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We report our measurements of thermopower, S�T�, on a series of indium tin oxide thin films from
300 down to 5 K to extract the carrier concentration n. The temperature behavior of S�T� below 300
K can be essentially described by a prevailing linear diffusive contribution. In this wide temperature
interval, the phonon-drag thermopower is negligible relative to the diffusive thermopower.
Therefore, the free-electronlike characteristic is clearly addressed. It should be stressed that linearity
in Sd from liquid-helium temperatures all the way up to room temperatures is seldom seen even in
simple metals. © 2010 American Institute of Physics. �doi:10.1063/1.3524522�

I. INTRODUCTION

Indium tin oxide �Sn-doped indium oxide or ITO� films
exhibiting high visible transparency and low electrical resis-
tivity, �, have been extensively utilized in optoelectronic ap-
plications. The resistivity of high-quality ITO films can be
made to be as low as �100–200 �� cm at room tempera-
ture, while the carrier concentration, n, can be raised to be as
high as �1020–1021 electrons /cm3 and essentially indepen-
dent of temperature.1–4 Surprisingly, this seemingly complex
and doped oxide material is actually theoretically predicted
to possess a free-carrierlike �i.e., parabolic� energy band
structure.5,6 Therefore, in addition to the technological as-
pects and applications, ITO is scientifically alluring and
simple for the investigations of fundamental physics prob-
lems. Conventionally, the free-carrierlike, and thus metallic,
behavior of ITO has often been studied by comparing the
measured ��T� with the Bloch–Gruneisen law derived from
the Boltzmann transport equation.7 This experimental ap-
proach, while confirming the metallic feature �i.e., decreas-
ing � with decreasing temperature� of ITO, does not explic-
itly illustrate the free-carrierlike characteristic of the
electronic energy band structure. In this work, we report our
measurements of thermopower �Seebeck coefficient�, S�T�,
on a series of 21-nm-thick ITO films from 300 down to 5 K
to explicitly demonstrate this unique and novel material
property. It should be noted that recent thermopower mea-
surements on ITO had focused on temperatures above 320
K,8,9 and did not aim to address this fundamental question.
Notice that our films are very thin �as compared with those
previously studied by other groups,1–4 yet they are of high
metallic quality.

II. EXPERIMENTAL METHOD

Our 21-nm-thick ITO �In91.8Sn8.2O150−�� films were de-
posited by rf sputtering on glass substrates and were supplied
by the AIMCORE TECHNOLOGY Corporation �Hsinchu,
Taiwan�. They had room temperature resistivities of
�210 �� cm. The as-grown films were thermally annealed

in either air or a flowing oxygen gas for 1 h at several dif-
ferent temperatures between 100 and 500 °C. After anneal-
ing, the samples were cooled down to room temperature at a
rate of 5 °C /min in air or O2 gas. The thermopowers of our
ITO films were measured by a steady dc technique, as de-
scribed previously.7 Four-probe Hall effect measurements
were performed on a standard closed-cycle refrigerator
equipped with a 1.2 T electromagnet. Rectangular samples of
4�13 mm2 were cut from the wafers. In order to eliminate
the effect due to any Hall probe misalignment, measurements
were carried out by applying both positive and negative cur-
rents. For the Hall resistances, we confirmed that a linear
characteristic holds between �1 and 1 T.

III. EXPERIMENTAL RESULTS

In an ideal metal with a spherical Fermi surface, S con-
tains two contributions: the diffusive thermopower due to
free carriers, Sd, and the phonon-drag thermopower, Sg, i.e.,

S = Sd + Sg = −
�2kB

2T

3�e�EF
+ BT3, �1�

where EF is the Fermi energy and B is a material dependent
constant. The asymptotic expression of the first term is valid
when T	
D �
D is the Debye temperature�, which is particu-
larly pertinent to the present study because ITO has a rela-
tively high value of 
D�1050 K.4 Notice that at T�
D, the
diffusion thermopower Sd will cross over to another linear
regime given by Sd=−�2kB

2T / ��e�EF�.10 Therefore, for typi-
cal metals with Debye temperatures lying between �200 and
�400 K,11 the measured Sd will not be linear over the large
temperature interval from liquid-helium temperatures up to
300 K.

Figure 1 shows our measured S�T� for one as-grown and
three representative O2 annealed samples. �The samples an-
nealed in air revealed similar S�T� behavior to those annealed
in O2 gas.� The symbols are the experimental data and the
solid lines are least-squares-fits to Eq. �1�. It is clearly seen
that the thermopowers are negative, indicating electron, but
not hole, conduction in this material. In particular, it is note-
worthy that S�T� is essentially linear over the wide range ofa�Electronic mail: 016287@mail.fju.edu.tw.
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our measurement temperature, which directly manifests the
combined material effect of a high Debye temperature and a
minute contribution from the phonon-drag term in ITO. Such
kind of a prevailing linearity in Sd from liquid-helium tem-
peratures all the way up to 300 K is seldom seen even in
textbook simple metals.10 This robust linearity provides a
direct and strong proof of the free-electronlike energy band
structure of ITO, as has recently been theoretically calculated
by Mryasov and Freeman,5 and Odaka et al.6 In all cases, the
phonon-drag term in our samples is very small �typically,
B�5�10−8 �V /K4� and contributes less than 10% to the
total S even at 300 K. This contribution is suppressed by the
disorder effect in ITO films in which a non-negligible level
of randomness can readily originate from Sn dopants, oxy-
gen vacancies, and grain boundaries.

A predominant linear S�Sd over a wide range of tem-
perature renders the extraction of EF very accurate, accord-
ing to the expression of Eq. �1�. The difference in the slopes
of the solid lines in Fig. 1 implies a change in EF as a result
of thermal annealing. Our extracted values of EF, together
with n, are shown in Fig. 2 �open �closed� squares for air
�oxygen� annealed films�. Here the values of n were deduced
through the free-electron-gas relation EF= ��2 /2m��
��3�2n�2/3, by taking an effective mass m�=0.4m,7 where m
is the free electron mass. Our obtained values of n �
��2–7��1020 electrons /cm3� are in good accord with
those values reported in the literature for ITO thick films2

and single-crystalline nanowires12 with compatible resistivi-
ties. Figure 2 reveals that n decreases by a factor of �4 as
the annealing temperature was raised to above 200 °C, with
a seemingly sharp drop in n occurring at an annealing tem-
perature of �150 °C. �Close inspection indicates that the
values of n for the oxygen annealed samples still decrease
slightly until an annealing temperature of 350 °C.�

We have also carried out the Hall effect measurements
on several samples to compare with the n values deduced
from S measurements. The open �closed� circles in Fig. 2
indicate the Hall carrier concentration, nH, for the air �oxy-
gen� annealed samples.13 This figure demonstrates that nH

reveals a similar trend to that of the thermopower carrier

concentration, i.e., a decrease in nH with increasing anneal-
ing temperature. The values nH��2–9��1020

electrons /cm3 are somewhat larger than the corresponding n.
Nevertheless, it is very encouraging to see that the difference
is within a factor of 1.3, except for the films annealed at
200 °C �see below�. We notice that a slight difference be-
tween n and nH is not unexpected and had previously been
observed in, for instance, In–Ti–O bulk ceramics.9 One pos-
sible origin for such a discrepancy may arise from the sim-
plified expression of Sd in Eq. �1�. Theoretically, the expres-
sion of the diffusion thermopower is more accurately written
as Sd= �−�2kB

2T / �3�e�EF���
,14where the value of the ther-
moelectric parameter 
, may differ somewhat from unity in
real metals and alloys. On the other hand, the widely used
Hall coefficient RH=1 / �nHe� is also a simplified expression.
In short, the carrier concentrations in ITO reported in the
literature have been extracted from the Hall effect measure-
ments thus far.1–4,15 The present work demonstrates that S�T�
measurement can provide a particularly reliable and alterna-
tive method for determining this important material quantity.

Finally, we notice that the extracted n and nH magnitudes
for the 200 °C annealed films vary somewhat �four of them
were cut and measured�, although the annealing conditions
were nominally the same. This result suggests that some
subtle changes in the chemical content and/or the structural
homogeneities of the sample might occur around this anneal-
ing temperature. However, such subtle changes are difficult
to detect experimentally, since our films are very thin and,
for example, the energy-dispersive x-ray spectroscopy sig-
nals are very weak. This issue requires further detailed in-
vestigations.

IV. CONCLUSION

In conclusion, we have studied the temperature depen-
dent thermopowers of a series of ITO thin films annealed
under various conditions. The temperature behavior of S�T�
below 300 K can essentially be described by a prevailing
linear diffusive contribution. This observation provides a di-
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FIG. 1. �Color online� Thermopower as a function of temperature for one
as-grown and three O2 annealed ITO films, as indicated. The solid lines are
least-squares fits to Eq. �1�.
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FIG. 2. �Color online� Variations in carrier concentration and Fermi energy
with annealing temperature, as indicated. Open �closed� squares: ther-
mopower carrier concentration n for air �oxygen� annealed films; open
�closed� circles: Hall carrier concentration nH for air �oxygen� annealed
films.
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rect and explicit experimental proof of the free-electronlike
characteristic of the energy band structure of ITO. The ex-
tracted carrier concentrations are within a factor of �1.5 of
those determined from the Hall effect measurements.
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