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This study utilizes the focal property of a classical Billet's split lens to create more focal points by splitting the
lens. This approach distributes the focal points circularly on the focal plane. This study explores the
characteristics of beam propagation and analytically derives the asymptotic characteristics of beam
propagation based on the stationary phase approximation and the moment-free Filon-type method. Results
show that the unique Billet's N-split lens can generate a quasi Bessel beam if the number of splitting N is
large enough, e.g., N≧24. This study also explores the diffraction efficiency of corresponding quasi Bessel
beam and the influence of aperture size. The potential advantage of proposed split lens approach is that,
unlike the classical means of annular aperture, this simple lens approach allows a much larger throughput in
creating the Bessel beam and hence the Bessel beam could have more optical energy.
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1. Introduction

Field propagation and its associated diffraction behavior are
fascinating and is a classical topic in optical research [1]. Diffraction
and field propagation have many applications in optical testing [2]
and the development of new optical devices associated with
nanotechnology [3]. For product development and practical applica-
tions, the current optical product design is still essentially based on
ray optics, while diffraction-based theory generally provides a
reference for performance limitations and baseline of resolution.
Nevertheless, the study of diffraction theory in optical fields remains
an important topic. Recent advances in the literature include the
selected works of E. Wolf [4]. To meet the demand of technology
development and academic interest, our early study explored far-
field behavior with sub-wavelength variations in which aperture
(stop) plays a key role in information retrieval [5]. Previous research
indicates that an aperture stop (circular and rectangular) and a
perfect lens are established platforms for exploring diffraction
behavior. Investigations on this topic generally fall into one of two
categories:

(1) light beams could be different, with polarized or vector
formalism;

(2) the lenses may contain aberrations, e.g., spherical aberration or
coma.

However, it is possible to adopt a different approach. This study
considers the generalization of a conventional perfect lens with split
surface profile. Lens splitting can be implemented in many different
ways, such as a configuration of Meslin's experiment or Billet's split
lens [6]. Once a lens is split in multiple pieces, the resulting
interference will involve multiple beams and the configuration of
multiple paths, creating a relatively complex situation for beam
propagation and interference. Is it possible to have simple beam
characteristics with such a complex configuration? Furthermore, could
we have a different means of controlling the beam characteristics?

The answers to the issues above could be very constructive. If we
consider the disturbance of the focal points with these split lenses,
i.e., either theMeslin or Billet design, the complexity could be greatly
simplified. This is because the focal points are located in a plane
normal to the optical axis in Billit's configuration, and distributed
along the optical axis for Meslin's configuration [6]. Both of these
configurations provide a simple means of confining the focal points
vertically or horizontally and hence, give us a basis of the first-order
optics for the analysis of beam propagation. This study presents the
results of a generalized Billet's split lens, paying special attention to
beam propagation. The generalization is implemented by splitting
the lens further, i.e., by creating more focal points on the focal plane
by distributing them circularly. The phenomena of field disturbance
and propagation associated with such a generalized split lens are
quite complicated. Our previous study explores the underlying
symmetry properties of these phenomena [7]. Note that a Billet's
split lens has already been developed for multiple imaging and
multichannel optical processing [8]. This study shows that a non-
diffracting Bessel beam [9] can be achieved by the use of such a split
lens.

The Bessel beam is novel because of its propagation invariant
since Durnin et al. [9] first reported the non-diffracting Bessel beam
generated by an annular aperture [10]. The non-diffracting Bessel
beams can also be generated by a phase optical element [11]. In
additional to Bessel beam, the non-diffracting Mathiue-Gauss and
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parabolic Gauss beams are introduced by Gutierrez-Vega et al. [12].
Moreover, the non-diffracting beam with mosaic pattern can be
created by an apertured axicon [13] and the non-diffracting vortex
beams have been studied by using an annular ring mask [14] or by
focusing an array of laser arranged in a ring [15]. The width of
annular aperture has to be small to produce a non-diffracting beam
of long range [16,17] and hence, the energy loss is large. Diffractive
optical element can generate an array of arbitrary focuses [18,19]
and it is utilized as optical tweezers to trap and arrange particles in a
particular shape [20,21], but it usually requires a complicated
iterative calculation to obtain the phase/amplitude function. The
advantage of the split lens approach is that, unlike the annual
aperture, this simple lens approach allows a much more throughput
Fig. 1. (a) Schematic diagram of the Billet's split bisector lens. F1 and F2 are the first focus and
sectors. A front view on the left side shows the arrangement of sectors with N=2, 10, and 24
of beam propagation.
in creating the Bessel beam and hence the Bessel beam has more
optical energy.

2. Theoretical formalism

To illustrate the feature analytically, first consider a conventional
focusing lens that is split into two identical halves (two sectors),
where the upper half and lower half are moved a distance d up and
down the Y-axis, respectively. This is the classical form of the Billet's
split lens [6] schematically depicted in Fig. 1(a). This spilt lens
produces a collimated uniformmonochromatic wave of wavelength λ
at two different foci, F1 and F2, in the focal plane. The diffraction theory
employed here assumes that the aperture radius aNNλ, the focal
second focus, respectively, and 2d is the separation distance between the foci of the two
, where N is the number of sectors. (b) Notation representation of the coordinate system
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length fNNa NNλ, and the Fresnel number F=a2/λf is much larger
than unity. When the (half) translation length d is zero, the two foci
will coincide and the integral representation of the disturbance U(P)
at a point P(x,y,z) in the image space is [6]

U Pð Þ = − i
λ
a2A
f 2

ei
f
að Þ2u∫1

0
∫2π

0
e−i vρ cos θ−ψð Þ + 1

2uρ
2½ �ρd ρd θ; ð1Þ

where A is the amplitude. The optical units u = 2π
λ

a2
f 2 z and v =

2π
λ

a
f

� �
r = 2π

λ
a
f

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
, denote the Cartesian coordinate posi-

tion of P (x, y, z) where x=r cos ψ and y=r sin ψ. Fig. 1(b) shows the
coordinate system. The disturbance U(P) is

U Pð Þ = C∫
1

0
e−i 12uρ

2

∫2π

0
e−i 2π

λ
a
f ρ x cosθ + y sin θ½ �

� �
dθρdρ; ð2Þ

where C = − i
λ
a2A
f 2

ei
f
að Þ2u.

There are many different ways to split a lens. The example in this
study divides the focusing lens into N equiangular sectors, and
explodes and translates each sector at distance d in the r direction
along the perpendicular bisector of the angle. Fig. 1(a) shows the
schematic layouts of the cases of N=2, 10, and 24 on the top of Fig. 1.
As a result of the ray-based analysis, the foci of all sectors form a
regular N-sided polygon on the focal plane. Therefore, the focal point
of each sector is

xm = d cosψm;

ym = d sinψm;

ψm =
2π
N

m + 1= 2ð Þ; m = 0;1;::;N−1:

ð3Þ

After applying coordinate translation and summing the contribu-
tions of all sectors, the disturbance U(P) follows

U Pð Þ = C∫
1

0
e−i 12uρ

2

∑
N−1

m=0
∫ m+1ð Þ2π

N

m 2π
N

e−i 2π
λ

a
f ρ x−xmð Þ cosθ + y−ymð Þ sin θ½ �

� �
dθρdρ:

ð4Þ

Substituting Eq. (3) into Eq. (4) leads to

U Pð Þ = C∫
1

0
e−i 12uρ

2

∑
n−1

m=0
∫ m+1ð Þ2πN
m 2π

N
e−i 2π

λ
a
f ρ r cos θ−ψð Þ−d cos θ−ψmð Þ½ �

� �
dθρdρ:

ð5Þ

After setting the interval of integration for each segment to the
same value, the term d in the brackets of exponential function is no
longer a function of m. The summation is rewritten,

U Pð Þ = C∫1

0
e−i 12uρ

2

∫
2π
N

0
eivd ρ cos θ− π

N

	 

× ∑

N−1

m=0
e−ivρ cos θ−ψ + m

2π
N

� �
dθρdρ;

ð6Þ

where vd = 2π
λ

a
f

� �
d. If the sector number N is large, ψm is

approximately equal to θ and the disturbance can be reduced

U Pð Þ = C∫1

0
e−i 1

2uρ
2−vdρð Þ∫

2π
N

0
∑
N−1

m=0
e−ivρ cos θ−ψ + m

2π
N

� �
dθ ρdρ: ð7Þ

The azimuthal integration can be done by the zero-order
Bessel function of the first kind J0 and the disturbance takes the
form

U Pð Þ = 2πC∫
1

0
J0 vρð Þe−i 1

2uρ
2−vdρð Þρdρ: ð8Þ
The following discussion uses the stationary phase approximation
to evaluate the disturbancewhen z is much larger than d/NA, where NA
is the numerical aperture. This leads to

U Pð Þ = −2πia2A
λf 2

ei
f
að Þ2u

ffiffiffiffiffiffi
2π
u

r
e−

π
4iJ0 v

vd
u

	 
 vd
u
ei

v2d
2u: ð9Þ

The amplitude can be written as

U Pð Þj j = 2πa2A
λf 2

ffiffiffiffiffiffi
2π
uj j

s
J0 v

vd
u

	 
 vd
u
: ð10Þ

When z is smaller than d/NA, use the moment-free Filon-type
method [22] or integration by parts to evaluate the asymptotic
approximation of Eq. (8) with an error of order Ο v−2

d

� �
. This leads to

U Pð Þ = − 2πCi
vd−u

ei vd−u
2ð ÞJ0 vð Þ; ð11Þ

and the amplitude is

U Pð Þj j = 2π
λ

a2A
f 2

J0 vð Þ
vd−u

; ð12Þ

Eqs. (10) and (12) show that the amplitude in the radial direction
near the optical axis is a J0 Bessel function. This profile is not a function
of u, and is collimated when the propagation distance z is smaller than
d/NA, and, conversely, the profile of J0 Bessel is a function of u−1 and
the beam propagates when z exceeds d/NA.

3. Numerical identification

This section numerically verifies the feature described above. To
meet the diffraction beam requirements, i.e., the numerical aperture
(NA) should be small (around 0.05), take a typical lens with a focal
length of a few 10 mm, e.g., f=80,000λ, such that the aperture radius
a=4000λ. Then set the (half) separation distance d=1000λ. For the
numerical example of λ= 630 nm, we have f= 50.4 mm,
a=2.52 mm, and d=0.63 mm.

Fig. 2(a) illustrates the intensity disturbance in the XY-plane of
z=0, which is the focal plane, for the case of N=10, while Fig. 2(b)
illustrates that for N=24. The plots of intensity disturbance in Fig. 2
are normalized to 100. Fig. 2(a) shows that there are ten focal spots
along the azimuthal direction because the number of sectors N is ten.
These ten spots form ten vertexes that resemble a regular ten-sided
polygon, where the circumscribed radius is d=1000λ and the center
is at the origin. On the other hand, when the number of sectors
increases, e.g., N=24, there are twenty four focal spots resembling a
better annular ring pattern with the circumscribed radius of 1000λ in
the focal plane, as Fig. 2(b) shows. The annular ring pattern is similar
to an annular slit, and the width of the slit is based on the numerical
aperture of the Billet's N-split lens. Compared with these focal spots,
the intensity near the optical axis is too dim to observe the Bessel
profile in Fig. 2.

Next, consider the intensity disturbance in the meridional plane
with ψ=0 (XZ-plane). Fig. 3(a) and (b) illustrates the cases of N=10
and 24, respectively. These figures reveal a quasi Bessel beam profile
beyond z=d/NA, particularly for N=24, which is essentially caused
by the ring-like pattern forming on the focal plane. The intensity
maximum is not located on the focal plane, but located approximately
at z=d/NA instead. The location of maximum zmax can be numerically
evaluated to be 22,187λ and 22,421λ when N=10 and 24,
respectively.



Fig. 2. Normalized intensity disturbance of the generalized N-split lens in the focal plane, where (a) N=10 and (b) N=24.
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4. Asymptotic behavior

In this section, we study the asymptotic behavior of the radial
intensity disturbance along the Z-axis at z=0, 10,000λ, zmax, 40,000λ,
60,000λ and 80,000λ are shown in Fig. 3(c) and (d) for N=10 and 24,
respectively. Note that the radial intensity within z=d/NA has been
multiplied by 100, as the plots and the regions of illustration are not
the same. Note that the asymptotic result calculated by the stationary
phase approximation is for zNNd/NA, while on the other hand, for
zbd/NA. This result is based on the moment-free Filon-type method.
Fig. 3(c) and (d) shows the asymptotic forms with dark lines. Note
Fig. 3. The intensity disturbances in themeridional plane with ψ=0 (XZ-plane) for the differe
to 100. Plots with enlarged scale are shown in (c), N=10, and (d), N=24, where the first th
approximations is denoted with solid lines. The intensity within z=d/NA has been multipl
that the error between the calculated intensity and the asymptotic
expression based on moment-free Filon-type method is already
enlarged by 100.

To indicate the beam propagation characteristics of quasi J0 Bessel,
Fig. 3(c) and (d) plots the first three roots of J0 Bessel function parallel
to the optical axis. These three roots denote the first three dark rings
of quasi Bessel beam in Eq. (12). Eq. (12) predicts that the J0 Bessel
function is not a function of z, i.e., the quasi Bessel beam near the
optical axis is collimatedwithin z=d/NA and the intensity is inversely
proportional to (vd−u)2. Indeed, the on-axis intensity increases from
the focal plane and reaches its maximum intensity when u=vd. On
nt number of split sectors, (a) N=10 and (b), N=24, where the intensity is normalized
ree dark rings of the J0 are illustrated at the bottom. The on-axis intensity of asymptotic
ied by 100 as denoted by a circle in the plots (see text).

image of Fig.�2
image of Fig.�3
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the other hand, Eq. (10) indicates that the on-axis intensity beyond
z=d/NA decays because the intensity is inversely proportional to u3/2.
The variable in the J0 Bessel function is v vd

u . Hence, the locations of
minimum in the J0 Bessel function are linearly proportional to z and

can be plotted as straight lines with slopes of
jk

d⋅2π = λ
, where jk are the

roots of J0 Bessel function [9].
Fig. 3(c) and (d) plots the first three straight lines. In the case of

N=10, three dark rings of Bessel profile are apparently near z=d/NA.
On the other hand, there are eight dark rings when N=24. Except for
z, which is near d/NA, these lines fit the dark rings, and present the
propagation properties of J0 Bessel beam clearly.
5. Influence of aperture size

To discuss the influence of aperture size, i.e., the radius a, on the
diverging J0 Bessel beam, we calculate the intensity disturbance in the
meridional plane with the number of split sectors N=24 and ψ=0
(XZ-plane) for different aperture radius a=40,000λ, 24,000λ and
16,000λ. In Fig. 4 in which the dimension is in a logarithmic scale, we
use the linear curves to denote the dark rings of the J0 Bessel beam. All
intensities in the frames are normalized by the maximum intensity as
the aperture radius a=40,000λ. The asymptotic approximation tells
the argument in the diverging J0 Bessel function is v vd

u , or
2π
λ d r

z where
there is no aperture radius a in this argument. In other words, the
diverging J0 Bessel beam is related to the z and r directly, instead of the
aperture radius a. However, the diverging J0 Bessel beam is starting
from z=d/NA= f·d/a. The aperture radius a, therefore, determines
the position of the diverging J0 Bessel beam and controls the beam
radius of J0 Bessel beam via z=d/NA. As shown in Fig. 4, different
aperture sizes result in different location of z=d/NA and give rise to a
minimum beam radius at z=d/NA. Consequently, a larger aperture
radius, having larger focusing power, leads to a smaller beam radius at
z=d/NA, location of the minimum beam radius.

Fig. 5 illustrates the intensity disturbance in the meridional plane
using the same parameters as in Fig. 4 except that the azimuthal angle
ψ=π/24. The J0 Bessel beams in Figs. 4 and 5 are similar within the
seventh dark ring, but they become different once away from the
Fig. 4. The intensity disturbances in the meridional plane with the number of split sectors N
which corresponds to NA=0.5, 0.3 and 0.2, respectively. The intensity is normalized by the m
solid lines also illustrate the dark rings of the J0 Bessel beam.
seventh dark ring. The difference of intensity disturbance is resulted
from the foci of split sectors. In our arrangement, there are two foci
contributing to the J0 Bessel beam in themeridionalplanewithψ=π/24.
However, there is no focus in the XZ-plane and it gives rise to the J0
Bessel beam having different intensity disturbance from that in the
meridional plane with ψ=π/24. As already shown in Fig. 2, different
intensity disturbance along different azimuthal angle occurs because of
the arrangement of the sectors.

The on-axis intensity with the number of split sectors N=24 is
shown in Fig. 6 for different aperture sizes, i.e., a=40,000λ, 32,000λ,
24,000λ, 16,000λ and 8000λ. It is to reflect the influence of aperture
size on the diverging J0 Bessel beam. The inset shows the on-axis
intensity with a logarithmic scale. All the intensities in Fig. 6 are
normalized by the maximum intensity as the aperture radius
a=40,000λ. We can readily see that all the asymptotes of oscillating
curves overlap when z is beyond d/NA. The inset with a logarithmic
scale shows clearly the overlapping of the on-axis intensity with
different aperture radius.

In short, the aperture size determines the ranges of the asymptotic
solution of the J0 Bessel beam generated by the Billet's N-split lens.
Moreover, a larger aperture radius, having larger focusing power,
leads to a larger maximum on-axis intensity near z=d/NA. Note that
the location of the maximum on-axis intensity is close to z=d/NA, not
really on z=d/NA.

6. Conclusions

In conclusion, this study shows that it is possible to generate a
quasi J0 Bessel beam using a Billet's N-split lens that introduces a
monochromatic plane wave to a ring-like pattern on the focal plane
when N is large enough, e.g., 24. This study derives the asymptotic
characteristics of beam propagation for the quasi J0 Bessel beam from
the stationary phase approximation and the moment-free Filon-type
method.

Results show that the beam is collimated within z=d/NA, i.e., the
dark rings of the J0 Bessel beam result in straight lines that are parallel
to the optical axis. On the other hand, the beam begins to diverge as
zNd/NA, and the dark rings of J0 Bessel beam lead to straight lines with
=24 and ψ=0 (XZ-plane) for the aperture radius at a=40,000λ, 24,000λ and 16,000λ
aximum intensity of the case with a=40,000λ. The logarithmic scale is used here. The

image of Fig.�4


Fig. 5. The intensity disturbances in themeridional plane with the number of split sectors N=24. The parameters were the same as in Fig. 4 except that the azimuthal angle ψ=π/24.
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intrinsically-determined slopes. Moreover, the oscillatory property of
the on-axis intensity could be deduced, i.e., it increases from the focal
plane to a maximum at z~d/NA, while changed to oscillate
downwardly as zNd/NA. The aperture radius determines the location
of d/NA and controls the minimum radius of J0 Bessel beam. As
expected, larger aperture radius result in smaller beam radius at z=d/NA
and larger on-axis intensity near z=d/NA because of larger focusing
power.

It is interesting to note the fraction of total energy encircled within
a circle of radius v about the optical axis in the detecting XY-plane
u=constant. Table 1 shows the fraction of encircled energy within
the third dark ring v=vj3= j3·u/vd and the seventh dark ring
v=vj7=j7·u/vd for N=10, 24 and N→∞ at u=2d/NA=20,000λ.
AsN→∞, there is 5.5% and 13.5% of total energy encircledwithin three
dark rings and seven dark rings, respectively. If we place a second
focal lens with a focal length f2 such that the front focal plane of the
Fig. 6. The on-axis intensity for the aperture radius at a=40,000λ, 32,000λ, 24,000λ, 16,0
intensity is normalized by the maximum on-axis intensity of the case with a=40,000λ. Th
second lens is the back focal plane of the first split lens [9]. The
effective radius [16] on the second lens is Reff=d± f2 λ/Δd~20,516λ
in our notation with f2=30 cm and Δd~1.22λ/NA~24.4λ. Noting that
d is the radius instead of the diameter of the ring. The corresponding
fraction of encircled energy within Reff is now 81.68% as N→∞. The
generation of quasi Bessel beam has a good utilization of incident
energy. Noting that, the Bessel beam generated by a diffractive phase
element can possess a high diffraction efficiency of up to 93.12% [19].

Finally, note that a segmented-aperture optical system in which
phase-shifting material fills each segmented region [23,24] makes it
possible to realize the generalized Billet's N-split lens and create a quasi
Bessel beam. The phase-shifting material could be liquid crystal for this
study. It is still worthwhile to highlight again that the benefit of current
split lens approach is that, unlike the annual aperture, this simple lens
approach allows a much large throughput in creating the Bessel beam
and hence the Bessel beam could have more optical energy.
00λ and 8000λ which corresponds to NA=0.5, 0.4, 0.3, 0.2 and 0.1, respectively. The
e inset displays the logarithmic scaling for the on-axis intensity.

image of Fig.�5
image of Fig.�6


Table 1
Fractions of energy at z=2d/NA for N=10, 24 and ∞, where the aperture radius
a=4000λ.

N=10 N=24 N→∞

vj3 0.0069 0.0471 0.0550
vj7 0.0449 0.1149 0.1353
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