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ABSTRACT 
This paper presents a novel scheme for object completion in a 
video. The framework includes three steps: posture synthesis, 
graphical model construction, and action prediction. In the very 
beginning, a posture synthesis method is adopted to enrich the 
number of postures. Then, all postures are used to build a graphical 
model of object action which can provide possible motion 
tendency. We define two constraints to confine the motion 
continuity property. With the two constraints, possible candidates 
between every two consecutive postures are significantly reduced. 
Finally, we apply the Markov Random Field model to perform 
global matching. The proposed approach can effectively maintain 
the temporal continuity of the reconstructed motion. The advantage 
of this action prediction strategy is that it can handle the cases such 
as non-periodic motion or complete occlusion. 

Index Terms—video inpainting, object completion, action 
prediction, synthetic posture, motion animation. 

 
1. INTRODUCTION 

 
Automatic video inpainting is an important research area which 

has attracted great attention in recent years due to its powerful 
ability to fix/restore damaged videos and the flexibility it offers for 
editing home videos. A number of algorithms for automatic video 
inpainting have been proposed in the past few years [1–6]. In video 
painting, an important problem is to complete a partially or even 
totally occluded object in a video. Several schemes have been 
proposed to address the object inpainting problem based on 
available object templates [3–5] or on recovering the missing 
manifold trajectory via nonlinear dimension reduction [6]. 

As to the category of template-based video inpainting, Cheung 
et al. [7] proposed an efficient template-based video inpainting 
technique for dealing with videos recorded by a stationary camera. 
To inpaint the foreground, they utilize all available object 
templates. For each missing object, a fix-sized sliding window that 
covers a missing object and its neighboring templates is used to 
find the most similar object template. The drawback of this 
approach is that if the number of postures in the database is not 
sufficient, the inpainting result could be unsatisfactory. Moreover, 
the method does not provide a systematic way to identify a good 
filling position for an object template. An inappropriately chosen 
position may cause visually annoying artifacts. In [4], Jia et al. 
proposed a user-assisted video layer segmentation technique that 
decomposes a target video into color and illumination videos. A 

tensor voting technique is used to maintain consistency in both the 
spatio-temporal domain and the illumination domain. The method 
reconstructs an occluded object by synthesizing other available 
objects, but the synthesized object does not have a real trajectory 
and only textures are allowed in the background. 

Recently, a manifold learning based approach was proposed by 
Ding et al. [6] to perform video inpainting. They made use of 
Local Linear Embeddings (LLE) to transform observed data in 
frames to the embedded features in low dimension manifold. Then, 
the embedded features were reordered to obtain a Hankel matrix 
and the embedded features of missing data can be obtained by 
minimizing the rank of the Hankel matrix. Finally, the Radial Basis 
Function (RBF) is used for inverse mapping. Although the 
consecutive poses of an object with regular and cyclic motions can 
be well represented by a low-dimensional manifold embedded in a 
high-dimensional visual space, poses with non-regular motions 
(e.g., transitions in two different types of motions) are usually not 
the case. As a result, mapping reconstructing a high-dimensional 
video object with irregular or non-cyclic motions from the object’s 
low-dimensional manifold approximation usually leads to 
annoying artifacts (e.g., ghost images). 

As mentioned above, most of the existing object inpainting 
algorithms to some extent generate artifacts if an object is 
completely occluded or its corresponding motion is not periodic. 
To avoid the difficulties, we propose an action prediction method 
for object inpainting in this paper. The framework is composed of 
three steps: posture synthesis, graphical model construction, and 
action prediction. In the very beginning, a posture synthesis 
method is adopted to enrich the number of postures. Then, the 
generated postures are used to build a graphical model of object 
action which can provide possible motion tendency. We define two 
constraints to confine the motion continuity property. One is to set 
a threshold for providing the maximum search distance if a 
trajectory in the constructed graphical model is discontinuous. The 
other constraint is to constrain the motion tendency. With the 
above two constraints, possible candidates between every two 
consecutive postures are significantly reduced. Finally, we apply 
the Markov Random Field model to perform global matching. A 
potential trajectory that receives the maximum total probability 
will be identified as the final result. The proposed action prediction 
model can help identify a set of suitable postures from posture 
database to restore those damaged/missing postures. The proposed 
approach can effectively maintain the temporal continuity of the 
reconstructed motion. The advantage of this action prediction 
strategy is that it can handle the cases such as non-periodic motion 
or complete occlusion. These capabilities are powerful because 
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conventional model-based action prediction methods [7] need a 
training process to achieve the same goal.  

 
2. OBJECT INPAINTING USING ACTION 

PREDICTION METHOD 
 

A. Posture synthesis 
The problem of insufficient posture number would affect the 

visual quality of any video sequence generated by an action 
prediction-based approach. To solve the short-of-postures problem, 
we use our previous posture synthesis method [5] to enrich the 
number of postures. The main concept of a posture creation 
process is to combine the constituent parts of different available 
postures to enrich the contents of the posture database. Therefore, 
the first process is to perform appropriate segmentation on the 
postures in the database. To do a better posture segmentation job, 
we need to know the amount and speed that each component of a 
posture moves. For a component that moves significantly and 
faster, we need to take more intermediate postures to interpolate 
the gap generated by missing frames. Taking any two postures 
from the posture database, we use a bounding rectangle to bound 
each posture first. Then, we align these two bounding rectangles 
(including orientation and scale) as indicated in the middle part of 
Fig. 1. Then, we take the difference between these two postures 
and project these differences onto the y-axis as indicated at the 
right side of Fig. 1. To detect which parts of a human body move 
significantly and speed, one has to calculate the differences 
between a posture and all other database postures. These posture 
differences are all projected onto the y-axis and the accumulated y-
axis component will be like the distribution shown at the right 
hand side of Fig. 2. From the peaks and valleys of the projected 
distribution, one can segment properly a posture as indicated by 
the posture sequence shown in Fig. 3. From the segmented 
components of a posture, new postures can be synthesized by 
combining constituent components as shown in Fig. 4. 

 
Fig. 1. Project posture differences onto the y-axis. 

 
Fig. 2. Project all the differences between any two postures onto 
the y-axis. 

 
Fig. 3. The constituent components of a posture are partitioned 
based on local variance extraction.  
 
B. Graphical model construction 

After synthetic posture creation, the posture database will have 
much more number of postures. These postures can be used to 
build the graphical model (as shown in Fig. 5) of an object action. 
A graphical model provides a simple representation of an object 
action. To obtain the graphical model of an object action, we 
project all postures (including synthetic and existing postures) onto 
a feature space. Then, we link those postures that appear in 
adjacent frames in the constructed feature space. After applying the 
above procedure, we can obtain a graphical representation of an 
object action. To model the distribution of postures in the feature 
space, we need to know the distances between distinct postures. 
We use the shape context descriptor [9] to make a detailed 
description of a posture. We calculate the value of shape context 
along the silhouette of a posture. Later these shape contexts will be 
used to compare the degree of similarity between two distinct 
postures.  

 

Fig. 4. A new posture is composed of three components (head, 
body, and legs). 

 
Fig. 5. The graphical model of an object action in low 
dimensional manifold.  

   
(a) (b) (c) 

Fig. 6. Extracting the local context of a posture: (a) the object’s 
original posture; (b) the object’s silhouette described by a set of 
feature points; and (c) a shape context mask on a feature point. 

To calculate the shape context, the silhouette of a posture needs 
to be represented as a set of sampled points 1 2{ , ... }nP p p p  (as 
indicated in Fig. 6(b)). For each sampled point ip P , a 
corresponding local histogram is computed in a log-polar space (as 
indicated in Fig. 6(c)) to represent the local shape context of pi. 
The cost of matching two different sampled points which belong to 
two different postures can be defined as follows 
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where  is a permutation of 1, 2, …, n. Due to the constraint of 
one-to-one matching, shape matching can be considered as an 
assignment problem that can be solved by a bipartite graph 
matching method. Therefore, the shape context distance between 
two shapes P and Q can be computed as follows 

( ) ( )
1 1( , ) ( , ) ( , )sc i i j j

i j

D P Q C p q C p q
n m

,               (3) 

where n and m are the number of sample points on the shape P and 
Q, respectively. 

Using the shape context descriptor, we can calculate the degree 
of similarity between two distinct postures. Based on these 
similarity measures between postures, we can cluster the database 
postures. We make use of a nonlinear dimension reduction method, 
ISOMAP, to perform clustering on postures. In our application, 
existing/synthetic postures are regarded as input data points of 
ISOMAP and the distances between data points are the same as the 
similarity values between postures.  

C. Action prediction 

Based on the graphical model of an object action, we can find 
suitable postures to replace damaged/missing posture by finding an 
approximate path that can link data points xi and xj in the low 
dimension manifold. Intuitively, the reconstruction of a motion 
path can be accomplished by taking the shortest path between two 
nodes. We define two constraints to regulate the manner of the 
search process. The first constraint is to limit the search range to 
stay within a reasonable neighborhood. For all the data points on a 
trajectory, we compute all the distances between any two 
consecutive data points. The distance between any two consecutive 
data points on a trajectory can be determined by calculating the 
shape context difference between the two corresponding posture. 
Among the computed distances mentioned above, the maximum 
distance will be chosen as the search range for executing the first 
constraint. Therefore, the radius which defines the circular search 
range can be determined as follows:   

 on a complete trajectory
max

ij
ije

r e ,                       (4) 

where eij represents the distance between two consecutive points xi 
and xj on the trajectory of an object action. 

The second constraint can be applied to maintain the tendency 
of object motion in each local region. It can be realized by 
checking the motion trajectory tendency in a graphical model. In a 
low dimensional manifold, a motion trajectory does not change 
direction significantly in a neighborhood region. Based on this 
observation, we define a variance constraint of motion tendency to 
limit the variance of motion tendency in each neighborhood region. 
Fig. 7 illustrates an example of motion tendency constraint. Fig. 
7(a) shows three consecutive data points xi–2, xi–1, and xi forming a 
motion trajectory. xk is a point which is far away from the above 
three points. xi–1, xi, and xk can be connected to form a triangle (Fig. 
7(b)). 

From the basic knowledge of triangulation, if the data point xk 
is very far away from both xi–1 and xi, the distances to these two 
points, i kx x  and 1i kx x , will be close to each other. As we have 
mentioned, the motion tendency cannot change abruptly between 
two consecutive postures. This constraint can be defined as follows.  
For a random starting point xs, we select G data points which are 
far away from xs. Among these G data points, if any kx G  

satisfies , 15s kd r , then it is chosen because it passes the motion 
tendency test. Here, r is the maximum distance between adjacent 
postures defined in (4) and ds,k is the distance between xs and xk. 
With the above criterion, we calculate the distance between xs and 
each of the G chosen points. Therefore, we can obtain in total G 
distances. These G distances form a histogram to associate with 
point xs. For a candidate point xc which is nearby xs, we can also 
form a similar histogram to associate with it using the same process. 
A candidate point xc can maintain the motion tendency only if the 
value of each bin in its associated histogram is close to the value of 
each bin in the associated histogram of xs. 

 
 

(a) (b) 
Fig. 7. An example of motion tendency constraint (a) three 
consecutive data points xi–2, xi–1, and xi form a motion trajectory, 
and xk is a point far away from the above three points; (b) data 
points xi–1, xi, and xk form a triangle. 

The above process is able to keep local motion continuity. For 
maintaining global motion continuity of an object action, we 
propose a two-way prediction mechanism based on the theory of 
Markov random field. We use three time instants t–1, t, and t+1 to 
explain how the proposed mechanism operates. The forward 
direction operation proceeds as follows. At time t-1, we make 
forward prediction on each data point. The motion tendency 
constraint and the search range constraint are applied to determine 
m probable data points at next time state t. These m selected data 
points will be used further to predict the candidate data points at 
time t+1. Following the same strategy, we do similar processing in 
reverse direction and collect related information from t+1 to t, and 
then from t to t–1. With the results collected from the bi-
directional processing, we combine them and form final ranking 
for the time t. A probability value associated with each candidate 
data point is obtained by the bi-directional voting process.  

i jtt-1 t+1i+1 j-1

 
Fig. 8. The Markov network is used to build the relation 
between each local region.  

Since the above mentioned motion continuity constraint only 
works on local region, we use the Markov Random Field approach 
to achieve global motion continuity. To predict an object action, 
we make the following Markov assumption: assign one node of a 
Markov network to every time state as shown in Fig. 8. A 
constructed Markov network can reflect statistical dependencies. 
Given a set of data points located at intervening nodes, two nodes 
of a Markov network are statistically independent. Since our 
Markov network contains no loops, the above defined Markov 
assumption results in simple “message-passing” rules for 
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computing the probability during inference. The data point 
estimated at node j is 

1 1arg  max ( )
j

j j
j j j j

c
c p c M M ,                        (5) 

where jc  is the candidate point associated with node j, ( )jp c  

is the self probability of candidate point jc , and 1j
jM  is the 

message from node j-1 to node j. 1j
jM  can be calculated as 

follows: 
1 2
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where 1
j
jM  is the previous message that can be used to 

generate 1j
jM  through executing Eg.(7). 1j

jM  includes the 
probability information of all candidate data points of node k. 
The initial 1̀

j
jM  is set as a column vector with all 1s. The 

function 1 2( , , )j j jc c c  is defined as follows:  
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where  is the angle between line 1j jc c  and 1 2j jc c , u  and  
are the mean and variance of all angles in a complete trajectory 
of an object action 
 

3. EXPERIMENT RESULT 
 

To test the effectiveness of the proposed action prediction 
method, we used several test sequences to evaluate the efficacy of 
the proposed method. However, we only use one sequence to 
demonstrate the power of our approach. The sequence was 
captured by a commercial digital camcorder with a frame rate of 30 
fps, and a resolution of 352×240 (SIF). In the experiments, we first 
removed several consecutive frames to simulate a real-world 
situation in which objects in a number of consecutive frames are 
damaged due to packet loss during transmission of the video or due 
to a damaged hardware component. We applied the proposed 
action prediction method to reconstruct object actions. Besides, we 
also made a comparison between Xu et al.’s approach [8] and ours. 
For test sequence, the proposed method could keep the motion 
continuity of a reconstructed action and provided better result than 
Xu et al.’s approach. Fig. 9(a) shows some snapshots of the test 
sequence #1 and the experiment results of Xu et al.’s approach [8] 
and ours are shown in Fig. 9(c) and Fig. 9(d), respectively. 
According to the experiment result, it could be observed that the 
proposed method can maintain continuity on an action and 
provided better result than the result generated by applying Xu et 
al.’s approach. Compared with original the video, the 
reconstructed object action using our method is close to each other. 
Therefore, the proposed action prediction method is suitable for 
object inpainting which can better recover an object action and 
maintain motion continuity simultaneously. 

      
(a) 

  
(b) 

      
(c) 

      
(d) 

Fig. 9. The experiments on test sequence #1; (a) original video 
frames; (b) remove several consecutive frames (c) the result of [8]; 
and (d) the result obtained by applying the proposed method 
 

4. CONCLUSION 
 

In this paper, we proposed a novel framework for object inpainting. 
The proposed method consists of three steps: posture synthesis, 
graphical model construction, and action prediction. The advantage 
of this action prediction strategy is that it can handle the cases such 
as non-periodic motion or complete occlusion. Our experimental 
results also show that the proposed method can keep the 
reconstructed motion look continuous.  

 
ACKNOWLEDGEMENT 

 
This work was supported in part by Taiwan E-learning and Digital 
Archives Programs (TELDAP) sponsored by the National Science 
Council of Taiwan under NSC Grants: NSC99-2631-H-001-020. 

 

5. REFERENCES 
 
[1] K. A. Patwardhan, G. Sapiro, and M. Bertalmío, “Video 

inpainting under constrained camera motion,” IEEE Trans. 
Image Process., vol. 16, no. 2, pp. 545–553, Feb. 2007. 

[2] Y. Wexler, E. Shechtman, and M. Irani, “Space-time 
completion of video,” IEEE Trans. Pattern Anal. Match. Intell., 
vol. 29, no. 3, pp. 1–14, Mar. 2007. 

[3] S.-C. S. Cheung, J. Zhao and M. V. Venkatesh, “Efficient 
object-based video inpainting,” in Proc. IEEE Conf. Image 
Process., Atlanta, GA, pp. 705–708, Oct. 2006. 

[4] J. Jia, Y.-W. Tai, T.-P. Wu, and C.-K. Tang, “Video repairing 
under variable illumination using cyclic motions,” IEEE Trans. 
Pattern Anal. Match. Intell., vol. 28, no. 5, pp. 832–839, May 
2006. 

[5] C.-H. Ling, C.-W. Lin, C.-W. Su, H.-Y. Mark Liao, and Y.-S. 
Chen, “Video object inpainting using posture mapping,” IEEE 
Conf. Image Process., Cairo, Egypt, Nov. 2009. 

[6] T. Ding, M. Sznaier, and O. I. Camps, “A rank minimization 
approach to video inpainting,” in Proc. IEEE Conf. Comput. 
Vis., Rio de Janeiro, Brazil, pp. 1–8, Oct. 2007. 

[7] L. Wang, W. Hu, and T. Tan, “Recent developments in human 
motion analysis,” Pattern Recognit., vol. 36, no. 3, pp. 585–
601, Mar. 2003. 

[8] X. Xu, L. Wan, X. Liu, T.-T. Wong, L. S. Wang, C.-S. Leung, 
“Animating animal motion from still,” ACM Trans. Graphics, 
vol. 27, no. 5, Dec. 2008. 

[9] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and 
object recognition using shape contexts,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 24, no. 4, pp. 509–522, Apr. 2002. 

428


