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The problem of two-dimensional groundwater flow in a heterogeneous unconfined aquifer under peri-
odic random forcing in time is analyzed from a stochastic point of view. It is assumed that the periodic
random forcing, namely random recharge, can be represented by a sinusoidal function in time. Analytical
solutions are developed through the nonstationary spectral approach in conjunction with the principle of
superposition. The results, namely the variances of hydraulic head and specific discharge, are expressed
in terms of statistical properties of hydraulic parameters and recharge field. It can be concluded from the
analytical results that the mean recharge rate and integral scale of spatially random recharge fluctuations
play essential roles in enhancing the variability of hydraulic head and specific discharges.
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1. Introduction have been based on the deterministic approach. Heterogeneity has
The change of water table in response to periodic forcing (e.g.,
seasonal recharge and tides) commonly occurs in many groundwa-
ter basins. The prediction of the aquifer response to periodic forc-
ing is an intrinsic part of the procedure for determining a proposed
management policy. Under realistic field conditions, there always
exist uncertainties associated with heterogeneities in permeability
and parameters that affect the flow process in nature and make the
prediction uncertain. Not accounting for the heterogeneity effects
(uncertainties) in the modeling process may result in significant
errors in the prediction. Hence, there is a need to quantify the reli-
ability (uncertainty) of the flow model.

One possible approach to quantify uncertainty due to the spatial
heterogeneity of subsurface systems is to treat the natural hetero-
geneity in a stochastic sense. Within the stochastic framework, we
seek the solution of the groundwater flow problem expressed in
terms of the variance of spatial random hydraulic head fields
(the reliability or the model error) to be anticipated in applying
the flow model. The variance of spatial random fields may be also
viewed as the characterization of large-scale spatial variability
associated with predictions when the model is subject to spatial
heterogeneity.

All the modeling efforts devoted to the issue of aquifer response
to periodic forcing (e.g., Townley, 1995; Trefry, 1999; Smith, 2008)
ll rights reserved.
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been shown to play an important role in the analysis of the behav-
ior of groundwater flow (Dagan, 1989; Gelhar, 1993; Zhang, 2002;
Rubin, 2003). The applications of stationary spectral transfer func-
tion to the analyses of temporal and spatial variations of ground-
water quantity and quality subject to a time-varying source have
been presented by Gelhar (1974) and Duffy and Gelhar (1985).
On the other hand, Zhang and Li (2005) have adopted the
nonstationary spectral method (Li and McLaughlin, 1991, 1995)
to numerically study temporal scaling of the hydraulic head fluctu-
ations due to natural groundwater recharge and discharge. How-
ever, no attempt has been made so far, to the best of our
knowledge, to analytically investigate the effect of random hetero-
geneity on the reliability of the flow model prediction (or on the
spatial variability of large-scale flow model) subject to spatially-
random periodic recharge, which is the task undertaken here.

It is well known that the introduction of a forcing term, for
example groundwater recharge, leads to nonuniformity in the
mean gradient of hydraulic head, and results in nonstationary in
the statistics of random hydraulic head and velocity fields (e.g.,
Hantush and Marino, 1994; Rubin and Bellin, 1994; Li and Graham,
1998, 1999; Destouni et al., 2001; Chang and Yeh, 2008; Trefry
et al., 2010). As such, the aim of the present work is to apply the
stochastic method to the analysis of the large-scale behavior of
flow in a two-dimensional heterogeneous unconfined aquifer
under spatially-random periodic recharge. In this study the
nonstationary spectral approach (Li and McLaughlin, 1991, 1995),
based on an unknown transfer function involving in Fourier–Stieltjes
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representations for the perturbed quantities, in conjunction with
principle of superposition is used to develop closed-form expressions
in characterizing variability of hydraulic head and specific dis-
charges. The closed-form expressions, to the best of our knowledge,
have never before been presented. The results will provide some
basic understanding of the influence of heterogeneity in spatially
random recharge on the large-scale flow process in a heterogeneous
unconfined aquifer and a basis for judging reliability of large-scale
flow models.

2. Statement of the problem

Under the Dupuit assumption of horizontal flow, the governing
equation for water table fluctuations in an unconfined aquifer can
be described by (e.g., Bear, 1979)

@

@Xi
KðXÞ/ @/

@Xi

� �
þ RðX; tÞ ¼ Sy

@/
@t

i ¼ 1;2 ð1Þ

where / is the hydraulic head, K is the hydraulic conductivity, Sy is
the specific yield and R is a distributed recharge term. The variabil-
ity of Sy is assumed negligible. To simplify the analysis we linearize
(1) as

@

@Xi
TðXÞ/ @/

@Xi

� �
þ RðX; tÞ ¼ Sy

@/
@t

ð2Þ

where T denotes the transmissivity of the unconfined aquifer. Bear
(1979, p. 115) noticed that the approximation involved in the line-
arization is justified in view of the relatively small changes in /
with respect to the total thickness of / in most phreatic aquifers.
In terms of ln T, (2) can be rewritten as

@2/

@X2
i

þ @ ln T
@Xi

@/
@Xi
þ R

T
¼ Sy

T
@/
@t

ð3Þ

In the analysis that follows, the /, ln T and R random fields in (3) are
considered to be space functions. In addition, the natural logarithm
of transmissivity (ln T) is modeled as a second-order stationary ran-
dom field with the known covariance function (or spectral density
function). The log transmissivity and recharge fields are
uncorrelated.

We express the /, ln T and R random fields in (3) in terms of an
ensemble mean and a small perturbation around the mean,

/ðX; tÞ ¼< / > ðXÞ þ hðX; tÞ ¼ HðXÞ þ hðX; tÞ ð4aÞ

ln TðXÞ ¼< ln T > þyðXÞ ¼ Y þ yðXÞ ð4bÞ

RðX; tÞ ¼< R > þrðX; tÞ ¼ Rþ rðX; tÞ ð4cÞ

where < > stands for the expected value operator. By substituting
(4a)–(4c) into (3), taking the expected value and disregarding all
products of perturbations, one obtains the first-order deterministic
mean flow equation

@2H

@X2
i

þ R

eY
¼ Sy

eY

@H
@t

ð5Þ

Subtracting this mean equation from (3) and disregarding all prod-
ucts of perturbations, leads to a first-order equation describing the
hydraulic head fluctuations

@2h

@X2
i

þ @y
@Xi

@H
@Xi
� R

eY
yþ r

eY
¼ Sy

eY

@h
@t
� y

@H
@t

� �
ð6Þ

The analyses in this study are limited to small perturbations in
hydraulic properties, assuming that the variance of log hydraulic
conductivity is smaller than unit (weak heterogeneity) so that sec-
ond-order terms (products of the perturbations) in the flow equa-
tion are negligible. However, Zhang and Winter (1999) found it to
be accurate for the head variance solutions for the value of variance
of log hydraulic conductivity as high as 4.38. A similar finding was
reported in Gelhar (1993).

By regarding the @H/@t term in (5) and (6) slowly varying in
time and, for convenience, rotating the coordinate system so that
X1 is aligned with the mean flow, these simplify (5) and (6) consid-
erably to

@2H

@X2
1

þ R

eY
¼ 0 ð7Þ
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� J
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eY
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ð8Þ

where J = �@H/@X1. Eq. (8) is a random partial differential equation
that relates output fluctuations in h to variations in inputs y and r.
Upon solution of (8), one can develop expressions characterizing
the variability of head and specific discharge fluctuations.

In attempting to arrive at the solution of (8), one must know the
spatial behavior of the mean gradient J(X1), which is determined
from solving (7) with the boundary conditions. It is straightforward
to verify that the solution to (7) is

JðX1Þ ¼ �
@H
@X1
¼ R

eY
ðX1 � X0Þ þ J0 ð9Þ

where J0 is the known value of reference mean head gradient at the
arbitrary location X1 = X0. Note that the solution of (7), (9) was given
by Rubin and Bellin (1994, equation 5).
3. Solution for the head fluctuations

The approach followed is to solve the perturbation Eq. (8) to
fully characterize the second moment of h fluctuations. This task
will be performed using the nonstationary spectral approach (Li
and McLaughlin, 1991, 1995) in conjunction with principle of
superposition (e.g., Townley, 1995; Trefry, 1999; Smith, 2008).

The usefulness of the principle of superposition in the solution
of a linear equation has long been recognized in groundwater
hydrology. Based on this principle, a complex equation can be di-
vided into sub-equations and the solution to the original equation
is then obtained by summing the individual solution to each of the
sub-equations. Following the approach of Townley (1995) we re-
place h(X, t) in (8) by

hðX; tÞ ¼ hsðXÞ þ hsðX; tÞ ð10Þ

Separation of the steady-state and time-varying components yields
following two differential equations:

@2hs

@X2
i

� J
@y
@X1
� R

eY
y ¼ 0 ð11Þ
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@X2
i

þ r
eY
¼ Sy

eY

@hs

@t
ð12Þ

Based on the assumption of uniform mean flow, the Fourier–
Stieltjes integral representations of statistically homogeneous pro-
cesses is one of the most successful approaches in solving the
small-perturbation expansion of the flow equation (e.g., Bakr
et al., 1978; Mizell et al., 1982; Gelhar and Axness, 1983). Notice
from (9) that the introduction of the effect of recharge results in
nonuniform mean flow. This excludes the direct applicability of
the stationary spectral method to solve (11). However, the solu-
tion of (11) can be obtained using the nonstationary spectral rep-
resentation (Li and McLaughlin, 1991, 1995), which is expressed
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in terms of an unknown transfer function determined from the
solution of a linearized flow equation.

By using this representation, the random fluctuation hs in (11)
is expressed in terms of two-dimensional wave number integral as

hsðXÞ ¼
Z 1

�1
UhyðX;KÞdZyðKÞ ð13Þ

where Uhy(X, K) is an unknown transfer function, dZy(K) is the com-
plex Fourier amplitude of ln T, K = (K1, K2) is the wave number vec-
tor and K2 ¼ K2

1 þ K2
2. In addition, the stationarity of the ln T allows

the following Fourier–Stieltjes representation

yðXÞ ¼
Z 1

�1
exp½iK � X�dZyðKÞ ð14Þ

Applying (13) and (14) into (11) we have the result

@2Uhy

@X2
i

� iK1JðX1ÞeiK �X � R

eY
eiK �X ¼ 0 ð15Þ

where J(X1) is defined in (9). The solution of (15) is then of the form
(Chang and Yeh, 2008)

UhyðX;KÞ ¼ �
iK1K2JðX1Þ � ðK2

1 � K2
2ÞR=eY

K4 eiK �X ð16Þ

Inserting (16) into (13) yields the expression for the random fluctu-
ations hs

hsðXÞ ¼ �
Z 1

�1
eiK�X iK1K2J � ðK2

1 � K2
2ÞR=eY

K4 dZyðKÞ ð17Þ

Assume that the recharge rate is in the form (e.g., Townley, 1995;
Trefry, 1999; Smith, 2008)

rðX; tÞ ¼ rsðXÞ cosðxtÞ ð18Þ

where rs, a second-order stationary random space function, is the
amplitude of the periodic fluctuations of recharge and x is the
angular frequency of fluctuations. The substitution of the following
representations of hs(X, t) and rs(X),

hsðX; tÞ ¼
Z 1

�1
eiK �XdZhs ðK ; tÞ ð19Þ

rsðXÞ ¼
Z 1

�1
eiK �XdZr ðKÞ ð20Þ

respectively, into (12) and the use of uniqueness of the representa-
tions results in

d
dt

dZhs ðK ; tÞ þ
eY K2

Sy
dZhs ðK ; tÞ ¼

1
Sy

cosðxtÞdZrðKÞ ð21Þ

where dZhs and dZr are the complex Fourier amplitudes of hs and rs

processes, respectively.
The solution of (21) with dZhs = 0 at t = 0 is

dZhs ðK ; tÞ ¼
b2K2 cosðxtÞ þx sinðxtÞ � b2K2 expð�b2K2tÞ

ðb4K4 þx2ÞSy

dZrðKÞ

ð22Þ

where b = (eY/Sy)1/2. With (22), the time-varying component of head
fluctuation in (19) is of the form

hsðX; tÞ ¼
Z 1

�1
eiK�X

� b2K2 cosðxtÞ þx sinðxtÞ � b2K2 expð�b2K2tÞ
ðb4K4 þx2ÞSy

dZrðKÞ

ð23Þ

In the range of b that is likely to be interest, the transient exponen-
tial term in (23) vanishes away rapidly, becoming negligibly small.
4. Variance of head

Using (10), (17), and (23), and the representation theorem the
general form of the head variance can be expressed as

r2
hðX1; tÞ ¼ r2

hs
ðX1Þ þ r2

hs
ðtÞ ð24Þ

where

r2
hs
ðX1Þ ¼

Z 1

�1

J2K4K2
1 þ ðR=eYÞ2ðK2

1 � K2
2Þ

2

K8 SyyðKÞdK ð25aÞ

r2
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ðtÞ ¼ 1

S2
y

Z 1

�1

½b2K2 cosðxtÞþxsinðxtÞ�b2K2 expð�b2K2tÞ�2

ðb4K4þx2Þ2
SrrðKÞdK

ð25bÞ

Syy(K) is the spectrum of ln T and Srr(K) is the spectrum of r
fluctuations.

5. Variances of specific discharges

The first-order equation for the specific discharge perturbations
derived from the Darcy equation is of the form (e.g., Gelhar, 1993;
Rubin and Bellin, 1994)

qi ¼ eY di1JðX1Þy�
@h
@Xi

� �
ð26Þ

where qi = Qi–E[Qi] and Qi is the specific discharge. Using this
expression, the spectral representations for the specific discharge
perturbations, ln T perturbation field and head perturbation
gradients,

@h
@X1
¼
Z 1

�1

K2K1J � i2K1K2
2ðR=eY Þ

K4 eiK�XdZyðKÞ þ
Z 1

�1
iK1

� b2K2 cosðxtÞ þx sinðxtÞ � b2K2 expð�b2K2tÞ
ðb4K4 þx2ÞSy

eiK�XdZrðKÞ

ð27Þ
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K2K1K2J þ iðK2
1 � K2

2ÞK2ðR=eY Þ
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iK2

� b2K2 cosðxtÞ þx sinðxtÞ � b2K2 expð�b2K2tÞ
ðb4K4 þx2ÞSy

eiK�XdZrðKÞ

ð28Þ

and invoking the uniqueness of the spectral representation gives
the following Fourier amplitudes of the specific discharge fluctua-
tions in the longitudinal and transverse directions, respectively,

dZQ1 ðK ; tÞ ¼ eY J 1�K2
1

K2

 !
þ i2

R

eY

� �
K1K2

2

K4

" #
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(
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b2K2 cosðxtÞþxsinðxtÞ�b2K2 expð�b2K2tÞ

ðb4K4þx2ÞSy

dZrðKÞ
)

ð29Þ

dZQ2 ðK ; tÞ ¼�eY J
K1K2

K2 þ i
R

eY
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ðK2

1�K2
2ÞK2

K4

" #
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(

þiK2
b2K2 cosðxtÞþxsinðxtÞ�b2K2 expð�b2K2tÞ

ðb4K4þx2ÞSy
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)
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By using the representation theorem with (29) and (30), the longi-
tudinal and transverse specific discharge spectra become,
respectively,
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Then, the general form of the specific discharge variance can be
found by integrating (31), (32) over the wave number domain as

r2
Qi
¼
Z 1

�1
SQiQi
ðK ; tÞdK ð33Þ
6. Closed-form solutions

To proceed with the evaluation of variances of head and specific
discharge (Eqs. (24) and (33)) explicitly the forms of the log trans-
missivity and recharge spectra must be specified. For this analysis
the Whittle-B spectrum (Mizell et al., 1982; Li and McLaughlin,
1995; Li and Graham, 1998, 1999) is considered representing the
random log transmissivity or recharge fields, namely,

SyyðKÞ ¼
3r2

ya2
y K4

pðK2 þ a2
yÞ

4 ð34Þ

SrrðKÞ ¼
3r2

r a2
r K4

pðK2 þ a2
r Þ

4 ð35Þ

where ay = 3p/(16ky), r2
y and ky are the variance and integral scale of

ln T, respectively, ar = 3p/(16kr), r2
r and kr are the variance and inte-

gral scale of the amplitude of recharge fluctuations, respectively.
In addition, to facilitate closed-form solutions we disregard the

transient exponential term in (23) (i.e., exp(�b2K2t) ? 0) so that

hsðX; tÞ ¼
Z 1

�1
eiK �X b2K2 cosðxtÞ þx sinðxtÞ

ðb4K4 þx2ÞSy

dZrðKÞ ð36Þ
6.1. Head variance

For the specified Whittle-B spectra for the y and r processes
((34) and (35)) the result of the integrations of (25a) and (25b)
are, respectively,
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J2ðX1Þ

4a2
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�ðq2 þ 1Þ½�2þ 18q2 þ 18q4 � 2q6�

þ3pqð1� 6q2 þ q4Þ � 24q2ðq2 � 1Þ ln q�
þ2 cosð2xtÞ½ðq2 � 1Þð�1þ 45q2 þ 45q4 � q6

þ3pqð1� 14q2 þ q4Þ � 12q2ð3� 10q2 þ 3q4Þ ln q�
þ2 sinð2xtÞ �14þ 54q2 þ 54q4 � 14q4

�
þ6pqð3� 10q2 þ 3q4Þ þ 6ð�1þ 15q2 � 15q4 þ q6Þ lnq

�	
ð38Þ
where g ¼ Rky=ðeYJ0Þ, n1 = (X1–X0)/ky, q = (16/(3p))2l and
l = xSykr

2/eY.
Fig. 1a shows how the steady-state component of head variance

varies with recharge rate. As is predicted by (37), the head variance
increases with the recharge rate. It implies that larger recharge
leads to larger correlation between head fluctuations compared
to the case of smaller recharge, which increases the head variabil-
ity from the mean head surface. Fig. 1b illustrates the behavior of
the dimensionless time-varying component of head variance in
(38) as a function of dimensionless time. It can be clearly seen that
the hydraulic head variability increases with kr for fixed values of
eY and Sy at a specified time. The recharge profile with the smaller
kr is rougher, while that with the larger kr is smaller. In other
words, recharge fluctuations are either consistently above or below
mean in the case of a larger kr, which produces more persistence of
head fluctuations, and, therefore, leads to larger deviations of the
head from the mean head surface.

6.2. Variance of specific discharge

The specific discharge variances in the longitudinal and trans-
verse directions are obtained by substituting (31) and (32) into
(33), respectively, and integrating them over the wave number do-
main with the specified spectra (34) and (35). The results are
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Q1s
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xSy
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ðq2þ1Þ½1þ15q2þ3q4�11q6�
þ12pq3ðq2�1Þþ6ðq2�6q4þq6Þ lnq�
þcosð2xtÞ½1þ44q2�90q4�116q6þ17q8
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þqsinð2xtÞ 4�108q2�36q4þ76q6þ3pqð�3þ35q2�
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�	
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It is clear from (40), (41) that for fixed input soil hydraulic
parameters (namely, r2

y , eY and ky) the variability in the steady-
state specific discharge is mainly controlled by the mean recharge
rate and increases monotonically with it. Fig. 2 shows the behavior
of the dimensionless time-varying component of longitudinal spe-
cific discharge variance in (42) as a function of dimensionless time.
It indicates that the longitudinal specific variance increases with
integral scale of recharge fluctuations for fixed values of eY and Sy

at a specified time. This feature is a consequence of the increase
in variability of hydraulic head with the persistence of recharge
fluctuations (integral scale of recharge fluctuations). This enhanced
variability of head increases the correlation function of the longitu-
dinal specific discharge.



Fig. 1. (a) Dimensionless steady-state component of head variance in (37) as a function of dimensionless position for various g. (b) Dimensionless time-varying component of
head variance in (38) as a function of dimensionless time for various l.

Fig. 2. Dimensionless time-varying component of longitudinal specific discharge variance in (42) as a function of dimensionless time for various l.
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7. Conclusions

This paper presents a stochastic analysis of the large-scale
behavior of unsteady flow in a two-dimensional heterogeneous
unconfined aquifer under spatially-random periodic recharge. Sto-
chastic solutions of differential perturbation equation describing
head fluctuations are developed through a nonstationary spectral
approach in conjunction with the principle of superposition. The
results, namely the variances of hydraulic head and specific dis-
charge, which are used to characterize the variability of head and
specific discharge, have been expressed in terms of statistical prop-
erties of hydraulic parameters and recharge field.

It was found that a larger mean recharge rate enhances the var-
iation of the steady-state components of hydraulic head and the
specific discharges about the means. Our results also indicate that
the time-varying components of head and specific discharge varia-
tion increase with the persistence of recharge spatial distribution
at a specified time. The findings presented here provide some basic
understanding of the influence of heterogeneity in spatially ran-
dom recharge on the large-scale flow process in a heterogeneous
unconfined aquifer and a basis for judging reliability of large-scale
flow models.
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