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ABSTRACT 

 
In this paper we propose a cascaded hierarchical framework 
for object detection and tracking. We claim that, by 
integrating both detection and tracking into a unified 
framework, the detection and tracking of multiple moving 
objects in a complicated environment become more robust. 
Under the proposed architecture, detection and tracking 
cooperate with each other. Based on the result of moving 
object detection, a dynamic model is adaptively maintained 
for object tracking. On the other hand, the updated dynamic 
model is used for both temporal prior propagation of object 
labels and the update of foreground/background models, 
which step further to help the detection of moving objects. 
The experiments show accurate results can be obtained 
under situations with foreground/background appearance 
ambiguity, camera shaking, and object occlusion. 
 
Index Terms- Background subtraction, Object labeling, 
Dynamic tracking system, and Hierarchical framework. 
 

1. INTRODUCTION 
Recently, intelligent surveillance systems are getting more 
and more popular. For a typical surveillance system, most 
cameras are kept static and several background subtraction 
algorithms, like [1-2], can be used to detect foreground 
objects. These background subtraction methods focus 
mainly on the modeling of background information, like the 
usage of the GMM model in [2] and many others. Even 
though this type of approach works pretty well for scenes 
with stationary background, it has difficulty in handling the 
appearance ambiguity [3] between the foreground objects 
and the surrounding background. Moreover, in an outdoor 
scene, occasional camera shaking caused by strong wind 
may also seriously degrade the performance of detection. 

On the other hand, many object tracking algorithms 
focus on foreground modeling. The color-based mean-shift 
tracking method [4] tries to find the image patch that best 
matches the target model. Since the background model has 
not been considered, this approach suffers from the 
foreground/background ambiguity problem, and the tracked 
result may get distracted. To improve the performance,  few 
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methods try to take into account the background model. For 
example, in [5], the authors adopted an online training 
process to select discriminative foreground features with 
respect to the surrounding background. With this 
mechanism, the foreground/background ambiguity problem 
can be relieved. But, those methods mostly focus on the 
tracking of single object. In [6], Zhao et al. proposed a 
multi-target tracking system and handled the occlusion 
among objects. However, the occurrence of new comers 
and the disappearance of tracked objects are still big 
challenges to a practical tracking system. 

In this paper, instead of individually performing 
detection and tracking, we propose a scheme to integrate 
both detection and tracking into a unified framework. The 
proposed framework adopts a temporal prediction to 
provide object-level prior knowledge and to continuously 
update the pixel-level foreground model and background 
model. Based on this scheme, the object labeling, 
foreground modeling, and background modeling are 
effectively fused together to better handle the foreground 
/background ambiguity problem. Moreover, with the 
estimated depth order, the inter-occlusion problem can be 
better solved. Also, the emergence of new comers and the 
disappearance of tracked objects are handled.  

 
Fig. 1: Proposed scheme for object labeling and tracking. 

 
 

2. PROPOSED SCHEME AND 
FOREGROUND/BACKGROUND LABELING 

The proposed scheme is illustrated in Fig. 1. This scheme 
contains two major parts: the inter-frame part and the intra-
frame part. The inter-frame part handles how a temporal 
message is propagated between successive frames; while 
the intra-frame part deals with object labeling. In this 
section, we focus on the description of the intra-frame part, 
which involves foreground model, background model, 
spatial MRF (Markov random field) constraints, and 
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temporal prior message. In the next two sections, we will 
explain the details of the inter-frame part. 

In this paper, we assume cameras are static but may 
suffer from slight shaking caused by winds or other factors. 
Hence, the background in the captured images may be 
trembling all the time. To handle this non-stationary 
background, we adopt Sheikh and Shah’s approach [7] with 
some modifications to construct a joint spatio-chromatic 
probability distribution of multiple foreground/background 
objects based on kernel density estimation. By combining 
the spatial location (x,y) and the pixel color values (r,g,b) 
into a five-dimensional random vector c =(x,y,r,g,b), the 
joint spatio-chromatic probabilities are defined as   
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where B and g
F

 denote the background and the gth 
foreground, respectively. 0

F
 is especially designed for 

new comers. In Eq. (1), (.) is a symmetric and normalized 
kernel function, Bic  denotes one of the n background 

samples, g
Fic  denotes one of the m foreground samples of 

the gth target, G is the number of foreground objects in the 
current image, and U-1 describes a uniform distribution over 
the five-dimensional domain. Based on the above definition, 
the spatial uncertainty caused by camera shaking and the 
chromatic uncertainty caused by lighting change can be 
properly modeled.  

In our approach, object detection is treated as a 
classification problem. Besides background model p( c | B) 
and foreground models p( c | g

F
), we also take into 

account current observation, spatial smooth constraint, and 
temporal prior knowledge. As shown in Fig. 1, we adopt a 
3-layer structure at each time instant. The top layer C 
represents the observation layer at that time instant. In our 
approach, we assume C contains the spatio-chromatic 
information of the observed image data. The middle layer L 
contains the classification label for each image pixel. In 
principle, we aim to assign to each labeling node Li a 
suitable ID from the set {

B
, 0

F
, …, G

F
}. The bottom 

layer P represents the predicted label messages propagated 
from the previous time instant. To find out a suitable 
classification label L under the given image observation C 
and the predicted labels P, we solve the following MAP 
optimization problem:   
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where p(C|L) is the likelihood terms and p(L|P) denotes the 
label messages form temporal prior. Since p(P) is a 

constant, it can be ignored. In our approach, once if L is 
given, we assume the conditional probability density 
function of the observation data at two different pixels are 
independent of each other. We also assume the data 

ic  at 
Pixel i does not depend on the labels at other pixels. With 
these two assumptions, we define  
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where K is the total number of image pixels. ED[
ic ,Li] is the 

“classification energy” for the labeling node Li and the 
feature data 

ic  at the ith pixel. Here, we define ED[
ic ,Li]  as 
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On the other hand, we define the “adjacency energy” 
EA[

ic ,Li;Ni] based on a 4-neighbor MRF model [8], where 
Ni denotes the connectivity neighborhood of Pixel i. That is,   
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where  is a normalized constant,  is a small constant to 
avoid division by zero, and ( )  is defined as  
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In principle, EA[
ic ,Li;Ni] denotes the spatial correlation 

between pairs of classification labels (Li,Lj). This energy 
softly forces neighboring pixels to share the same label, 
especially when they have similar spatio-chromatic features.  

In addition, p(L|P) represents the expected labeling map 
based on the previous prediction. Here, we assume the 
predicted image location of each foreground object at the 
current instant t could be modeled as probability pg(x,y;t); 
the gth object at time instant t-1 is bounded by a compact 
rectangular box RBg;t-1 around the gth object. The extraction 
of pg(x,y;t) and RBg;t-1 are to be explained later. To model 
p(L|P), we adopt the Monte Carlo based method to draw 
many expected labeling samples and approximate p(L|P) in 
a sample-based manner. To generate a labeling sample, we 
draw a location sample (xs,ys)g from pg(x,y;t) for each object, 
and warp the center of RBg;t-1 to (xs,ys)g. While the 
rectangular boxes get overlapped, inter-occlusion is 
expected to occur and the depth order is needed to 
determine the occlusion pattern. Here, we adopt the 
Bhattacharyya coefficient (BC) based metric [4] to 
determine the depth order. If a predicted target region is 
more similar to its target model in appearance, that target 
has a higher possibility to be the object that occludes the 
others. In detail, for a target g, we measure the 
Bhattacharyya coefficient at location (xs,ys)g as  

, ,( ) ( ; ) ( ; )
s s s sx y x yg h z g p z g dz ,                      (7) 

where 
, ( ; )

s sx yh z g  is the normalized color histogram of the 

image region inside the warped RBg;t-1 centered at (xs,ys)g, 
p(z;g) is the normalized color model of target g, and z  
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denotes a possible (r,g,b) color feature. Here, p(z;g) is 
derived from the foreground model of the target g based on 

( ; ) ( | )g
Fp z g p c dxdy .                         (8) 

By comparing the BC values among inter-occluded objects, 
the depth order is determined and an expected labeling 
sample is generated. By accumulating the occurrence 
number of different labeling IDs at each pixel from many 
expected labeling samples, we can model p(L|P) to well 
handle occlusion. In Fig. 2 we show an example of p(L|P). 
 

 
(b) (c) 

  
(a) (d) (e) 

Figure 2. (a) Test image. (b)An expected labeling sample of (a). (c) 
Estimated p(L|P) for L=

B
 or 0

F
. (d) Estimated p(L|P) for 

L= 1
F

.  (e) Estimated p(L|P) for L= 2
F

. 
 

Based on Eq. (1)~(8), we form the formulae for MAP 
optimization. We adopt the Graph Cuts method [8] to find 
the optimal label L* that maximizes Eq. (2). Based on the 
classified labels, we detect foreground objects. Moreover, 
for each non-occluded foreground object, the rectangular 
box RBg;t at the current time t is estimated from the vertical 
and horizontal projection histograms of its foreground region. 
For both vertical and horizontal directions of RBg;t, we search 
for the minimum continuous-valued ranges that can cover 
95% energy of the projection histograms. For occluded 
objects, the size of rectangular box remains the same value at 
the previous time instant but the center of the box is shifted to 
the new object center. Besides, we also identify the new 
comers by evaluating the vertical projection histogram of the 
foreground region with the ID 0

F
. 

 

3. OBJECT TRACKING 
As mentioned above, the predicted temporal prior P at the 
current frame is warped from the classification results L* at 
the previous frame. To provide the temporal message and to 
model the inter-frame relation, a dynamic tracking model is 
maintained for each foreground object. Moreover, since 
there could be some errors in the prediction of foreground 
movement, the result of classification labeling is fed back 
to update the dynamic models of foreground objects. Under 
the proposed architecture, object tracking is actually treated 
as the temporal prediction and update of object labels.  

To design a tracker for each foreground object, the 
Bayesian-based filters are widely used. In this work, we 
adopt the Kalman filter for the sake of computational 
complexity.  Here, we define St=(xt,vt) as our motion state, 
including object center xt=(x,y) and object velocity 
vt=(vx,vy). Based on the Kalman filter updating rule, F(.), 

for each object, the optimal estimation of object motion 
state St is determined by 

| | 1( , , )t t t t t tS F S K z ,              (9) 

where St|t-1  is the optimal prediction of St based on its 
previous motion state St-1|t-1; zt is the observed object center 
determined by the object detection in Eq. (2); Kt is the 
Kalman gain. With the Kalman filter, the probability of the 
predicted location of gth object pg(x,y;t) is modeled by a 
Gaussian distribution N(x t|t-1,Qk), with the covariance of the 
noise process Qk. Due to the limit of space, the detail of the 
Kalman filter is not stated here.  

To explain the interaction of object detection and 
tracking, we assume the classification label L* at time 
instant t-1 has been determined. Based on the classified 
label L*, a few foreground objects are detected. For each 
foreground object, we calculate its RBg;t-1 and measure its 
object-mass-center (OMCt-1) as the observation data zt-1. At 
the current time instant t, we track the location of each 
foreground object based on its OMCt-1 and RBg;t-1.This 
object tracking process consists of the following 4 major 
steps. An illustration of this object tracking process is 
shown in Fig. 3.  

 
Fig.3: Illustration of the tracking process. 

 

Step1: Creation/Update/Deletion of Tracking Model 
For new comers, their Kalman trackers are created. Next, 
for each foreground object, its OMCt-1 is used to update 
the tracking model. Based on the updated model, we draw 
255 predicted locations PL’s from pg(x,y;t). For objects 
having no motion for a long enough period or moving out 
the scene, their tracking models are deleted. 
Step2: Temporal Propagation of Foreground Labels 
Based on the PL’s, the RBg;t-1’s at time t-1 are warped to 
their new location at time t to construct the expected 
labeling map p(L|P) at time t. 
Step3: Update of object models  
Based on classification label L* at time t-1, we update 
both foreground and background classification models. 
Moreover, we predict the location and appearance of each 
foreground object and update its foreground model before 
detection. The detail is described in Section 4. 
Step4: Foreground/Background Labeling 
At time t, we deduce the optimal classification label L* 
based on the optimization of Eq. (2). From the optimal L*, 
we detect a set of foreground objects at the current time t.  
 

4. UPDATE OF OBJECT MODELS 
To adapt to a varying environment, the foreground model 
and background model in Eq. (1) should be updated all the 
time. Traditionally, model updating is performed after the 
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detection stage. This makes it very difficult to handle the 
foreground/background ambiguity problem. On the 
contrary, we update the foreground model before we 
perform object labeling. That is, if the foreground object is 
currently at xt|t and we predict the optimal location of this 
object will move to xt+1|t, we adjust the foreground model 
accordingly so that p( | g

Fc ) will be high around both xt|t 
and xt+1|t. With this mechanism, if the foreground object 
happens to move into some background region with a 
similar appearance, both p( c | B) and p( | g

Fc ) will be 
high within the ambiguous region. The update of 
foreground model will reduce the probability that a 
foreground region being mistakenly classified as a 
background region. Moreover, since the prediction layer P 
also provides useful prior knowledge about the predicted 
location of foreground objects, the foreground/background 
ambiguity problem can be more effectively solved.  

On the other hand, we update the background model 
p( c | B) based on the result of foreground/background 
labeling. In our approach, only those pixels labeled as 
background pixels will be considered in the update of 
background model. Occasionally, a foreground object may 
become a part of the background, like the situation that a 
car parks in the scene for a long time. For this kind of 
situation, we may simply check whether the foreground 
object has been motionless for a long enough period. If so, 
the features of the foreground object can be added into the 
background model. 

 
5. EXPERIMENTS RESULTS  

We test our system over the IBM datasets [9], OVVV 
datasets, and our own datasets. We also do comparison with 
the GMM method [2], as shown in Fig 4. In Fig 4(b,c), due 
to the appearance ambiguity between foreground object and 
background, the GMM method generates fragmented 
results. Instead, our method well adopts the object prior 
from temporal and can still robustly detects the whole 
foreground object. In Fig 4(a,b), our labeling results clearly 
identify the inter-object occlusion and the depth order. 
Moreover, in Fig 4(d), owing to camera shaking, the GMM 
method generates lots of false detections. With the use of 
the kernel function in Eq. (1), the proposed method 
generates reliable detection result. Besides, our system can 
detect the new comers or the vanishing objects 
automatically. In fact, an object is leaving in Fig 4(a). To 
quantitatively evaluate our system, we use the ground truth 
and the metrics proposed by IBM [9]. The evaluations are 
listed in Table 1. Currently, the whole system is 
implemented in Visual C++ on a PC with a 2.4 GHz CPU. 
It takes about 1 second to perform the detection and 
tracking for a 320x240 color image frame. For more 
experimental results, please visit our website at 
http://140.113.238.220/~chingchun/projects.html. In the future, 
we plan to move our system to a GPU based platform.  

 

(a)

(b)

(c)

(d)

Fig. 4. Experimental results. 1st, 2nd, and 3rd columns are the 
tested sequences, our results, and results of [2], respectively. (a) 
OVVV dataset. (b)(c) IBM dataset. (d) Our outdoor dataset. 
Tracking results are shown as white curves in the 2nd column. 
 
Table. 1. Evaluation of 5 tested sequences. (a)(b)(c)IBM 
“Line_Circle”, “Splite”, and “Circle” sequences. (d)(e)Two 
OVVV sequences. The adopted IBM metrics are frames number 
(FraN), true positive (TP), false positive (FP), false negative (FN), 
Track TP (TTP), Track FP (TFP), and Track FN (TFN)  [9]. 

Seqs FraN TP FP FN TTP TFP TFN
(a) 415 377 4 / 415 8 / 377 2 0 0 
(b) 352 372 8 / 352 12 / 372 3 0 0 
(c) 371 657 17 / 371 11 / 657 3 0 0 
(d) 300 750 1 / 300 0 / 750 3 0 0 
(e) 1000 2746 0 / 1000 32 / 2746 17 0 1 
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