a 2 Rn�1 collects singleton consequents �i1,i2,...,im
of all rules in :sub, m2Rn�1 collects mi1,i2,...,im described

in (11) and n is the number of the existing fuzzy rules.

In this chapter, a Gaussian membership function is

defined as

�
F

ij
j

ðXj, c
ij
j , �

ij
j Þ ¼ exp �

½Xj � c
ij
j �
2

�
ij2
j

( )
, ð13Þ

where c
ij
j and �

ij
j are the mean and standard deviation

(SD) of the Gaussian function, respectively.

3.2. Structure learning algorithm

The developed self-structuring algorithm consists of

two parts: growing and pruning of fuzzy rules.

Effective membership functions in the input spaces

can be generated and ineffective fuzzy rules can be

pruned automatically by the self-structuring algorithm

and thus, a concise rule base can be obtained. In order

to construct the fuzzy rule base, every input space S(Xj)

is partitioned into several overlapping clusters to

construct the fuzzy sets of Xj. It can happen that for

some incoming Xj, the degree of belongings to all its

fuzzy sets are quite small, i.e. F
ij
j ðXj Þ, ij ¼ 1, 2, . . . ,Nj

are quite small, as depicted in Figure 1(a). This means

that the input space S(Xj) is not properly clustered.

Hence, the fundamental concept of the growing of fuzz

rules is developed to adjust the inappropriate cluster-

ing. Initially, create one initial fuzzy rule with the given

initial state as

Rule1,1,...,1 : IF X1 is F
1
1 and X2 is F

2
2 and . . . and Xm is

F1
m THEN y is �1,1,...,1, ð14Þ
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where the membership functions for F1
j , j¼ 1, 2, . . . ,m,

are defined with the initial input Xj (0) as

�F1
j
ðXj Þ ¼ exp �

½Xj � Xj ð0Þ�
2

�12j

( )
: ð15Þ

The SFS will start operating from this single rule.

Define the growing criterion as

�max
j 5�g, j ¼ 1, 2, . . . ,m, ð16Þ

where �max
j ¼ maxij¼1,2,...,Nj

�
F

ij
j

ðXj Þ is the maximum

membership function degree of Xj and �g 2 ð0, 1Þ is a

given threshold. If at some time tg, the growing

criterion (16) is satisfied for a new incoming datum,

Xj(tg), 1 � j � m, a new membership function is

created, whose initial mean and SD are

c
Njþ1
j ¼ Xj ðtgÞ, ð17Þ

�
Njþ1
j ¼ q, ð18Þ

where q40 can be arbitrarily chosen and it will be tuned

by the adaptive law introduced in later section. The

created membership function is shown in Figure 1(b).

For the case that one new membership function is

created at some time, N1 � . . .�Nj�1�

Njþ1 � � � � �Nm new fuzzy rules will be generated

according to the new membership function as:

Rule1,...,Njþ1,...,1 : IFX1isF
1
1 . . .Xj isF

Njþ1
j . . . andXm is

F1
m, THEN y is �1,...,Njþ1,...,1:

Rule2,...,Njþ1,...,1 : IFX1isF
2
1 . . .Xj isF

Njþ1
j . . . andXm is

F1
m, THEN y is �2,...,Njþ1,...,1:

RuleN1,...,Njþ1,...,Nm
: IFX1isF

N1

1 . . .Xj isF
Njþ1
j . . . andXm is

FNm
m , THEN y is�N1,...,Njþ1,...,Nm

: ð19Þ

For example, consider an FS (m¼ 2, N1¼ 1 and

N2¼ 2) with the rule base:

Rule1,1 : IF X1 is F
1
1 and X2 is F

1
2, THEN y is �1,1:

Rule1,2 : IF X1 is F
1
1 and X2 is F

2
2, THEN y is �1,2:

Assume that the growing criterion for X1 is satisfied

at time t. Then, a new membership function

�F2
1
¼ exp �

½X1 � X1ðtÞ�
2

�21

� �
ð20Þ

is created, and two rules are grown according to the

new membership function as

Rule2,1 : IF X1 is F
2
1 and X2 is F

1
2, THEN y is �2,1:

Rule2,2 : IF X1 is F
2
1 and X2 is F

2
2, THEN y is �2,2:

ð21Þ

It can be observed from (16) and (17) that the

proposed rule growing strategy in nature has less

chance to suffer from the problem of generating highly

overlapping fuzzy sets.
An SFS with only a rule generation algorithm may

suffer from the computational load or learning failure

caused by an overly large rule base which includes both

effective and redundant fuzzy rules. In the following,

the strategy to prune redundant rules is developed to

solve this problem. Recall that there are n existing

fuzzy rules, and then express (12) as

y ¼ aTm ¼ �k arm
� � �k

mrm

� 	
, ð22Þ

where �k 2 R and �rm2R
ðn�1Þ1 represent the singleton

consequent and the fuzzy basis function of the k-th

fuzzy rule, respectively; arm2R
ðn�1Þ�1 and

mrm 2 Rðn�1Þ�1 represent the collections of the singleton

consequents and the fuzzy basis functions of the rest of

Figure 1. (a) The improper fuzzy clustering of input variable Xj; (b) The newly created membership function.
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fuzzy rules, respectively. Thus, the contribution made

by k-th rule on the output y can be defined as follows:

Ck ¼
yk


 

Pn
k¼1 yk



 

 , k ¼ 1, 2, . . . , n, ð23Þ

where yk ¼ �k�k. Now, we are ready to introduce the

significance index which can help us to decide whether

or not to prune a fuzzy rule. The significance index is a

measurement of the importance of every fuzzy rule. Sk,

which represents the significance index of the k-th

fuzzy rule, is updated as follows:

Sk ¼
Src
k �, if Ck 5�

Src
k , if Ck 	 �

, k ¼ 1, 2, . . . , n,

�
ð24Þ

where Src
k is the most recent Sk, � 2 ð0, 1Þ is a decay

constant and �2ð0, 1Þ is a given constant. All Sk,

k¼ 1, 2, . . . , n, are initialised from ones. According to

(18), if the contribution Ck is equal or larger than �, Sk

keeps invariant; if Ck is smaller than �, Sk will be

attenuated. An invariant significance implies that

the associated rule is still important and should

remain; a decaying significance index implies that the

associated rule is becoming less and less important and

thus should be pruned. The selection of � will affect the
rate of pruning the fuzzy rules. The smaller the � is

(or the larger the � is), the faster the significance

index Sk decays, and thus the faster the ineffective

fuzzy rules will be pruned. The pruning criterion of the

k-th fuzzy rule is defined as follows based on this

knowledge

Sk 5�p, k ¼ 1, 2, . . . , n, ð25Þ

where �p2ð0, 1Þ is a selected threshold. If the pruning

criterion is satisfied for Sk, the associated k-th rule is

pruned.

Remark 1: It is a difficult task to determine the initial

values of the singleton consequents of the newly

generated fuzzy rules. Because an SFS is in general

equipped with a parameter learning algorithm to

automatically tune the parameters of the fuzzy rules,

the initial values of the singleton consequents can

simply be set as zeros. However, from (10), we can see

that this will cause abrupt variation of the fuzzy output

y and the performance of the SFS may deteriorate for

a short period. This phenomenon can be observed in

Figure 5(b). To fix this drawback, we maintain the

approximation property of the SFS at the instant that

new rules are generated. Assume that at some time tg,

an SFS has n fuzzy rules and the last h rules are just

newly generated. Define yp as the ‘pseudo fuzzy output’

of the original n–h rules if h new rules were not

generated at tg. The initial consequents of those new

rules are chosen so that yðtgÞ ¼ yp. Thus, we have

yðtgÞ ¼ �new
Xn

k¼n�hþ1

�k þ
Xn�h
k¼1

�k�k ¼ yp, ð26Þ

where �n�hþ1 ¼ �n�hþ2 ¼ � � � ¼ �n ¼ �new. From (26),

we can easily obtain

�new ¼
yp �

Pn�h
k¼1 �k�kPn

k¼n�hþ1 �k
: ð27Þ

In this way, not only the bad effect caused by the

abrupt variation can be mitigated, but also the future

performance of the SFS can be improved by the h

new rules.

Remark 2: While controlling, a membership function

is possible to be pruned if all fuzzy rules associated

with this membership function are pruned sequentially.

Remark 3: In the implementations of practical

systems, if computational burden is the issue having

highest priority, the threshold �p can be chosen large

enough so that more fuzzy rules are pruned. Hence, the

computational burden will be substantially reduced at

the expense of less favourable system performance.

Figure 2 shows the flowchart to summarise the

self-structuring algorithm for the SFS. The growing

and pruning effects during the control period will be

illustrated in later sections with excellent result.

4. Design of RASFC

Now, we are ready for developing a RASFC for the

unknown nonaffine, nonlinear systems. In the RASFC,

an SFS is used to estimate the system uncertainty

Dðx, uÞ in (2). The control law u in the RASFC system

is designed as

u ¼
1

c
ðurac � ufcÞ, ð28Þ

where urac is the robust adaptive controller to achieve a

L2 tracking performance with a designed attenuation

level and ufc is the self-structuring fuzzy controller to

approximate unknown system dynamics Dðx, uÞ.
Substituting (28) into (2) and using (4) yields

eðnÞ ¼ xðnÞc � urac � ufc þ Dðx, uÞ þ d
� �

¼ xðnÞc � ulc � Dðx, uÞ � ufc
� �

þ ðurac � ulcÞ þ d
� �

¼ �kTe� Dðx, uÞ � ufc
� �

þ ðurac � ulcÞ þ d
� �

, ð29Þ

or

_e ¼ Ae� b Dðx, uÞ � ufc þ ðurac � ulcÞ þ d
� �

, ð30Þ
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Create the initial MFs 
and the first fuzzy rule

Is there only 
one fuzzy rule?

Calculate the 
significance index (24) 

Is the pruning criterion 

pkS Θ<  satisfied? 

Find the maximum 
membership degree max

jμ

Calculate the 
fuzzy output 

(36)

End Control?

Stop 

Prune the kth
fuzzy rule 

Create the new membership 
functions according to 

(17)-(18), and generate new 
fuzzy rules according to (19) 

Yes

Yes 

No

No

No

No

Yes 

Yes

?

Tune the parameters 
by the adaptive laws 

(56)-(58)

Sk , k=1,2,…, n

Is the growing criterion 

gj Θ≤maxμ satisfied? 

mjj ,2,,1,max =μ

ξα ˆˆ=y

σcα ˆ,ˆ,ˆ

Initialize

Figure 2. The flowchart of the self-structuring algorithm for the SFS.
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where

A ¼

0 1 0 � � � 0

..

. . .
. . .

. . .
.

0

0 � � � � � � 0 1

�kn �kn�1 � � � � � � �k1

2
66664

3
77775 and

b ¼ 0 0 � � � 1
� �T

:

4.1. Fuzzy approximation

The unknown nonlinear function Dðx, uÞ is approxi-

mated by an SFS with inputs x and u. In this way, the

output of the SFS ufc should be directly fed back to

produce u, which is one of the input of the SFS. This

kind of FS is called a recurrent FS, as depicted in

Figure 3(a). However, a recurrent FS will lead to a

fixed-point problem which must be solved at every time

instant and thus imposes computational burden (Calise

et al. 2001; Hovakimyan et al. 2002; Park and

Kim 2005).
Thus, the following Lemma 1 is stated to avoid this

problem (Calise et al. 2001; Hovakimyan et al. 2002;

Park and Kim 2005).

Lemma 1: Let the constant c satisfy the condition

c4
1

2

@f

@u

� �
: ð31Þ

Then, there exist a unique u
fc which is a function of x

and urac so that u
fcðx, uracÞ satisfies

 ðx, urac, u


fcÞ ¼

D
Dðx, urac, u
fcÞ � u
fcðx, uracÞ ¼ 0, ð32Þ

for all ðx, uracÞ 2 :x � R:

The Proof of Lemma 1 can be found in Park and

Kim (2005).

According to Lemma 1, the feedback path in
Figure 3(a) can be removed. Consequently, a static FS
in Figure 3(b) can be used to approximate Dðx, uÞ, and
thus we do not need to solve the fixed-point problem at
every time instant. For the nonaffine systems with the
property @f ðx, uÞ=@u5 0, Lemma 1 can be satisfied as
well by simply modifying (31) as c5 1=2ð@f=@uÞ.

Define the vectors c and r as

c ¼ c1 c2 � � � cm
� �T

, ð33Þ

p ¼ p1 p2 � � � pm
� �T

, ð34Þ

where cj ¼ ½c
1
j � � � c

Nj

j � and pj ¼ ½�
1
j � � � �

Nj

j � col-
lect the means and SDs of the Gaussian membership
functions of Xj, j¼ 1, 2, . . . ,m, respectively. Rewrite
(12) in the vector form as

y ¼ aTmðX, c,rÞ ¼ �1 �2 � � � �n
� � �1

�2
..
.

�n

2
6664

3
7775, ð35Þ

where X ¼ ½x urac�
T is the input vector. The output of

the SFS used to approximate Dðx, uÞ is defined as

ufc ¼ â
TmðX, ĉ, p̂Þ ¼ âTm̂, ð36Þ

where â, ĉ and p̂ are the estimation vectors of a, c and
p and m̂ ¼ mðX, ĉ, p̂Þ. Define the optimal vectors a
, c


and p
 as (Wang 1994):

ða
, c
, p
Þ

¼ arg min
â2:a, ĉ2:c, p̂2:p

sup
X2:x�R

u
fcðXÞ � ufcðX, â, ĉ, p̂Þ



 




" #
,

ð37Þ

where

:a ¼ â : â
  �Ma

� �
, ð38Þ

:c ¼ ĉ : ĉ
  �Mc

� �
, ð39Þ

:p ¼ p̂ : p̂
  �Mp

� �
, ð40Þ

And Ma, Mc and Mp are positive constants specified
by designers. The unknown nonlinear function Dðx, uÞ
can be described as

D ¼ a
TmðX, c
, p
Þ þ ! ¼ a
Tm
 þ !, ð41Þ

where m
 ¼ mðX, c
, p
Þ and ! denotes the approxima-
tion error bounded by !j j � �!, in which �! is a finite
positive constant. Then, modelling error ~u can be
expressed as

~u ¼ D� ufc ¼ ~aTm̂þ âT ~mþ ~aT ~mþ !, ð42Þ
Figure 3. (a) The recurrent fuzzy system; (b) The static fuzzy
system.
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where ~a ¼ a
 � â and ~m ¼ m
 � m̂. In the following,

some preliminaries will be made for adaptive online

tuning of the parameters of fuzzy rules and thus

favourable approximation performance can be

achieved in the presence of unexpected disturbances.

To achieve this goal, the Taylor linearisation technique

is employed to transform the nonlinear fuzzy basis

function into partially linear form as follows (Han, Su,

and Stepanenko 2001; Hsu and Lin 2005):

~m ¼

~�1
~�2
..
.

~�n

2
6664

3
7775 ¼

�1
@c
�2
@c

..

.

�n
@c

2
66664

3
77775












c¼ĉ

ðc
 � ĉÞ þ

�1
@p
�2
@p

..

.

�n
@p

2
66664

3
77775












p¼p̂

ðp
 � p̂Þ þ o,

ð43Þ

or

~m ¼ mTc ~cþ mTp ~pþ o, ð44Þ

where o represents the higher order term, ~c ¼ c
 � ĉ,
~p ¼ p
 � p̂ and

mc ¼
@�1
@c

@�2
@c
� � �

@�n
@c

� 	




c¼ĉ

, ð45Þ

mp ¼
@�1
@p

@�2
@p

. . .
@�n
@p

� 	




p¼p̂

: ð46Þ

Substituting (44) into (42) yields

~u ¼ ~aTm̂þ âTmTc ~cþ âTmTp ~pþ "

¼ ~aTm̂þ ~cTmcâþ ~pTmpâþ ", ð47Þ

where âTmTc ~c ¼ ~cTmcâ and âTmTp ~p ¼ ~pTmpâ since they

are scalars and e ¼ ~aT ~mþ âToþ u is the lumped

uncertainty. The higher order term o satisfies

ok k ¼ ~m� mTc ~cþ mTp ~p

� ~m
 þ mTc

  ~ck k þ mTp
  ~pk k

� b0 þ b1 ~ck k þ b2 ~pk k, ð48Þ

where b0, b1 and b2 are bounded positive constants

satisfying k~mk � b0, mTc
  � b1 and mTp

  � b2. It is

reasonable that b0, b1 and b2 exist because Gaussian

function and its derivative are always bounded by

constants. Moreover, ~a, ~c and ~p satisfy

~ak k ¼ a
 � â
  � a
k k þ â

  �Ma þ â
 , ð49Þ

~ck k ¼ c
 � ĉ
  � c
k k þ ĉ

  �Mc þ ĉ
 , ð50Þ

~pk k ¼ p
 � p̂
  � p
k k þ p̂

  �Mp þ p̂
 : ð51Þ

Thus, the lumped uncertainty " satisfies

ej j¼ ~aTðmTc ~cþmTp ~pþoÞþ âToþ!



 



¼ ~aTmTc ~cþ ~aTmTp ~pþa


T

oþ!



 



� b1ðMaþkâkÞðMcþkĉkÞþb2ðMaþkâkÞðMpþkp̂kÞ

þMa½b0þb1ðMcþkĉkÞþb2ðMpþkp̂kÞ�þ �!

¼ ½�1�2�3�4�5�6�½1kâkkĉkkp̂kkâkkĉkkâkkp̂k�
T

¼,T!, ð52Þ

where , ¼ ½�1 �2 �3 �4 �5 �6�
T, �1 ¼ ðb0 þ 2b1Mcþ

2b2MpÞMa þ �!, �2 ¼ b1Mc þ b2Mp, �3 ¼ 2b1Ma,

�4 ¼ 2b2Ma, �5 ¼ b1, �6 ¼ b2 and ! ¼ ½1 â
  ĉ

  p̂
 

â
  ĉ

  â
  p̂

 �T. Since , is a bounded vector, if ! is

guaranteed to be bounded, the lumped uncertainty

term " is thus bounded. We can guarantee the

boundness of ! by Lemma 2 given in the next

subsection.

4.2. Parameter learning algorithm

Substituting (47) into (30) yields

_e ¼ Ae� b½ ~aTm̂þ ~cTmcâþ ~pTmpâþ "þ dþ ðurac � ulcÞ�:

ð53Þ

Lemma 2 (Wang 1994): Suppose that the adaptive

laws are chosen as (56)–(58), where Prð�Þ is the

projection operator and the symmetric positive P

satisfies the following Riccati-like equation

ATPþ PAþQþ Pb
1

�2
�
1

	

 !
bTP ¼ 0, ð54Þ

where Q is a positive definite symmetric matrix and � is

an attenuation level which satisfies ð1=�2Þ � ð1=	Þ � 0. If

âð0Þ 2 :a, ĉð0Þ 2 :c and p̂ð0Þ 2 :p, then âðtÞ 2 :a,

ĉðtÞ 2 :c and p̂ðtÞ 2 :p for all t 	 0 can be guaranteed.

According to Lemma 2, ! in (52) is bounded, and

hence the lumped uncertainty " is bounded. The

following theorem shows the properties of the devel-

oped control system.

Theorem 1: Suppose the assumption (3) holds.

Consider a SISO nonaffine, nonlinear system (1) with

the control law (28), where the self-structuring fuzzy

controller is given as

ufc ¼ â
TmðX, ĉ, p̂Þ: ð55Þ
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The adaptive laws are chosen as (56)–(58):

_̂a ¼ � _~a ¼

�
ae
TPbm̂,

if â
 5Ma or

�
â
  ¼ Ma and eTPbâTm̂ 	 0

�
Prð
�e

TPbm̂Þ,

if ð â
  ¼Ma and eTPbâTm̂5 0Þ

8>>>>><
>>>>>:

,

ð56Þ

where 
a is the positive learning rate and
Prð
�e

TPbm̂Þ ¼ �
�eTPbm̂þ 
�eTPb
âT m̂

âk k
2 â.

_̂c¼�_~c

¼

�
ce
TPbm̂câ,

if ĉ
 5Mc or ĉ

 ¼Mc and e
TPbĉTmcâ	 0

� �
Prð
ce

TPbm̂câÞ,

if ĉ
 ¼Mc and e

TPbĉTmcâ50
� �

8>>>><
>>>>:

,

ð57Þ

where 
c is positive learning rate and

Prð
ce
TPbm̂câÞ ¼ �
ce

TPbm̂câþ 
ce
TPb

ĉ
Tmcâ

ĉ
 2 ĉ:

_̂p¼� _~p

¼

�
pe
TPbm̂pâ,

if p̂
 5Mp or ðkp̂k ¼Mp and e

TPbp̂Tmpâ	 0Þ

Prð
pe
TPbm̂pâÞ,

if
�
kp̂k ¼Mp and e

TPbp̂Tmpâ50
�

8>>>>><
>>>>>:

,

ð58Þ

where 
p is positive learning rate and Prð
pe
TPbm̂pâÞ ¼

�
pe
TPbm̂pâþ 
pe

TPb
p̂Tmpâ
pk k2

p̂:

The robust adaptive controller is given as

urac ¼ ulc þ
1

2	
bTPe: ð59Þ

Note that since A is designed to be stable in (30)
and Q in (54) is a positive definite symmetric matrix,

therefore P must be a positive definite symmetric
matrix. Then, the RASFC system can guarantee the
global stability and robustness of the closed-loop
system and achieve the following L2 criterion (Wang,
Chan, Hsu, and Lee 2002a; Hsu, Lin, and Chen 2005)

1

2

Z T

0

eTQedt �
1

2
eð0ÞTPeð0Þ þ

~aTð0Þ ~að0Þ

2
�
þ
~cTð0Þ~cð0Þ

2
c

þ
~pð0ÞT ~pð0Þ

2
�
þ
�2

2

Z T

0

ð"þ d Þ2dt ð60Þ

for 0 � T51, where eð0Þ, ~að0Þ, ~cð0Þ and ~pð0Þ are the
initial values of e, ~a, ~c and ~p, respectively.

Proof: Define the Lyapunov function candidate as

V ¼
1

2
eTPeþ

1

2
�
~aT ~aþ

1

2
c
~cT~cþ

1

2
�
~pT ~p: ð61Þ

Differentiating (61) with respect to time and using
(53) yields

_V ¼
1

2
eTP_eþ

1

2
_eTPeþ

1


�
~aT _~aþ

1


c
~cT _~cþ

1


�
~pT_~�

¼
1

2
eTðATPþ PAÞe� eTPb½ ~aTm̂þ ~cTmcâþ ~pTmpâ

þ "þ dþ ðurac � ulcÞ�

þ
1


�
~aT _~aþ

1


c
~cT _~cþ

1


c
~pT _~p: ð62Þ

Substituting (59) into (62), we obtain

_V ¼
1

2
eT ATPþ PA�

1

	
PbbTP

� �
e

� eTPbð"þ d Þ � Ga � Gc � Gp ð63Þ

where Ga ¼ ~aTðeTPbm̂�
_~a

�
Þ, Gc ¼ ~cTðeTPb�câ�

_~c

c
Þ and

Gp ¼ ~pTðeTPb��â�
_~p

�
Þ. By using (54), we can

rewrite (63) as

_V ¼
1

2
eT �Q�

1

�2
PbbTP

� �
e� eTPbð"þ d Þ

� Ga � Gc � Gp

¼ �
1

2
eTQe�

1

2

�
1

�
bTPeþ �ð"þ d Þ

	2
þ
1

2
�2ð"þ d Þ2

� Ga � Gc � Gp: ð64Þ

By using (56), we have Ga ¼ 0 for
½ â
  �Ma or ð â

  ¼Ma and eTPbâTm̂ 	 0Þ�. For
½ðkâk ¼Ma and eTPbâTm̂5 0Þ�, we have

Ga ¼ 
�e
TPb

~aTâ

â
 2 âTm̂: ð65Þ

Because a
 belongs to the constraint set :�, we
have â

  ¼Ma 	 a
k k. Using this fact, we obtain
~aTâ ¼ 1

2 ð a

k k2� â

 2� ~ak k2Þ � 0. Thus, (65) can be
rewritten as

Ga ¼

�
2
eTPb

a
k k2� â
 2� ~ak k2

� �
â
 2 âTm̂ 	 0: ð66Þ

Similarly, we have (67) and (68) by using (57) and
(58), respectively.

Gc¼

0
if ĉ
 5Mc or ĉ

 ¼Mc and e
TPbĉTmcâ	 0

� �

c
2 e

TPb
c
k k2� ĉk k

2
� ~ck k2

� �
ĉk k

2 ĉ
Tmcâ	 0

if
�
ĉ
 ¼Mc and e

TPbĉTmcâ50
�
,

8>>>><
>>>>:

ð67Þ
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Gp ¼

0
if p̂
 5Mp or ð p̂

 ¼Mp and eTPbp̂Tmpâ	 0Þ


p
2 e

TPb
p
k k2� p̂k k

2
� ~pk k2

� �
p̂k k

2 p̂Tmpâ	 0

if ð p̂
 ¼Mp and e

TPbp̂Tmpâ50Þ:

8>>>><
>>>>:

ð68Þ

Consequently, for any possible condition in

(56)–(58), Ga 	 0, Gc 	 0 and Gp 	 0 are satisfied.

Thus, we can rewrite (64) as

_V � �
1

2
eTQeþ

1

2
�2ð"þ d Þ2: ð69Þ

Assume that there exists a finite constant � so that

(Wang, Lin, Lee, and Liu 2002b)Z T

0

ð"þ d Þ2dt � �, 8T 2 ½0,1Þ, ð70Þ

i.e. ð"þ d Þ 2 L2½0,T �, 8T 2 ½0,1Þ. Integrating both

sides of the inequality (69) yields

VðT Þ � Vð0Þ � �
1

2

Z T

0

eTQe dtþ
�2

2

Z T

0

ð"þ d Þ2dt,

0 � T51: ð71Þ

Since VðT Þ 	 0, the following L2 criterion can be

obtained.

1

2

Z T

0

eTQedt � Vð0Þ þ
�2

2

Z T

0

ð"þ d Þ2dt, 0 � T51:

ð72Þ

Substituting (61) into (72), we have the L2 criterion

shown in (60). This completes the proof. œ

From (72), we can see that because V(0) is finite,

the effect of lumped uncertainty and external distur-

bance on tracking error can be eliminated as small as

possible by choosing an arbitrarily small attenuation

level �. In other words, a smaller � results in smaller

tracking error, which implies better tracking perfor-

mance. The following Theorem 2 will present an

explicit formulation of tracking error.

Theorem 2: The tracking error ek k can be expressed in

terms of the sum of lumped uncertainty and external

disturbance as

ek k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð0Þ þ �2�

�minðPÞ

s
: ð73Þ

Proof: From (71), with the knowledge
R T
0 eTQedt 	 0

and assumption (70), we have

2VðT Þ � 2Vð0Þ þ �2�, 0 � T51: ð74Þ

From (61), it is obvious that eTPe � 2V for any V.
Because P is a positive definite symmetric matrix,
we have

�minðPÞ ek k
2¼ �minðPÞe

Te � eTPe, ð75Þ

where �minðPÞ is the minimum eigenvalue of P. Thus,
we obtain

�minðPÞ ek k
2� eTPe � 2VðTÞ � 2Vð0Þ þ �2� ð76Þ

from (74)–(75). Therefore, (76) can be rearranged to
yield the following important formula:

ek k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð0Þ þ �2�

�minðPÞ

s
, ð77Þ

which explicitly describes the tracking error ek k in
terms of the sum of lumped uncertainty and external
disturbance. œ

If initial state V(0)¼ 0, tracking error ek k can be
made arbitrarily small by choosing adequate �. Unlike
the results in Park and Kim (2005) and Labiod and
Guerra (2007), (77) is very crucial to show that the
proposed RASFC will provide the closed-loop stability
rigorously in the Lyapunov sense.

Remark 4: Consider an SISO nonlinear affine system

xðnÞ ¼ FðxÞ þ GðxÞuþ d, ð78Þ

where x ¼ ½x _x � � � xðn�1Þ�T is the state vector of
the system, FðxÞ and GðxÞ are unknown nonlinear
mapping, u is the control input of the system and d is
a bounded external disturbance. By letting
f ðx, uÞ ¼ FðxÞ þ GðxÞu, we can easily find that the
nonlinear affine system (78) can be viewed as a special
case of nonaffine, nonlinear system (1). Thus, the
proposed RASFC scheme can be directly applied to
such a nonlinear affine system when necessary
assumptions hold. The overall RASFC can be shown
in Figure 4.

5. Simulation results

In this section, the simulations are performed using
MATLAB under Windows XP. Five examples are
presented. Approximations of unknown nonlinear
functions are shown in Examples 1 and 2 to reveal
the growing and pruning capabilities of the proposed
self-structuring algorithm, respectively. Examples 3–5
are used to examine the applicability and effectiveness
of the proposed RASFC system for nonaffine, non-
linear control problems. For comparison purpose, two
cases are performed in Examples 3–5, respectively.
Cases 3a, 4a and 5a show the effectiveness of the SFS
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with both rules growing and pruning capabilities. In

Case 3b, an adaptive FS with fixed number of rules is

adapted, and the parameters of the FS are also tuned

by adaptive laws (56)–(58). In Cases 4b and 5b, only

the growing of fuzzy rules by SFS is considered. It can

be easily shown that the following examples of

nonaffine system control satisfy @f ðx, uÞ=@u4 0. It

should be emphasised that the development of the

RASFC does not need to know the exact system

dynamics of the controlled systems.

Example 1: Consider the following nonaffine, non-

linear system (Ge, Hang, and Zhang 1999):

_x1 ¼ x2,

_x2 ¼ x21 þ 0:15u3 þ 0:1ð1þ x22Þuþ sinð0:1uÞ: ð79Þ

In tracking control, the SFS is used to approximate

an unknown function Dðx, uÞ ¼ x21 þ 0:15u3þ
0:1ð1þ x22Þuþ sinð0:1uÞ � cu. To illustrate the rule

growing capability of the self-structuring algorithm,

the approximation is performed under three conditions

as shown in Table 1. Figure 5(a)–(c) shows the

approximation results of Condition 1a, 1b and 1c,

respectively, Figure 5(d) shows the absolute value of

the modelling error, ~uj j and Figure 5(e) shows the

number of fuzzy rules. The approximation perfor-

mances under Conditions 1a and 1b are better than

that under Condition 1a after t	 5. In Figure 5(b), the

abrupt variations are marked by circles. These abrupt

variations are obviously caused by the rule generation

so that the approximation performance is affected for

a short period. In Figure 5(c), this phenomenon is

mitigated by using (27) discussed in Remark 1. From

Figure 5(d), we can see the approximation

performance under Condition 1c is the best among

three conditions.

Example 2: A third-order Chua’s chaotic circuit is a

simple electronic system that consists of one linear

resistor (Rc), two capacitors (C1,C2), one inductor (L)

and one nonlinear resistor ð
Þ. It has been shown to

own very rich nonlinear dynamics such as chaos and

bifurcations. The dynamic equations of Chua’s circuit

are written as (Wang et al. 2002b; Hsu, Chen, and

Lee 2007)

_vC1
¼

1

C1

1

R
ðvC2
� vC1

Þ � 
ðvC2
Þ

� 	

_vC2
¼

1

C2

1

R
ðvC1
� vC2

Þ þ iL

� 	

_iL ¼
1

L
ð�vC1

� R0iLÞ,

ð80Þ

Figure 4. The block diagram of RASFC for nonaffine nonlinear systems.

Table 1. Three conditions in Example 1.

Desired trajectory of tracking control: xc¼ sin(1.5t)

Number of rules

Consequents of
newly gener-

ated fuzzy rules

Condition 1a Fixed (4 rules)
Condition 1b t55: the same 4 rules

in Condition 1a are
used

t^ 5: rule growing is
operated

Initialised from
zeros

Condition 1c t55: the same 4 rules
in Condition 1a are
used

t^ 5: rule growing is
operated

Initialised
according
to (27)
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where the voltages vC1
, vC2

and current iL are state
variables, R0 is a constant, and 
 denotes the nonlinear
resistor, which is a function of the voltage across the
two terminals of C1. Here,  is defined as a cubic

function as

 ¼ �1vC1
þ �2v

3
C1
ð�1 5 0, �2 4 0Þ: ð81Þ

The state equations in (80) are not in the standard

canonical form. Therefore, a linear transformation is
needed to transform them into the form of (14). Then,
the dynamic equations of transformed Chua’s circuit
can be rewritten as

_x1 ¼ x2,

_x2 ¼ x3,

_x3 ¼ F þ u,

y ¼ x1,

ð82Þ

where x ¼ ½x1 x2 x3�
T is the state vector of the

system which is assumed to be available; the system
dynamic function

F¼
14

1805
x1�

168

9025
x2þ

1

38
x3�

2

45

28

361
x1þ

7

95
x2þx3

� �
ð83Þ

and u is the control input. The reference signal is
yrðtÞ ¼ 1:5 sinðtÞ. In tracking control, the SFS is used to
approximate an unknown function Dðx, uÞ ¼
F þ u� cu. To illustrate the rule pruning of the
self-structuring algorithm, the approximation is per-
formed under two conditions as shown in Table 2.
Figure 6(a)–(b) shows the approximation results.
Figure 6(c) shows the approximation error E.
Figure 6(d) shows the number of fuzzy rules. Taking
the last pruned rule for example, we record the
contribution and significance index of the rule
pruned at t¼ 2.28 in Figure 6(e). Figure 6(a)–(c)
shows that the approximation performances of
Conditions 2a and 2b are both quit well. However,
the convergence speed of approximation error E under

Figure 5. Approximation results in Example 1.

Table 2. Two conditions in Example 2.

Desired trajectory of tracking control:
xc¼ 1.5 sin (t)

Rule number

Condition 2a Fixed (40 rules)
Condition 2b t^ 0: rule pruning is operated
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Condition 2b is faster than that of Condition 2a. This

shows that the parameter training of a large number of

fuzzy rules slow down the approximation convergence,

and the pruned rules under Condition 2b are redun-

dant and ineffective to the approximation perfor-

mance. In Figure 6(e), we show the contribution and

significance index of a certain rule pruned at t¼ 2.28.

When the contribution calculated by (17) is smaller

than a given constant �¼ 0.005, the significance index

(18) decays with decay constant �¼ 0.99. Once the

significance index is smaller than the pruning threshold

�p ¼ 0:005 at t¼ 2.28, this rule is insignificant there-

after and thus pruned to ease computational load.

Example 3: Consider the following nonaffine, non-

linear system (Leu, Wang, and Lee 2005):

_x1 ¼ x2,

_x2 ¼ 0:2ð1þ ex1x2 Þ½ð2þ sinðx2Þ�ðuþ eu � 1Þ þ d,
ð84Þ

where d is a square wave with amplitude �3:0 and

period 5 s. The desired trajectory is

xd ðtÞ ¼ sinð0:5tÞ þ cosðtÞ. The initial sates are chosen

as xð0Þ ¼ x1ð0Þ x2ð0Þ
� �

¼ 0 0
� �T

. The learning

rates are selected as 
a ¼ 120 and 
c ¼ 
p ¼ 1. The

thresholds for growing and pruning criteria in Case 3a

are selected as �g ¼ 0:1 and �p ¼ 0:01, respectively.
These parameters are chosen through some trials to

achieve favourable transient control performance. For
a choice of Q¼ 2I, K ¼ ½2 1�T and �2 ¼ 	, we solve
the Riccati-like equation shown in (62) and obtain a
positive definite symmetric matrix P:

P ¼
3:5 0:5
0:5 1:5

� 	
: ð85Þ

The simulation results for Cases 3a and 3b are
shown in Figures 7 and 8, respectively. The tracking
responses of state x1 are shown in Figures 7(a) and
8(a), the tracking responses of state x2 are shown in
Figures 7(b) and 8(b), the associated control inputs are
shown Figures 7(c) and 8(c) and the numbers of fuzzy
rules at every iteration are shown in Figures 7(d) and
8(d). From Figure 7(a)–(b) to Figure 8(a)–(b), we can
see that the tracking performance in Case 3a is better
than that in Case 3b under the external disturbance.
In Figure 7(d), the maximum number of rules is 7; in
Figure 8(d), the number of rules is 4. Table 3 shows the
comparison between the two cases, where Na repre-
sents the accumulated sum of computed rules and te
denotes the total execution time during the simulation.
The proposed self-structuring algorithm can relieve
the heavy computational burden caused by 25,423
redundant rules (42.37% of the Na in Case 3b) and the
te in Case 3a is nearly one-half times faster than that in
Case 3b.

Figure 6. Approximation results in Example 2.
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Example 4: The Van der Pol oscillator is the main
model of self-oscillatory system with two-dimensional
phase space (Wang and Krstic 2000; Pourhiet et al.
2003; Mahmoud and Farghaly 2004). The oscillator

and its extensions have been implemented in various

types of electrical circuits. The nonaffine second-order

Van der Pol oscillator with nonlinear damping is

described as (Karimi, Menhaj, and Saboori 2006)

_x1 ¼ x2,

_x2 ¼ �x1 þ x2 þ uþ ðx21 þ x22Þ
1þ e�u

1� e�u

� �
� x21x2 þ d,

ð86Þ

where d is a white noise with power 2 which occurs

after t	 15. The desired trajectory is xd ðtÞ ¼

sinðtÞ þ cosð0:5tÞ and the initial state is xð0Þ ¼

x1ð0Þ x2ð0Þ
� �

¼ 0:6 0:5
� �T

. All other parameter

Figure 8. Simulation results of Case 3b in Example 3.

Figure 7. Simulation results of Case 3a in Example 3.

Table 3. Comparison between two cases in Example 3.

1:25� 104 iterations Case 3a Case 3b

Maximum number of rules
at any time instant

7 4 (fixed)

Accumulated sum of rule
number, Na

34,577 60,000

Total execution time, te(s) 12.88 18.14
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settings are chosen the same as those in Example 3. The
simulation results for Cases 4a and 4b are shown in
Figures 9 and 10, respectively. The tracking responses
of state x1 are shown in Figures 9(a) and 10(a), the
tracking responses of state x2 are shown in Figures 9(b)
and 10(b), the associated control inputs are shown
Figures 9(c) and 10(c) and the number of fuzzy rules at
every iteration are shown in Figures 9(d) and 10(d).
From the simulation results, we can see that the
proposed RASFC scheme in Case 4a can achieve the
same favourable tracking performance as that in Case
4b even if an external disturbance suddenly occurs. In
Figure 9(d), rule growing plays the major role in SFS

within 0� t50.25 and thus, the rule number is
increased from one to produce a suitable control
effort to suppress the tracking error. For t40.25, to
reduce tracking error, the pruning of unnecessary rules
will be activated in SFS and thus the number of rules
decreases gradually. After a large external disturbance
occurs at t	 15, the rule number apparently increases to
eliminate the effect caused by the disturbance. When
tracking error is again suppressed to a small level, the
rule pruning effect will be activated again. In
Figure 10(d), the number of rules increases very rapidly
from the beginning to the end of control. Throughout
the control process, the maximum number of rules is 7

Figure 10. Simulation results of Case 4b in Example 4.

Figure 9. Simulation results of Case 4a in Example 4.
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in Case 4a and 28 in Case 4b. Table 4 shows the
comparison between two cases. From Table 4, it is
obvious that our proposed self-structuring algorithm
can relieve the heavy computational burden caused by
187,677 redundant rules (82.44% of Na in Case 4b) and
te in Case 4a is over five times faster than that in Case
4b. It can be imagined that the relief of computational
load caused by the redundant rules will become more
and more remarkable as the control period continues.

Example 5: Figure 11 shows a single-link manipula-
tor with flexible joint and negligible dumping (Spong
and Vidyasagar 1989). The dynamics can be
described as

I €q1 þMgL sin q1 þ Kðq1 � q2Þ ¼ 0,

J €q2 � kðq1 � q2Þ ¼ u,
ð87Þ

where q1 and q2 are the angular positions of the link
and the motor, respectively, I and J are the moments of
inertia, K is the stiffness constant, M is the total mass,
L is the distance and u is the input torque. This system
can be transformed into a fourth-order canonical form
(5-2) through a global diffeomorphism (Khalil 2002) as

_x1 ¼ x2,

_x2 ¼ x3,

_x3 ¼ x4,

_x4 ¼ �
MgL

I
cos x1 þ

K

I
þ
K

J

� �
x3

þ
MgL

I
x22 �

K

J

� �
sinx1 þ

K

IJ
u: ð88Þ

To perform the simulation, the parameters are
adopted as MgL ¼ 1, I ¼ 0:008, J ¼ 0:005 and k ¼ 0:3
(Corless and Zenieh 1995). The control object is to
regulate to zero the angular positions and velocities of
the manipulator. The initial states are chosen as xð0Þ ¼
½x1ð0Þ x2ð0Þ x3ð0Þ x4ð0Þ� ¼ ½0:15 0:2 0:15 0:2�T. The
learning rates are selected as 
a ¼ 120 and

c ¼ 
p ¼ 100. The thresholds for growing and pruning
criteria in Case 5a are selected as �g ¼ 0:0005 and
�p ¼ 0:01, respectively. These parameters are chosen
through some trials to achieve favourable transient
control performance. For a choice of Q¼ 10I,

K ¼ ½9 28 38 4�T and �2 ¼ 	, we solve the
Riccati-like equation shown in (62) and obtain a
positive definite symmetric matrix P:

P ¼

52:3438 41:0156 14:1406 1:25
41:0156 76:9141 37:1094 1:2109
14:1406 37:1094 32:5586 1:5039
1:25 1:2109 1:5039 0:7227

2
664

3
775: ð89Þ

The simulation results for Cases 5a and 5b are
shown in Figures 12 and 13, respectively. The tracking
responses of the system states are shown in Figures
12(a)–(d) and 13(a)–(d), the associated control inputs
are shown Figures 12(e) and 13(e) and the number of
fuzzy rules at every iteration are shown in Figures 12(f)
and 13(f). From the simulation results, we can see that
that the proposed RASFC scheme in Case 5a can
achieve the same favourable tracking performance as
that in Case 5b. In Figure 12(f), we can see the number
of rules rapidly increases from the beginning of
regulation and then gradually decreases as the system
states are regulated within the small neighbourhoods
of zero. Throughout the control process, the maximum
numbers of rules are 18 in Case 5a and 21 in Case 5b.
Table 5 shows the comparison between two cases.
Table 5 shows that heavy computational burden
caused by 238,497 redundant rules (91.76% of Na in
Case 5b) is released and te in Case 5a is over five times
faster than that in Case 5b.

It is shown from the simulation results that the
proposed RASFC scheme can achieve satisfactory
tracking performance for even high-order SISO non-
affine and affine, nonlinear systems and in the mean
while, release heavy computational burden. It is worth
noting that in Examples 3–5, the control is started with
only one fuzzy rule and thereafter a compact rule base

Figure 11. The single-link manipulator with flexible joint.

Table 4. Comparison between two cases in Example 4.

1:25� 104 iterations Case 4a Case 4b

Maximum number of rules at
any time instant

7 28

Accumulated sum of computed
fuzzy rules, Na

39,973 227,650

Total execution time, te(s) 12.72 64.89
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Figure 12. Simulation results of Case 5a in Example 5.

Figure 13. Simulation results of Case 5b in Example 5.
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is constructed automatically without human knowl-
edge. Examples 4 and 5 show that without the rule
pruning, fuzzy rules will grow to a very large number
and thus lead to unacceptable computing burden.

6. Conclusion

Structure determination is a difficult task for practical
implementations of FSs. More specifically, choosing
the number of fuzzy rules, inherently involving fuzzy
partitioning of input and output spaces, can greatly
affect the performance of FSs. In this article, the
proposed SFS can manage fuzzy rule base by auto-
matic rule generation and pruning. The problems of
determining the fuzzy partitions of input spaces and
the number of fuzzy rules are solved simultaneously.
The provided systematic method can cope with the
tradeoff between the approximation accuracy and
computational load of FS. New rules are generated
according to the newly added membership functions to
adjust the improper fuzzy clustering of the input
spaces. Historically, insignificant rules with negligible
contributions toward the output of FS will be
removed. Comparing with the aforementioned
self-evolving fuzzy/fuzzy neural systems developed in
Angelov and Filev (2004) and Juang and Tsao (2008),
the SFS proposed in this article has some valuable
features: (1) the consequents of the newly generated
rules are designed to maintain the approximation
property of the SFS; (2) the rule growing strategy in
nature has less chance to suffer from the problem of
generating highly overlapping fuzzy sets, and hence
remove the need of any fuzzy set reduction method and
(3) the rule pruning strategy indeed lowers the
computation load.

Further, a RASFC scheme for the uncertain or
ill-defined nonlinear, nonaffine systems is proposed.
Some adaptive laws for online tuning the parameters of
fuzzy rules are derived in the Lyapunov sense to realise
favourable fuzzy approximation. As shown in this
article, the RASFC can achieve a L2 tracking perfor-
mance with arbitrarily attenuation level. This L2

tracking performance can provide a clear expression
of tracking error in terms of the sum of lumped
uncertainty and external disturbance, which has not

been shown in previous articles. Several examples are
illustrated to show that the RASFC can achieve
favourable tracking performance in the presence of
external disturbance, yet heavy computational burden
is relieved.
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