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Abstract:

A mathematical model is developed for predicting the temperature distribution in an aquifer thermal energy storage (ATES)
system, which consists of a confined aquifer bounded from above and below by the rocks of different geological properties.
The main transfer processes of heat include the conduction and advection in the aquifer and the conduction in the rocks.
The semi-analytical solution in dimensionless form for the model is developed by Laplace transforms and its corresponding
time-domain solution is evaluated by the modified Crump method. Field geothermal property data are used to simulate the
temperature distribution in an ATES system. The results show that the heat transfer in the aquifer is fast and has a vast effect
on the vicinity of the wellbore. However, the aquifer temperature decreases with increasing radial and vertical distances.
The temperature in the aquifer may be overestimated when ignoring the effect of thermal conductivity. The temperature
distribution in an ATES system depends on the vertical thermal conduction in the rocks and the horizontal advection and
thermal conduction in the aquifer. The present solution is useful in designing and simulating the heat injection facility in the
ATES systems. Copyright  2010 John Wiley & Sons, Ltd.
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INTRODUCTION

Heat storage in the aquifer is a promising alternative to
preserve the excess thermal energy for future demand.
The aquifer thermal energy storage (ATES) and engi-
neered geothermal system (EGS) are two techniques
among various approaches to provide efficient sources of
energy. Researches on the characterization of the aquifer
suggest that the ATES system is technically feasible.

The concept of the ATES had been implemented to
enhance the efficiency on thermal injection in compar-
ison with other conventional sources of energy. Sev-
eral studies had demonstrated the phenomenon of stor-
ing thermal energy in the aquifer through field experi-
ments and/or theoretical predictions. Molz et al. (1978)
performed an aquifer storage experiment to test the
concept of heat storage in the aquifers and to pro-
vide data for calibration of the mathematical models
describing the simultaneous transport of water and heat.
Later, Molz et al. (1979) performed the second experi-
ment consisting of an injection–production well during
two injection–storage–production cycles. Palmer et al.
(1992) did an experiment on thermal injection and storage
in shallow unconfined aquifers and measured field data
from the Canadian Forces Base Borden site. Carotenuto
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et al. (1999) presented the prototype of a geothermal con-
verter install in a geothermal well on the island of Ischia
(Italy) and also reported their experimental plant, the field
tests, and the results of finite element simulations for the
geothermal aquifer.

Bödvarsson and Tsang (1982) presented an analytical
model to investigate the advancement of thermal front
during injection of cold water into a fractured geothermal
reservoir system, which has equally spaced horizontal
fractures intersecting the injection well. Bödvarsson et al.
(1982) developed a two-dimensional transient model for
a fault-charged hydrothermal system when considering
the effects of heat losses to the confining layers. Their
model can be used to estimate the recharge rate from
the fault source and the time of evolution. Chen and
Reddell (1983) mentioned the studies related to the con-
cept of ATES (Tsang et al., 1981; Doughty et al., 1982;
Sauty et al., 1982) and the development of analytical
solutions of temperature distribution for thermal injec-
tion in petroleum engineering (Rubinstein, 1959,1962;
Avdonin, 1964; Thomas, 1967). They used a modified
graphical technique for determining the aquifer thermal
properties. They assumed that the heat transfer system
was symmetrical with respect to the middle of plane of
the aquifer, which has the upper and lower confining lay-
ers of uniform thicknesses. The transient and steady-state
solutions were then developed by the Laplace–Carson
and Laplace transforms. Ziagos and Blackwell (1986)
presented a mathematical model for describing hot fluid

Copyright  2010 John Wiley & Sons, Ltd.



SOLUTION FOR TRANSIENT TEMPERATURE IN AQUIFER THERMAL ENERGY STORAGE 3677

injected into a thin aquifer below the ground surface
with conductive heat transfer into the rocks both above
and below the aquifer. The aquifer is infinitely extended
over the horizontal domain. The ground surface has a
specified temperature while the temperatures along the
interface between the aquifer and the underlying and
overlying rocks are variable. An approximate analyti-
cal solution was provided and compared to a numerical
solution obtained from the Fourier transform. Molson
et al. (1992) presented a three-dimensional finite ele-
ment model for simulating the coupled density-dependent
groundwater flow and thermal energy transport. Their
model can be used to simulate low-temperature ther-
mal transport problems. Mongelli and Pagliarulo (1997)
proposed a simple model for describing the tempera-
ture distribution within an unconfined aquifer of semi-
infinite thickness. They provided a method to determine
the extent of the zone of influence and its magnitude for
a given set of realistic thermal and hydrological param-
eters. Chevalier and Banton (1999a, b) applied the ran-
dom walk method to study the thermal energy storage
in the aquifers. The simulation results were compared
with the analytical solution and the finite-difference solu-
tion. Based on the laboratory experiment and computer
simulation, Nagano et al. (2002) investigated the influ-
ence of natural convection on forced horizontal flow in
a saturated porous medium for an ATES system. Paksoy
et al. (2004) compared the heating, ventilation, and air-
conditioning (HVAC) system combined with an ATES
system to a conventional air-conditioning system for a
supermarket in Turkey. The result showed that the per-
formance efficiency of the HVAC system integrated with
the ATES system was almost 60% higher than that of
a conventional system. Stopa and Wojnarowski (2006)
investigated the front velocity of cold water injected
into a geothermal reservoir. They developed an analyt-
ical solution by treating the specific heat and thermal
capacity of the water–rock system as functions of tem-
perature. Brookfield et al. (2009) presented a model for
simulating the thermal pattern of the thermal stream load-
ings from both natural and anthropogenic sources. This
model can be provided against a quantitative guidance
towards establishing the essential conditions to maintain
a healthy ecosystem.

The objective of this study was to develop a mathe-
matical model for describing the temperature distribution
in an ATES system. The present model considers that
the injection well fully penetrates the confined aquifer,
and hot water is injected into the aquifer bounded from
above and below by the rocks of different properties and
thicknesses. Heat energy is thus stored in the aquifer and
partially transferred from water to rocks. An analytical
solution in dimensionless form is developed by Laplace
transforms and its corresponding time-domain solution
is evaluated by the modified Crump method (de Hoog
et al., 1982). The present solution is useful in simulat-
ing the temperature distributions in an ATES system and
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Figure 1. Schematic representation of an ATES system

assessing the influences of geological properties on tem-
perature distribution. In addition, the solution can also be
used as a preliminary tool in designing an ATES system.

ANALYTICAL STUDY

Mathematical model

A mathematical model is developed herein to simulate
the transient temperature distribution in an ATES system.
Hot water is injected into a fully penetrating well
in an aquifer bounded from above and below by the
rocks of different geological properties. Heat energy is
therefore transferred from water to rocks and stored in the
aquifer and rocks. The schematic representation of heat
injection in an ATES system is illustrated in Figure 1.
The assumptions for the model are as follows:

1. The confined aquifer is homogeneous, anisotropic, and
infinite in the horizontal extent and of a uniform thick-
ness, bm. Heat transfer processes include the horizontal
advection and thermal conduction along the flow direc-
tion in the aquifer. For the strongly anisotropic aquifer,
the horizontal permeability is much larger than the
vertical permeability. In addition, the densities of the
water and soil media are kept unchanged, and the buoy-
ancy flow is therefore negligible. The vertical flow
and thermal conduction perpendicular to the aquifer
are neglected.

2. The underlying and overlying rocks are homogeneous,
anisotropic, impermeable, and of uniform thicknesses
b1 and b2, respectively. The heat fluxes in the rocks are
mainly due to the heat gradient between the aquifer and
the rocks. Therefore, the horizontal thermal conduction
of the rocks is negligible.

3. The injection well fully penetrates the confined aquifer
and the injection rate Q is fixed.

4. The physical parameters and thermal properties of the
aquifer and the underlying and overlying rocks are
spatially and temporally invariant. The assumption is
applicable when the changes of temperatures in the
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rocks and water flow are not very large (Stopa and
Wojnarowski, 2006).

5. The thermal capacity, denoted as �c (product of density
and specific heat), is a volumetric average of water
and soil media. The aquifer porosity, n, represents the
fraction of volume occupied by the pore space. The
thermal capacity of the aquifer is thus expressed as
��c�m D n��c�water C �1 � n���c�soil.

6. The initial temperature is constant over the whole
aquifer. Neglecting heat loss, the temperature of injec-
tion water, Tin, keeps constant all the time. In addition,
the temperature in the aquifer is considered well mixed
over entire thickness.

7. Before the injection, the temperatures in both rocks are
uniformly distributed over vertical depth. Consider that
the outer boundaries of the underlying and overlying
rocks are high-permeability layers where the regional
flow enables constant temperatures.

Governing equations, initial and boundary conditions

Based on the above assumptions, the equation for
describing temperature distribution in the aquifer can be
written as follows (Özisik, 1993, p. 25):
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where the subscripts m, 1, and 2 denote the aquifer,
underlying rock, and overlying rock, respectively; T is
the temperature; � is the thermal conductivity; b is the
thickness; C is the thermal capacity; z is the vertical
distance along the injection well; r is the radial distance
from the centre of the injection well; and t is the time.
The volumetric flux per unit area in the aquifer, i.e. flow
velocity v, is Q/�2�rnbm�.

The initial temperature of the aquifer is assumed
constant, that is

Tm�r, 0� D Tm0 �2�

where Tm0 is the initial temperature of the aquifer.
The boundary conditions at the wellbore, r D r0, and

infinite radial extend, r D 1, are respectively

Tm�r0, t� D Tin �3�

and
Tm�1, t� D Tm0 �4�

where Tin is the temperature of the injection water and
Tm0 is the initial temperature of the aquifer.

For the underlying rock, the heat conduction equation
can be written as

∂2T1�r, z, t�

∂z2 D C1

�1

∂T1�r, z, t�

∂t
�5�

Neglecting the geothermal gradient, the initial condi-
tion for the underlying rock is

T1�r, z, 0� D T10 �6�

where T10 is the initial temperature.
The boundary conditions for the underlying rock are

T1�r, 0, t� D Tm�r, t� at the upper boundary �7�

and

T1�r, �b1, t� D T10 at the lower boundary �8�

For the overlying rock, the heat conduction equation
can be written as

∂2T2�r, z, t�

∂z2 D C2

�2

∂T2�r, z, t�

∂t
�9�

The initial condition for the overlying rock is

T2�r, z, 0� D T20 �10�

where T20 is the initial temperature.
The boundary conditions for the overlying rock are

T2�r, bm, t� D Tm�r, t� at the lower boundary �11�

and

T2�r, bm C b2, t� D T20 at the upper boundary �12�

Semi-analytical solutions

The normalized parameters are defined as
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Based on Equation (13), Equations (1)–(12) can be
expressed in dimensionless forms. The detailed develop-
ment of the Laplace domain solution for dimensionless
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aquifer temperature, TmD�R, p�, is given in Appendix A
and the result is

TmD�R, p� D 1

p

(
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)w
[
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with

A�p� D p C �1Dq1coth�4q1B1� C �2Dq2coth�4q2B2�
�15�

and

B�p� D ��1Dq1T10Dcoth�4q1B1�

� �2Dq2T20Dcoth�4q2B2� �16�

where p is the Laplace variable (Spiegel, 1965); Kw�Ð�
is the modified Bessel function of the second kind with
order w; q2

i D p
/

˛iD, i D 1 and 2. In addition, the
Laplace domain solutions for dimensionless temperature
distribution in the underlying and overlying rocks are,
respectively,

T1D�R, Z1, p� D sinh[q1�4B1 � Z1�]
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and
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)
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Simplified solutions

When the initial temperature in an ATES system is
uniform, that is, Tm0 D T10 D T20, the dimensionless
parameters of T10D, T20D, and B�p� are equal to zero.
The Laplace domain solutions of Equations (14), (17),
and (18) are, respectively, reduced to
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T1D�R, Z1, p� D sinh[q1�4B1 � Z1�]

sinh�4q1B1�
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and

T2D�R, Z2, p� D sinh[q2�4B2 � Z2�]

sinh�4q2B2�
TmD�R, p� �21�

If the underlying and overlying rocks are of the same
geological properties and vertical thickness, then T1 D
T2 D TR, �Z1 D Z2 D ZR, ˛1 D ˛2 D �R/CR, q1 D q2 D
qR, B1 D B2 D BR, �1 D �2 D �R, and �1D D �2D D �RD.

Defining AŁ�p� D p C 2�RDqRcoth�4qRBR�, the dimen-
sionless aquifer temperature becomes
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and the dimensionless rock temperature obtained from
Equations (20) and (21) can be reduced to

T
Ł
RD�R, ZR, p� D sinh[qR�4BR � ZR�]

sinh�4qRBR�
T
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If the radius of the injection well is negligible, i.e.
r0 ! 0, then Equation (22) reduces to
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which is identical to the equation presented in Chen
and Reddell (1983), Equation (A22) if the well radius
is infinitesimal, and the initial temperature and rock
thickness are the same. Note that detailed development
of Equation (24) is given in Appendix B.

Steady-state solution

A steady-state solution can be obtained if thermal
energy loss from aquifer into rocks at any distance r
is zero. In this case, thermal energy loss is only a
function of r in an ATES system. Thermal energy loss
from water within the aquifer must be balanced by the
loss of temperature with increasing radial distance along
the aquifer (Ziagos and Blackwell, 1986). Furthermore,
the steady-state solutions of Equations (14), (17), and
(18) are developed by applying the final-value theorem
(Spiegel, 1965). The detailed development of the steady-
state solution for temperature distribution in the aquifer
is shown in Appendix C and the result is
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Similarly, the steady-state solutions for the underlying
and overlying rocks developed from Equations (17) and
(18) are, respectively,
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NUMERICAL EVALUATIONS

Equations (14), (17), and (18) are expressed in terms
of hyperbolic cotangent and Bessel function Kw�Ð� and
their time-domain solutions may not be tractable. There-
fore, the numerical routine DINLAP of IMSL (2003)
developed based on a numerical algorithm originally
proposed by Crump (1976) and modified by de Hoog
et al. (1982) is adopted. This algorithm approximates
Laplace inversion by expressing the inverted function in
a Fourier series and accelerates the evaluation by the
Shanks method (Shanks, 1955; Yeh and Yang, 2006).
Equations (14), (17), and (18) are numerically inverted
by this routine with the accuracy of the fourth significant
digit.

Note that the Laplace domain solutions of Equations
(14), (17), and (18) include Bessel function Kw�z� of
order w, which is non-integer and depends on dimension-
less advection parameter, Q/4�nbm˛m. Using the asymp-
totic expansion for a large argument, Kw�z� is expressed
as (Abramowitz and Stegun, 1964, p. 378)

Kw�z� D
√

�

2z
e�z

{
1 C 	 � 1

8z
C �	 � 1��	 � 9�

2!�8z�2

C �	 � 1��	 � 9��	 � 25�

3!�8z�3 C Ð Ð Ð
}

,

(
jarg zj <

3

2
�

)
�28�

where 	 D 4 w2. The evaluation of an infinite sum on the
right-hand side of Equation (28) can be accelerated using
the Shanks method. This method had been successfully
applied to evaluate the analytical solutions for heat
transfer problems (Yang and Yeh, 2008, 2009a, b).

RESULTS AND DISCUSSION

Consider that the well radius, r0, is 0Ð05 m and the injec-
tion rate, Q, is 10�4 m3/s. The thickness of the aquifer,
bm, is 20 m and the thicknesses of the underlying and
overlying rocks, b1 and b2, are 50 m and 30 m, respec-
tively. Hot water at a constant temperature of 70 °C is
injected into the confined aquifer, which has an initial
temperature of 20 °C. Of particular interest, the outer
boundary temperatures of the underlying and overlying
rocks, T10 and T20 have the fixed temperatures of 21 °C

and 19 °C, respectively. They are surrounded by the high-
permeability fractured layers in the regional flow or by
the atmosphere in the outer boundary of the overly-
ing rock. The parameters and geothermal properties of
the aquifer and rocks given by Bödvarsson and Tsang
(1982) are listed in Table I and chosen to examine the
performance of the present model. The temperature ver-
sus radial distance for the aquifer is plotted in Figure 2.
Figure 2a shows that the aquifer temperature increases
with injection time and decreases with increasing radial
distance. In addition, the aquifer temperature approaches
the initial temperature at large radial distance. The figure
also shows that the aquifer temperature of the large time
case (say, t D 105 day) agrees with that of the steady-
state solution and no advective heat transfer occurs in
an ATES system when the injection time is very large.
Figure 2b shows the aquifer temperature distributions in
two cases with different rock thicknesses. The solid line
represents the case 1 with b1 D 50 m and b2 D 30 m,
while the dotted line denotes the case 2 with b1 D 50 m
and b2 D 5 m for t D 102, 103 days, and the steady-state
solution. The figure shows that the aquifer temperature
in case 1 is higher than that in case 2, indicating that
the rock thickness has an influence on the aquifer tem-
perature. In fact, such an influence is mainly arisen from
the effect of the upper boundary, which has a fixed and
low temperature. In addition, the figure also shows that
the temperatures in both the cases increase with injection
time at the same radial distance.

The curves of temperature versus radial distance and
vertical depth for the aquifer and rocks are shown in
Figure 3. The radius of influence is considered as the
distance from injection well to the location where the
temperature is increased 0Ð5 °C to the initial temperature.
Figure 3a indicates that the radii of influence are about
4Ð2 m for the aquifer (in the horizontal direction) and
2Ð9 and 23 m for the underlying and overlying rocks
(in the vertical direction), respectively, at t D 10 day.
Figure 3b shows that the radii of influence are about
12Ð5 m for the aquifer and 8 and 29 m for the underlying
and overlying rocks, respectively, at t D 100 day. The
figure also shows that the aquifer temperature distribution
strongly depends on the injection time, especially near the
wellbore. In addition, heat transfers in the underlying and
overlying rocks have influence only over small distances
from the injection well. The results demonstrate that the
development of thermal field depends on the horizontal

Table I. Parameters used in the present model

Parameter name Symbol Value

Thickness of the aquifer bm 20 m
Thickness of the rocks b1, b2 50, 30 m
Volumetric thermal capacity of the aquifer Cm 2Ð695 ð 106 J/m3Ð °C
Volumetric thermal capacity of the underlying rock C1 2Ð5 ð 106 J/m3Ð °C
Volumetric thermal capacity of the overlying rock C2 2Ð65 ð 106 J/m3Ð °C
Thermal conductivity of the aquifer �m 2Ð4 W/mÐ °C
Thermal conductivity of the rocks �1, �2 1Ð5, 2Ð0 W/mÐ °C
The aquifer porosity n 0Ð3
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Figure 2. Plots of aquifer temperature Tm versus radial distance r
for Cm D 2Ð695 ð 106 J/m3Ð °C, �m D 2Ð4 W/mÐ °C, bm D 20 m, Tin D
70 °C, Tm0 D 20 °C, and Q D 10�4 m3/s in an ATES system (a) for
b1 D 50 m and b2 D 30 m (case 1) when t D 10, 102, 103, 104, 105

(large time) days, and the steady-state solution; (b) for b1 D 50 m and
b2 D 5 m (case 2) when t D 102, 103 days, and the steady-state solution

in comparison with the case 1

advection and thermal conduction in the aquifer and
the vertical thermal conduction in the rocks. With the
physical parameters given in Table I, Figure 4 shows the
evolution of temperature profile in an ATES system at
r D 1 m. This figure exhibits that the temperature profiles
of the aquifer and rocks increase with injection time and
reach steady state when the injection time is 105 day.
It also shows that the temperature changes quickly in
the aquifer and tardily in the rocks. The changes of
temperature in the rocks are significant only near the
injection well at early time, increase with injection time,
and tend to be a linear function between the vertical
distance and the temperature at large time. The result

indicates that the temperature in the aquifer approaches
a constant value at very large time. In addition, the
temperatures in the rocks are inversely proportional to
vertical distance.

The profiles of aquifer temperature versus radial dis-
tance estimated by Chen and Reddell’s solution (1983)
(hereinafter is referred to as the CRS) and the present
solution for Tin D 70 °C, Q D 10�4 m3/s, Tm0 D 20 °C,
T10 D 21 °C, and T20 D 19 °C are shown in Figure 5.
The underlying and overlying rocks are assumed to have
the same physical properties, and the parameters of the
aquifer and rocks are listed in Table II. The figure shows
the curves of temperature versus radial distance when the
injection time t D 1, 10, or 30 days. The dotted and solid
lines denote the semi-analytical results of aquifer tem-
perature estimated by the CRS and the present solution,
respectively. Note that the CRS neglects the wellbore
radius and aquifer porosity. The figure shows that the dif-
ference in transient aquifer temperature between the CRS
and the present solution is not noticeable at r ½ 0Ð9 m
when t D 1 day, r ½ 3 m when t D 10 day, and r ½ 4 m
when t D 30 day. In addition, the difference in aquifer
temperature between the CRS and the present solution at
large time is larger than that at small time. The present
solution is of excellent prediction on aquifer temperature
distribution over the range of injection time and at any
radial distance. This result demonstrates that the temper-
ature distribution of the aquifer may be underestimated if
the radius of the wellbore is ignored in an ATES system.

To assess the effect of thermal conductivity �m on
the aquifer temperature, the profile of aquifer tempera-
ture versus radial distance in an ATES system is shown
in Figure 6, where hot water with a constant injec-
tion rate of Q D 10�4 m3/s is injected into the aquifer
with the initial temperature of 33 °C. The dotted and
solid lines denote the aquifer temperatures for the cases
of �m D 1Ð0 and 2Ð4 W/mÐ °C, respectively. The aquifer
temperature decreases quickly with increasing radial dis-
tance at a fixed injection time and increases rapidly
with injection time at a small radial distance and then
approaches a constant value at 11 and 33 m as t D 100
and 1000 day, respectively, for �m D 1Ð0 W/mÐ °C and at
14 and 40 m as t D 100 and 1000 day, respectively, for
�m D 2Ð4 W/mÐ °C. In addition, the aquifer temperature
with �m D 1Ð0 W/mÐ °C is greater than that with �m D
2Ð4 W/mÐ °C under the specific radial distance and time.
This result indicates that thermal conductivity parameter
is crucial in affecting aquifer temperature distribution.
Note that when the injection time approaches infinity,
the aquifer temperature is lower than its initial tempera-
ture of 33 °C at r ½ 130 m for �m D 1Ð0 W/mÐ °C and at
r ½ 150 m for �m D 2Ð4 W/mÐ °C. This result reflects that
the impact of boundary effect on the aquifer temperature
distribution. These analyses indicate that thermal con-
ductivity plays an important role in a porous medium. An
ATES system with a smaller thermal diffusivity has more
efficiency than that with a higher thermal diffusivity.
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Figure 3. Plots of the isotherm of the aquifer and rocks versus radial distance r and vertical distance z when (a) t D 10 day and (b) t D 100 day
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Table II. Parameters of the aquifer and the underlying and
overlying rocks, which are of the same physical properties

Parameter name Symbol Value

Thickness of the
aquifer

bm 40 m

Thickness of the rocks bR 20 m
Volumetric thermal

capacity of the
aquifer

Cm 2Ð695 ð
106 J/m3Ð °C

Volumetric thermal
capacity of the
rocks

CR 2Ð65 ð
106 J/m3Ð °C

Thermal conductivity
of the aquifer

�m 2Ð4 W/mÐ °C

Thermal conductivity
of the rocks

�R 2Ð0 W/mÐ °C

The aquifer porosity n 1

CONCLUDING REMARKS

The following conclusions can be drawn from this study:

1. A mathematical model is developed to simulate the
thermal distribution in an ATES system when hot
water is injected into the confined aquifer. The Laplace
domain solutions of dimensionless temperature are
developed by Laplace transforms and their corre-
sponding time-domain solutions are evaluated by the
modified Crump method. In addition, the steady-
state solutions for the confined aquifer and rocks are
obtained by the final-value theorem.

2. The temperature in the aquifer and rocks after the
injection of hot water increases with injection time
and decreases with both the radial and vertical dis-
tances. The vertical thermal conduction in the rocks
and the horizontal advection and thermal conduction in
the aquifer have profound effects on temperature dis-
tributions in an ATES system. In addition, the aquifer
temperature may be overestimated when ignoring the
effect of thermal conductivity.

3. The present model is useful in estimating the effects of
wellbore radius, injection temperature, thermal conduc-
tivity, rock thickness, and time on spatial and temporal
temperature distributions of the aquifer and rocks in
an ATES system. It is found that the aquifer tempera-
ture will be underestimated when ignoring the effect of
wellbore radius. Accordingly, this model is also use-
ful in designing an efficient ATES system, where the
superfluous hot water is injected into a confined aquifer
as disposal storage of waste heat energy.

NOTATION

bi thickness of the aquifer, m, i D 1, 2, or m
Bi bi/bm, i D 1, 2; dimensionless thickness
Cm ��c�m, volumetric thermal capacity of the

aquifer, J/m3Ð °C
C1 ��c�1, volumetric thermal capacity of the

underlying rock, J/m3Ð °C
C2 ��c�2, volumetric thermal capacity of the

overlying rock, J/m3Ð °C
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aquifer for �m D 1Ð0 and 2Ð4 W/mÐ °C, respectively

p Laplace transform variable
q2

i p/˛iD, i D 1 and 2
Q injection rate, m3/s
r radial distance from the centre of the injec-

tion well, m
r0 the radius of the injection well, m
R 2r/bm; dimensionless radial distance from

the centre of the injection well
R0 2r0/bm; dimensionless radius of the injec-

tion well
t injection time, s
Tm�r, t� temperature in the aquifer, °C
T1�r, z, t� temperature in the underlying rock, °C
T2�r, z, t� temperature in the overlying rock, °C
Tm0 initial temperature in the aquifer, °C
T10 initial temperature in the underlying

rock, °C
T20 initial temperature in the overlying rock, °C
Tin temperature of the injection water, °C
TmD�R, �� Tm�r, t� � Tm0

Tin � Tm0

T1D�R, Z1, �� T1�r, z, t� � Tm0
Tin � Tm0

T10D
T10 � Tm0
Tin � Tm0

T0
1D�R, Z1, �� T1D�R, Z1, �� � T10D

T2D�R, Z2, �� T2�r, z, t� � Tm0
Tin � Tm0

T20D
T20 � Tm0
Tin � Tm0

T0
2D�R, Z2, �� T2D�R, Z2, �� � T20D

TmD�R0, p� Dimensionless temperature of the aquifer
in Laplace domain

T1D�R, Z1, p�Dimensionless temperature of the underly-
ing rock in Laplace domain

T2D�R, Z2, p�Dimensionless temperature of the overlying
rock in Laplace domain

v Q/2�rnbm; volumetric flux per unit area,
m/s

w Q/4�nbm˛m; dimensionless advection
parameter

z vertical distance along the injection well,
m

Greek symbol

˛m �m/Cm; thermal diffusivity of the aquifer,
m2/s

˛1 �1/C1; thermal diffusivity of the underly-
ing rock, m2/s

˛2 �2/C2; thermal diffusivity of the overlying
rock, m2/s

˛1D 4˛1/˛m; dimensionless thermal diffusivity
of the underlying rock

˛2D 4˛2/˛m; dimensionless thermal diffusivity
of the overlying rock

A�p� p C �1Dq1coth�4q1B1� C �2Dq2coth
�4q2B2�

B�p� ��1Dq1T10D coth�4q1B1� � �2Dq2T20Dcoth
�4q2B2�

�m thermal conductivity of the aquifer,
W/mÐ °C

�1 thermal conductivity of the underlying
rock, W/mÐ °C
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�2 thermal conductivity of the overlying rock,
W/mÐ °C

�1D �1/�m dimensionless thermal conductivity
of the underlying rock

�2D �2/�m dimensionless thermal conductivity
of the underlying rock

� 4˛mt/b2
m; dimensionless time from the start

of the injecting water
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APPENDIX A

Development of Equation (14)

Equations (1)–(12) can be arranged in dimensionless
forms based on the normalized parameters given in
Equation (13). The heat balance equation of the aquifer
in dimensionless form is

∂2TmD�R, ��

∂R2 C
(

1 � 2 w

R

)
∂TmD�R, ��

∂R

C �1D
∂T1D�R, Z1, ��

∂Z1

∣∣∣∣C�2D
∂T2D�R, Z2, ��

∂Z2

∣∣∣∣
Z2D0

D ∂TmD�R, ��

∂�
�A1�

The initial condition is

TmD�R, 0� D 0 �A2�

and the boundary conditions are

TmD�R0, �� D 1 �A3�

and
TmD�1, �� D 0 �A4�

The dimensionless heat conduction equation in the
underlying rock can be written as

∂2T0
1D�R, Z1, ��

∂Z2
1

D 1

˛1D

∂T0
1D�R, Z1, ��

∂�
, ˛1D D 4˛1

˛m
�A5�

a where Z1 D �4z/bm and 0 < Z1 < 4B1.
The initial condition in dimensionless form is

T0
1D�R, Z1, 0� D 0 �A6�

and the boundary conditions in dimensionless form are

T0
1D�R, 0, �� D TmD�R, �� � T10D �A7�

and
T0

1D�R, 4B1, �� D 0 �A8�

The dimensionless heat conduction equation in the
overlying rock can be written as

∂2T0
2D�R, Z2, ��

∂Z2
2 D 1

˛2D

∂T0
2D�R, Z2, ��

∂�
, ˛2D D 4˛2

˛m
�A9�

where Z2 D 4�z � bm�/bm and 0 < Z2 < 4B2.
The initial condition in dimensionless form is

T0
2D�R, Z2, 0� D 0 �A10�

The boundary conditions in dimensionless form are

T0
2D�R, 0, �� D TmD�R, �� � T20D �A11�

and
T0

2D�R, 4B2, �� D 0 �A12�

Taking Laplace transform of Equation (A1) yields

d2TmD�R, p�

dR2 C
(

1 � 2 w

R

)
dTmD�R, p�

dR
C �1D

dT1D�R, Z1, p�

dZ1

∣∣∣∣∣C�2D
dT2D�R, Z2, p�

dZ2

∣∣∣∣∣
Z2D0

D pTmD�R, p� �A13�

and the boundary conditions after taking Laplace trans-
forms are

TmD�R0, p� D 1

p
�A14�

and
TmD�1, p� D 0 �A15�

The heat conduction equation of the underlying rock
after taking Laplace transform becomes

d2T
0
1D�R, Z1, p�

dZ1
2 D q2

1T
0
1D�R, Z1, p�, q2

1 D p

˛1D
�A16�

and the related boundary conditions after taking Laplace
transforms are

T
0
1D�R, 0, p� D TmD�R, p� � T10D

p
�A17�

and
T

0
1D�R, 4B1, p� D 0 �A18�

The heat conduction equation of the overlying rock
after taking Laplace transform is

d2T
0
2D�R, Z2, p�

dZ2
2 D q2

2T
0
2D�R, Z2, p�, q2

2 D p

˛2D
�A19�

and the related boundary conditions after taking Laplace
transforms are

T
0
2D�R, 0, p� D TmD�R, p� � T20D

p
�A20�

Copyright  2010 John Wiley & Sons, Ltd. Hydrol. Process. 24, 3676–3688 (2010)



3686 K.-Y. LI, S.-Y. YANG AND H.-D. YEH

and
T

0
2D�R, 4B2, p� D 0 �A21�

Equations (A16) and (A19) are linear second-order
homogeneous differential equations and the principle of
superposition can be applied. That is

T0
1D�R, Z1, p� D AT0�1�

1D C BT0�2�
1D �A22�

where A and B are the undetermined constants. Assume
that the eigenfunction of T

0
1D�R, Z1, p� is represented by

emZ1 with the eigenvalue m. One can substitute emZ1 into
Equation (A16) and let their corresponding m’s be equal
to šq1. Equation (A22) can therefore be obtained as

T
0
1D�R, Z1, p� D A cosh q1Z1 C B sinh q1Z1 �A23�

The undetermined constants can be determined after
substituting Equation (A23) into Equations (A17) and
(A18) and some algebraic manipulations as

A D TmD�R, p� � 1

p
T10D �A24�

and

B D �1

tanh�4q1B1�

[
TmD�R, p� � 1

p
T10D

]
�A25�

Substituting Equations (A24) and (A25) into
Equation (A23), the Laplace domain solution of the
underlying rock can then be obtained as

T
0
1D�R, Z1, p� D sinh[q1�4B1 � Z1�]

sinh�4q1B1�(
TmD�R, p� � T10D

p

)
�A26�

Based on T0
1D�R, Z1, �� D T1D�R, Z1, �� � T10D in

Equation (13), Equation (A26) can be rewritten as
Equation (17).

Similarly, the Laplace domain solution of the overlying
rock can be obtained from Equations (A19), (A20), and
(A21) as

T
0
2D�R, Z2, p� D sinh[q2�4B2 � Z2�]

sinh�4q2B2�(
TmD�R, p� � T20D

p

)
�A27�

This equation can be rewritten in dimensionless form
as Equation (18) based on Equation (13).

Substituting Equations (17) and (18) into Equation
(A13), one obtains

d2TmD�R, p�

dR2 C
(

1 � 2 w

R

)
dTmD�R, p�

dR

� q1�1D

[
�TmD�R, p� � T10D/p�

tanh�4q1B1�

]

� q2�2D

[
�TmD�R, p� � T20D/p�

tanh�4q2B2�

]

D pTmD�R, p� �A28�

Furthermore, based on Equations (15) and (16),
Equation (A28) can be expressed as

d2TmD�R, p�

dR2 C
(

1 � 2 w

R

)
dTmD�R, p�

dR
� A�p�

TmD�R, p� D 1

p
B�p� �A29�

Equation (A29) is a linear second-order differential
equation and can be solved by applying the superposition
principle. The solution of Equation (A29) in Laplace
domain includes the general solution, T

h
mD, and the

particular solution, T
p
mD. As such

TmD D T
h
mD C T

p
mD �A30�

The homogeneous equation of Equation (A29) is a
special form of Bessel equation and its solution can be
expressed as

T
h
mD D Rw

[
CIw�

√
A�p�R� C DKw�

√
A�p�R�

]
�A31�

The non-homogeneous equation of Equation (A29) can
be solved by the method of the undetermined constants
and its particular solution is

T
p
mD D � B�p�

pA�p�
�A32�

Based on the superposition principle, the Laplace
domain solution can then be obtained as

TmD D Rw[CIw�
√

A�p�R� C DKw�
√

A�p�R�]

� B�p�

pA�p�
�A33�

Substituting Equation (A33) into Equations (A14) and
(A15), the undetermined constants can be determined as

C D 0 �A34�

and

D D 1

p

(
1

R0

)w
[

1

Kw�
√

A�p�R0�

] [
1 C B�p�

A�p�

]
�A35�

Then, Equation (14) can be obtained by substitut-
ing the constants of Equations (A34) and (A35) into
Equation (A33).

APPENDIX B

Derivation of Equation (24)

Equation (22) is developed under the conditions that
the well radius is neglected (i.e. r0 D 0) and the under-
lying and overlying rocks are of the same initial tem-
perature and thickness (Chen and Reddell, 1983). Then,
Equation (22) can be reduced to

T
Ł
mD�R, p� D lim

R0!0

1

p
�

R

R0
�w

[
Kw�

√
AŁ�p�R�

Kw�
√

AŁ�p�R0�

]
�B1�
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Using the ascending series for Iw�R0� as R0 ! 0,
Kw�R0� becomes (Abramowitz and Stegun, 1964, p. 375)

Kw�R0� D �

2

I�w�R0� � Iw�R0�

sin�w��
�B2�

with

Iw�R0� D
(

R0

2

)w 1∑
kD0

(
1

4
R2

0

)k

k!�w C k C 1�
�B3�

where �Ð� is the gamma function. Substituting Equation
(B2) into Equation (B1), one can obtain

T
Ł
mD�R, p� D RwKw�

√
AŁ�p�R�

p[
21�w

√
AŁ�p�

w
sin�w���1 � w�

�

]
�B4�

Abramowitz and Stegun (1964, p. 256) provides

�u��1 � u� D �csc�u�� �0 < <u < 1� �B5�

Substituting Equation (B5) into Equation (B4) results
in Equation (24).

APPENDIX C

Derivation of Equation (25)

A steady-state solution can be obtained from the
transient solution by applying the final-value theorem
(Yeh and Wang, 2007) as

TmD�R, 1� D lim
p!0

pTmD�R, p� �C1�

Accordingly, substituting Equation (14) into Equation
(C1) yields

TmD�R, 1� D lim
p!0

{(
R

R0

)w
[

Kw�
√

A�p�R�

Kw�
√

A�p�R0�

]
[

1 C B�p�

A�p�

]
� B�p�

A�p�

}
�C2�

Abramowitz and Stegun (1964, p. 85) gives

coth�u� D 1

u
C u

3
� u3

45
C 2

945
u5 � Ð Ð Ð

C 22nB2n

�2n�!
u2n�1 C Ð Ð Ð , juj < � �C3�

where Bn is the nth Bernoulli number. With x D
�4q1B1� and y D �4q2B2�, using Equation (C3) leads

Equations (15) and (16) respectively to

A�p� D p C �1Dq1

[
1

x
C x

3
� x3

45
C 2

945
x5

� Ð Ð Ð C 22nB2n

�2n�!
x2n�1 C Ð Ð Ð

]

C �2Dq2

[
1

y
C y

3
� y3

45
C 2

945
y5

� Ð Ð Ð C 22nB2n

�2n�!
y2n�1 C Ð Ð Ð

]
�C4�

and

B�p� D ��1Dq1T10D

[
1

x
C x

3
� x3

45

C 2

945
x5 � Ð Ð Ð C 22nB2n

�2n�!
x2n�1 C Ð Ð Ð

]

��2Dq2T20D

[
1

y
C y

3
� y3

45

C 2

945
y5 � Ð Ð Ð C 22nB2n

�2n�!
y2n�1 C Ð Ð Ð

]
�C5�

When p ! 0, Equations (C4) and (C5), respectively,
reduce to

A�0� D 1

4

(
�1D

B1
C �2D

B2

)
�C6�

and

B�0� D �1

4

(
�1DT10D

B1
C �2DT20D

B2

)
�C7�

Equation (25) can then be obtained after substituting
Equations (C6) and (C7) into Equation (C2).
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