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a b s t r a c t

A graph is denoted by G with the vertex set V(G) and the edge set E(G). A path
P = hv0,v1, . . . ,vmi is a sequence of adjacent vertices. Two paths with equal length P1 =
h u1,u2, . . . ,umi and P2 = h v1,v2, . . . ,vmi from a to b are independent if u1 = v1 = a, um = vm = b,
and ui – vi for 2 6 i 6m � 1. Paths with equal length fPign

i¼1 from a to b are mutually inde-
pendent if they are pairwisely independent. Let u and v be two distinct vertices of a bipar-
tite graph G, and let l be a positive integer length, dG(u,v) 6 l 6 jV(G) � 1j with (l � dG(u,v))
being even. We say that the pair of vertices u, v is (m, l)-mutually independent bipanconnect-

ed if there exist m mutually independent paths Pl
i

n om

i¼1
with length l from u to v. In this

paper, we explore yet another strong property of the hypercubes. We prove that every pair
of vertices u and v in the n-dimensional hypercube, with dQn ðu;vÞP n� 1, is (n � 1, l)-
mutually independent bipanconnected for every l ; dQn ðu;vÞ 6 l 6 jVðQ nÞ � 1j with
ðl� dQn ðu;vÞÞ being even. As for dQn ðu;vÞ 6 n� 2, it is also (n � 1, l)-mutually independent
bipanconnected if l P dQn ðu;vÞ þ 2, and is only (l, l)-mutually independent bipanconnected
if l ¼ dQn ðu;vÞ.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

For the graph definitions and notations we refer the reader to [10]. A graph is denoted by G with the vertex set V(G) and
the edge set E(G). The simulation of one architecture by another is an important issue in interconnection networks. The prob-
lem of simulating one network by another is also called embedding problem. One particular problem of path embedding
deals with finding all the possible length of paths in an interconnection network.

A path P = hv0,v1, . . . ,vmi is a sequence of adjacent vertices. We also write P = hv0, . . . ,vi,Q,vj, . . . ,vm i where Q is a path
hvi, . . . ,vji. A cycle C = hv0,v1, . . . ,vm,v0i is a sequence of adjacent vertices where the first vertex is the same as the last one.
The length of a path P (a cycle C respectively) is the number of edges in P (in C respectively).

A cycle of G is a hamiltonian cycle if it traverses all the vertices exactly once. A graph G is called a hamiltonian graph if G
contains a hamiltonian cycle. There are many studies about the hamiltonian graphs [3,4,15]. A path of G is a hamitonian path
if it contains all the vertices exactly once. A graph G is hamiltonian connected if there exists a hamiltonian path between any
two different vertices of G. A graph G = (B [W,E) is bipartite if V(G) is the union of two disjoint sets B and W such that every
edge joins B with W. It is easy to see that any bipartite graph with at least three vertices is not hamiltonian connected. A
bipartite graph G is hamiltonian laceable if there exists a hamiltonian path joining any two vertices from different partite sets.
. All rights reserved.
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A graph G is pancyclic [2] if G includes cycles of all lengths. If these cycles are restricted to even length, G is called a bipancyclic
graph. The distance from x to y, written dG(x,y), is the least length among all paths from x to y in G. A graph is panconnected if,
for any two different vertices x and y, there exists a path of length l joining x and y, for every l, dG(x,y) 6 l 6 jV(G)j � 1. The
concept of panconnected graphs is proposed by Alavi and Williamson [1]. Recently, there are many studies about pancyclic-
ity and panconnectivity of graphs [5,6].

It is not hard to see that any bipartite graph with at least 3 vertices is not panconnected. Therefore, the concept of bipan-
connected graphs is proposed. A bipartite graph is bipanconnected if, for any two different vertices x and y, there exists a path
of length l joining from x to y, for every l, dG(x,y) 6 l 6 jV(G)j � 1 and (l � dG(x,y)) being even. There are many studies on
bipanconnected graphs and bipancyclic graphs [7,11,13,18].

We introduce some terms defined recently. Two paths P1 = hu1,u2, . . . ,umi and P2 = hv1,v2, . . . ,vmi from a to b are indepen-
dent [14] if u1 = v1 = a, um = vm = b, and ui – vi for 2 6 i 6m � 1. Paths with equal length fPign

i¼1 from a to b are mutually inde-
pendent [14] if they are pairwisely independent. Two cycles C1 = hu1,u2, . . . ,um,u1i and C2 = hv1,v2, . . . ,vm,v1i beginning at x are
independent if u1 = v1 = x and ui – vi for 2 6 i 6m. Cycles with equal length fCign

i¼1 beginning at x are mutually independent if
every two cycles are independent. Two hamiltonian paths P1 = h u1,u2, . . . ,ujV(G)ji and P2 = h v1,v2, . . . ,vjV(G)ji are independent
beginning at x [9] if u1 = v1 = x and ui – vi for 2 6 i 6 jV(G)j, denoted P1: x ? ujV(G)j and P2: x ? vjV(G)j. Hamiltonian paths
fPign

i¼1 are mutually independent hamiltonian paths beginning at x [9] if any two of them are independent beginning at x.
An n-dimensional hypercube, denoted by Qn, is a graph with 2n vertices, and each vertex u can be distinctly labeled by an

n-bit binary string, u = un�1un�2, . . . ,u1u0. There is an edge between two vertices if and only if their binary labels differ in ex-
actly one bit position. Let (u,v) be an edge in Qn. If the binary labels of u and v differ in ith position, then the edge between
them is said to be in ith dimension and the edge (u,v) is called an ith dimension edge. We use Q 0

n�1 to denote the subgraph of
Qn induce by {u 2 V(Qn)jui = 0} and Q 1

n�1 to denote the subgraph of Qn induced by fu 2 VðQ nÞjui ¼ 1g:Q0
n�1 and Q1

n�1 are all
isomorphic to Qn�1.Qn can be decomposed into Q 0

n�1 and Q1
n�1 by dimension i, and Q0

n�1 and Q 1
n�1 are (n � 1)-dimensional sub-

cubes of Qn induced by the vertices with the ith bit position being 0 and 1 respectively. For each vertex u in Qi
n�1; i ¼ f0;1g,

there is exactly one vertex in Q ji�1j
n�1 , denoted by �u, such that ðu; �uÞ is an edge in Qn. There are many studies on the hypercubes

[9,13,16,17,19,20].
We now introduce a new concept. Let u and v be two distinct vertices of a bipartite graph G and let l be a positive integer

length, dG(u,v) 6 l 6 jV(G) � 1jwith (l � dG(u,v)) being even. We say that the pair of vertices u, v is (m, l)-mutually independent

bipanconnected if there exist m mutually independent paths Pl
i

n om

i¼1
with length l from u to v. In this paper,we explore yet

another strong property of the hypercubes. We prove that every pair of vertices u and v in the n-dimensional hypercube, with
dQn ðu;vÞP n� 1, is (n � 1, l)-mutually independent bipanconnected for every l, dQn ðu;vÞ 6 l 6 jVðQ nÞ � 1j with
ðl� dQn ðu;vÞÞ being even. As for dQn ðu;vÞ 6 n� 2, it is also (n � 1, l)-mutually independent bipanconnected if
l P dQn ðu;vÞ þ 2, and is only (l, l)-mutually independent bipanconnected if l ¼ dQn ðu;vÞ. Our result strengthens a previous
results of Sun et al. [19], and Li et al. [13]. Li et al. [13] proved that the hypercube Qn is bipanconnected for n P 2. Sun
et al. [19] proved that there are n � 1 mutually independent hamiltonian paths in Qn between every two vertices from dif-
ferent partite sets for n P 4. The number ‘‘n � 1” in our result is tight as we have the following observation. Because each
vertex of the hypercube Qn has exactly n edges incident with it, we can expect at most n � 1 mutually independent paths
when the given two vertices are adjacent.

2. Preliminaries

In order to prove our claim, we need some previous results. The following results state that there exist n � 1 mutually
independent hamiltonian paths between two vertices. We shall strengthen the result by showing that there exist n � 1
mutually independent paths of length l between two vertices, for every reasonable length l.

Theorem 1 [19]. Let x and y be two vertices from different partite sets of Qn, for n P 4. Then there exist n � 1 mutually
independent hamiltonian paths joining x to y.
Theorem 2 [19]. For n P 4, there are n mutually independent hamiltonian cycles beginning at any vertex x in Qn.
A hamiltonian laceable graph G is hyper hamiltonian laceable if for any vertex u, there is a hamiltonian path of G � {u} be-

tween every pair of vertices in the opposite partite set of u.

Theorem 3 [12]. For n P 2, the hypercube Qn is hyper hamiltonian laceable.
Lemma 1 [8]. Let Fv be a set of faulty vertices in Qn. For n P 3, if jFvj 6 n � 2, there exists a path of Qn � Fv with any odd length l,
3 6 l 6 2n � 2jFvj � 1, between any two adjacent vertices.
Lemma 2 [19]. Qn � {x,y} is hamiltonian laceable, if x and y are any two vertices from different partite sets of Qn with n P 4.
Lemma 3 [9]. In Qn, n P 2, let u be any vertex, and v1,v2, . . . ,vn�1 be any n � 1 vertices in the opposite partite set of u. There exist
n � 1 mutually independent hamiltonian paths beginning at u of Qn such that fPi : u! v ign�1

i¼1 .
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3. Mutually independent bipanconnected property of hypercube

Lemma 4. Let x and y be two vertices from different partite sets of Qn with n P 4. There exists a path of every odd length from 1 to
2n � 3 joining any two adjacent fault-free vertices in Qn � {x,y}.
Proof. Let u, v be two adjacent fault-free vertices in Qn � {x,y}. Because u and v are adjacent fault-free vertices, there exists a
path of length 1 joining from u to v in Qn � {x,y}. According to Lemma 1, there exists a path of every odd length from 3 to
2n � 2j2j � 1(=2n � 5) joining u to v in Qn � {x,y}. Then by Lemma 2, there exists a path of length 2n � 3 joining u to v in
Qn � {x,y}. Therefore, the lemma holds. h

Sun et al. [19] proved that any two hamiltonian path connecting 000 and 100 in Q3 are not independent, in other words,
there do not exist 2 mutually independent hamiltonian paths in Q3 between 000 and 100. So, we will prove our theorem
beginning from n P 4 for Qn. We found that there are only d mutually independent paths with length d if dQn ðu;vÞ ¼ d. In
order to see this, we have the following lemma.

Lemma 5. Let u and v be two vertices of Qn with dQn
ðu;vÞ ¼ d, there are d and at most d mutually independent paths with length d

joining from u to v.
Proof. By the symmetric property of the hypercubes, we may assume that u is the vertex with n bits containing n 0’s, and v is
the vertex with n bits containing d 1’s. In order to see the basic idea, we first give an example n = 6. In Q6. Let u = 000000 and
v = 001111 then dQ6 ðu;vÞ ¼ 4. We can construct 4 mutually independent paths with length 4 between u and v.
P0 ¼ hu;000001;000011;000111; vi;
P1 ¼ hu;000010;000110;001110; vi;
P2 ¼ hu;000100;001100;001101; vi; and
P3 ¼ hu;001000;001001;001011; vi:
For general n, let u = 0 . . . 0 = 0n and v = 0 . . . 01 . . . 1 = 0n�d1d, then dQ n ðu; vÞ ¼ d.
P0 ¼ h0n;0n�11;0n�212; � � � ;0n�dþ11d�1;0n�d1di;
P1 ¼ h0n;0n�210;0n�3120; � � � ;0n�d1d�10;0n�d1di;
P2 ¼ h0n;0n�3102; 0n�41202; � � � ;0n�d1d�201;0n�d1di;
P3 ¼ h0n;0n�4103; 0n�51203; � � � ;0n�d1d�3012; 0n�d1di;

..

.

Pd�2 ¼ h0n;0n�ðd�1Þ10d�2;0n�d120d�2;0n�d120d�31; 0n�d120d�412 � � � ;0n�d1201d�3;0n�d1di;
Pd�1 ¼ h0n;0n�d10d�1;0n�d10d�21;0n�d10d�312; 0n�d10d�413; � � � ;0n�d101d�2;0n�d1di:
{P0,P1, . . . ,Pd�1} form d mutually independent paths with length d joining u to v. If there exists a (d + 1) th path P0 with length
d between u and v such that P0 is mutually independent to the first d paths. So the first vertex after the beginning vertex u of
P0 has to be different from all those of Pi i = 0 to d � 1. Without loss of generality, assume that the first vertex after the begin-
ning vertex u of P0 is (x)i = 0i10n�i�1 for 0 6 i 6 n � d � 1. It is easy to see that dQn ððxÞ

i
;vÞ ¼ dþ 1, since there are d + 1 distinct

bits between (x)i and v. Therefore, it is impossible to find out a (d + 1) th path with length d between u and v which is inde-
pendent to P0,P1, . . . ,Pd�1. h

We now show our main result Theorem 5 below. Our proof is by induction on n, for Qn. The base case is n = 4.

Theorem 4. Let u and v be a pair of vertices of Q4. If dQ4
ðu;vÞP 3; Q4 is (3, l)-mutually independent bipanconnected for every

l; dQ4
ðu;vÞ 6 l 6 24 � 1 with ðl� dQ4

ðu;vÞÞ being even. As for dQ4
ðu;vÞ 6 2, it is also (3, l)-mutually independent bipanconnected

if l P dQ4
ðu;vÞ þ 2, and is only (l, l)-mutually independent bipanconnected if l ¼ dQ4

ðu;vÞ.
Proof. We know that dQ4 ðu;vÞ 6 4. By the symmetric property of hypercubes, we may let u = 0000, and let v be 0001, 0110,
0111, and 1111 when dQ 4 ðu;vÞ is 1, 2, 3, and 4, respectively. In Table 1, we construct the required paths with length l such
that dQ4 ðu;vÞ 6 l 6 24 � 1 and ðl� dQ 4 ðu;vÞÞ being even. h

We will use the notation Pk
i or Rk

i to denote a path i with length k.

Lemma 6. Let u and v be two adjacent vertices of Qn for n P 4. There exist n � 1 mutually independent paths Pl
i

n on�1

i¼1
of Qn with

any odd length l, 3 6 l 6 2n � 1, joining from u to v.



Table 1
The proof of Theorem 4.

Vertex v Required length Required pathes

v = 0001 l = 1 h0000,0001i
l = 3 h0000,0100,0101,0001i

h0000,0010,0011,0001i
h0000,1000,1001,0001i

l = 5 h0000,0100,0110,0111,0101,0001i
h0000,0010,1010,1011,0011,0001i
h0000,1000,1100,1101,1001,0001i

l = 7 h0000,0100,0110,0010,0011,0111,0101,0001i
h0000,0010,1010,1110,1111,1011, 1001,0001i
h0000,1000,1001,1011,1010,0010,0011,0001i

l = 9 h0000,0100,0110,0010,1010,1011,0011,0111,0101,0001i
h0000,0010,0011,0111,0110,0100,0101,1101,1001,0001i
h0000,1000,1010,1110,1100,1101,1111,1011, 0011,0001i

l = 11 h0000,0100,0110,0010,1010,1110,1111,1011,0011,0111,0101,0001i
h0000,0010,0011,0111,0110,0100,0101,1101,1100,1000,1001,0001i
h0000,1000,1100,1101,1111,0111, 0110,1110, 1010,1011, 0011,0001i

l = 13 h0000,0100,0101,0111,0011,1011,1010,1000,1100,1101,1001,1011,0011,0001i
h0000,0010,0110,0100,0101,0111,0011,1011,1010,1000,1100,1101,1001,0001i
h0000,1000,1010,1011,1001,1101,1100,1110,1111,0111, 0110,0100,0101,0001i

l = 15 h0000,0100,0101,0111,0110,0010,1010,1000,1100,1110,1111,1011,1001,1011,0011,0001i
h0000,0010,0110,0100,0101,0111,0011,1011,1010,1000,1100,1110,1111,1101,1001,0001i
h0000,1000,1010,1011,1001,1101,1100,1110,1111,0111, 0011,0010,0110,0100,0101,0001i

v = 0110 l = 2 h0000,0100,0110i
h0000,0010,0110i

l = 4 h0000,0001,0101,0100,0110i
h0000,0010,0011,0111,0110i
h0000,1000,1100,1110,0110i

l = 6 h0000,0001,0101,0111,0011,0010,0110i
h0000,0010,0011,0001,0101,0111,0110i
h0000,1000,1100,1101,1111,1110, 0110i

l = 8 h0000,0001,0101,0111,0011,1011,1010,0010,0110i
h0000,0010,0011,0001,0101,0111,1111,1110,0110i
h0000,1000,1001,1011,1010,1110,1100,0100,0110i

l = 10 h0000,0001,0101,1101,1001,1011,1111,0111, 0011,0010,0110i
h0000,0010,0011,1011,1111,1101, 1001,0001,0101,0111,0110i
h0000,1000,1001,0001,0101,0111,0011,0010,1010,1110,0110i

l = 12 h0000,0001,0101,1101,1100,1000,1010,1110,1111,0111,0011,0010,0110i
h0000,0010,0011,1011,1111,1110, 1100,1101, 1001,0001,0101,0111,0110i
h0000,0100,1100,1000,1101,0001,0101,0111, 0011,1011, 1111,1110,0110i

l = 14 h0000,0001,0101,0100,1100,1000,1001,1101,1111,1110,1010,1011,0011,0010,0110i
h0000,0100,1100,1110,1111,1011, 1010,0010,0011,0001,1001,1101,0101,0111,0110i
h0000,1000,1001,1011,1010,0010,0011,0001,0101,0111,1111,1110,1100,0100,0110i

v = 0111 l = 3 h0000,0001,0101,0111i
h0000,0100,0110,0111i
h0000,0010,0011,0111i

l = 5 h0000,0001,0101,0100,0110,0111i
h0000,0010,0011,0001,0101,0111i
h0000,0100,0110,0010,0011,0111i

l = 7 h0000,0001,0101,0100,0110,0010,0011,0111i
h0000,0010,0011,0001,0101,0100,0110,0111i
h0000,0100,0110,0010,0011,0001,v0101,0111i

l = 9 h0000,0001,0101,1101,1100,0100,0110,0010,0011,0111i
h0000,0010,0011,1011,1001,0001,0101,0100,0110,0111i
h0000,0100,0110,1110,1010,0010,0011,0001,0101,0111i

l = 11 h0000,0001,0101,1101,1111,1110, 1100,0100,0110,0010,0011,0111i
h0000,0010,0011,1011,1010,1000,1001,0001,0101,0100,0110,0111i
h0000,0100,0110,0010,0011,0001,0101,1101,1100,1110,1111,0111i

l = 13 h0000,0001,0101,1101,1111,1011, 1010,1110, 1100, 0100,0110,0010,0011,0111i
h0000,0010,0011,1011,1010,1110,1100,1000,1001,0001,0101,0100,0110,0111i
h0000,0100,0110,1110,1100,1101,0101,0001,0011,0010,1010,1011,1111,0111i

l = 15 h0000,0001,0101,1101,1111,1011, 1001,1000,1010,1110,1100,0100,0110,0010,0011,0111i
h0000,0010,0011,1011,1010,1110,1111,1101, 1100,1000,1001,0001,0101,0100,0110,0111i
h0000,0100,0110,1110,1100,1101,0101,0001,0011,0010,1010,1000,1001,1011,1111,0111i

v = 1111 l = 4 h0000,1000,1001,1011,1111i
h0000,0100,1100,1101,1111i
h0000,0010,0110,1110,1111i
h0000,0001,0011,0111,1111i
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Table 1 (continued)

Vertex v Required length Required pathes

l = 6 h0000,0001,1001,1101,1100,1110,1111i
h0000,0010,1010,1000,1001,1101,1111i
h0000,0100,0110,0010,0011,0111,1111i

l = 8 h0000,0001,1001,1000,1100,1110,1010,1011,1111i
h0000,0010,1010,1011,1001,1101,1100,1110,1111i
h0000,0100,0110,0010,0011,0001,0101,0111,1111i

l = 10 h0000,0001,0101,0100,1100,1000,1001,1011,1010,1110,1111i
h0000,0010,0011,0001,1001,1011,1010,1000,1100,1101, 1111i
h0000,1000,1001,1101,0101,0100,0110,0010,0011,0111, 1111i

l = 12 h0000,0001,0011,0111,0110,0100,1100,1000,1001,1011, 1010,1110, 1111 i
h0000,0010,0110,0100,0101,0001,1001,1011, 1010,1000,1100,1101,1111i
h0000,0100,0101,0001,0011,0111,0110,1110,1100,1101,1001,1011,1111i

l = 14 h0000,0001,0101,0100,0110,0111,0011,1011,1001,1101,1100,1000,1010,1110, 1111i
h0000,0010,0011,0111,0101,0100,0110,1110,1100,1000,1010,1011, 1001,1101, 1111i
h0000,1000,1001,1011,1010,1110,1100,1101,0101,0001,0011,0010,0110,0111, 1111i

Y.-K. Shih et al. / Applied Mathematics and Computation 217 (2010) 4017–4023 4021
Proof. We choose a dimension to divide the hypercube Qn into two subcubes Q 0
n�1 and Q 1

n�1 such that u is a black vertex in
Q 0

n�1 and v a white vertex in Q 1
n�1. Notice that �u ¼ v . According to Theorem 2, there exist n � 1 mutually independent ham-

iltonian cycles fCign�1
i¼1 in Q0

n�1 beginning at u. For each k, 1 6 k 6 2n�1 � 1, let Ci ¼ hu;Rk
i ; xi;k; xi;kþ1; . . . ; xi;2n�1�1;ui for

1 6 i 6 n � 1, where Rk
i ¼ hu; xi;1; xi;2; . . . ; xi;ki and jRk

i j ¼ k. Let Sk
i ¼ h�xi;k; . . . ; �xi;2; �xi;1; �ui for 1 6 i 6 n � 1. Combine Rk

i and Sk
i ,

we let P2kþ1
i ¼ hu;Rk

i ; xi;k; �xi;k; S
k
i ; �u ¼ vi; 1 6 k 6 2n�1 � 1, for 1 6 i 6 n � 1. Then P2kþ1

i is a path joining u to v with length
2k + 1. Since 1 6 k 6 2n�1 � 1 so 3 6 2k + 1 6 2n � 1. Therefore, there exist n � 1 mutually independent paths Pl

i

n on�1

i¼1
with

any odd length l, 3 6 l 6 2n � 1, joining from u to v. See Fig. 1 for illustration. h
Lemma 7. Let u and v be two vertices from the same partite set of Qn for n P 4. There exist n � 1 mutually independent paths

Pl
i

n on�1

i¼1
of Qn with any even length l; dQn ðu;vÞ þ 2 6 l 6 2n � 2, joining from u to v.

Proof. We prove the statement by induction on n. By Theorem 4, the statement holds for n = 4. Suppose that the result holds
for Qn�1, n P 5. Without loss of generality, let u and v be two black vertices of Qn. We may choose a dimension to divide the
hypercube Qn into two subcubes Q 0

n�1 and Q 1
n�1 such that u 2 Q 0

n�1 and v 2 Q 1
n�1. Therefore, �u and �v are two white vertices in

Q 1
n�1 and Q 0

n�1, respectively. Assume that dQn ðu;vÞ ¼ d and d is even, then it is easy to see that
dQn ðu; �vÞ ¼ dQn ðu;vÞ � 1 ¼ d� 1. According to the length l of the paths, we divide the proof into the following three cases.
In each case, the length l is assumed to be an even number. We shall find n � 1 mutually independent paths with length l
joining from u to v.

Case 1. For even length l and d + 2 6 l 6 2n�1.

By induction hypothesis, there exist n � 2 mutually independent paths Rk
i

n on�2

i¼1
of Q0

n�1 with odd length k,

d + 1 6 k 6 2n�1 � 1, between u and �v . For 1 6 i 6 n � 2, we let Rk
i ¼ hu; xi;1; xi;2; . . . ; xi;k�1; �vi. Now, for each l

between d + 2 and 2n�1, we show how to construct the n � 1 mutually independent paths with length l. Let
Q0
n-1 Q1

n-1

u v

n-1 cycles n-1 cycles

x1,1 x2,1 xn-1,1

x1,2 x2,2 xn-1,2

x1,k

x1,1

x1,kxn-1,k xn-1,k

xn-1,1

Fig. 1. Illustration for Lemma 6.
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Pkþ1
1 ¼ hu; x1;1; x1;2; . . . ; x1;k�1; �v ;vi, Pkþ1

i ¼ hu; xi;1; xi;2; . . . ; xi;k�1; �xi;k�1;vi for 2 6 i 6 n � 2, and Pkþ1
n�1 ¼ hu; �u; �x1;1;

�x1;2; . . . ; �x1;k�1;vi; dþ 2 6 kþ 1 6 2n�1. Set l = k + 1. So, Pl
i

n on�1

i¼1
form n � 1 mutually independent paths with each

even length l, d + 2 6 l 6 2n�1, joining from u to v.
Case 2. For even length l and 2n�1 + 2 6 l 6 d + 2n�1 � 2.

According to induction hypothesis, there exist n � 2 mutually independent paths fRign�2
i¼1 of Q 0

n�1 with odd length
d � 1 between u and �v . Without loss of generality, we write Ri ¼ hu; xi;1; xi;2; . . . ; xi;d�2; �vi for 1 6 i 6 n � 2. For each

m, 2 6m 6 d � 2 and m is even, by Lemma 3, there exist n � 2 mutually independent hamiltonian paths fSign�2
i¼1 of

Q1
n�1 beginning at v such that fSi : v ! �xi;mgn�2

i¼1 . For 1 6 i 6 n � 2, let Pmþ2n�1

i ¼ hu; xi;1; xi;2 . . . ; xi;m; �xi;m;

ðSiÞ�1
;vi; 2n�1 þ 2 6 mþ 2n�1

6 dþ 2n�1 � 2. Set l = m + 2n�1. We have the first n � 2 mutually independent paths
with each even length l, 2n�1 + 2 6 l 6 d + 2n�1 � 2 joining u to v.
Finally, we construct the (n � 1) th path joining u to v. Let z be any white vertex in Q1

n�1. By Lemma 4, there exists a

path Tk of Q 1
n�1 � fv ; zg with any odd length k, 1 6 k 6 d � 3, joining �u to �xn�1;1, and by Theorem 3, there exists a

hamiltonian path U of Q0
n�1 � fug between xn�1,1 to �v . Let Pkþ2n�1þ1

n�1 ¼ hu; �u; Tk; �xn�1;1; xn�1;1;U; �v ;vi;

2n�1 þ 2 6 kþ 2n�1 þ 1 6 dþ 2n�1 � 2. Set l = k + 2n�1 + 1. So, Pl
i

n on�1

i¼1
form n � 1 mutually independent paths with

each even length l, 2n�1 + 2 6 l 6 d + 2n�1 � 2, joining from u to v.
Case 3. For even length l and d + 2n�1 � 2 6 l 6 2n � 2.

Again, by induction hypothesis, there exist n � 2 mutually independent paths Rm
i

� �n�2
i¼1 between u and �v in Q 0

n�1

with odd length m, d � 1 6m 6 2n�1 � 1. Let Rm
i ¼ hu; xi;1; xi;2; . . . ; xi;m�1; �vi for 1 6 i 6 n � 2. By Lemma 3, there

exist n � 2 mutually independent hamiltonian paths fSign�2
i¼1 of Q1

n�1 beginning at v such that fSi : v ! �xi;m�1gn�2
i¼1 .

Let Pmþ2n�1�1
i ¼ hu; xi;1; xi;2; . . . ; xi;m�1; �xi;m�1; ðSiÞ�1

;vi for 1 6 i 6 n � 2, d + 2n�1 � 2 6m + 2n�1 � 1 6 2n � 2. Set
l = m + 2n�1 � 1. We have the first n � 2 mutually independent paths with each even length l, d + 2n�1 � 2 6 l 6
2n � 2 joining u to v.
Finally, we construct the (n � 1) th path joining u to v. Assume that z is any white vertex in Q 1

n�1. According to

Lemma 4, there exists a path Tk of Q 1
n�1 � fv ; zg with any odd length k, d � 3 6 k 6 2n�1 � 3, joining �u to �xn�1;1,

and by Theorem 3, there exists a hamiltonian path U of Q 0
n�1 � fug between xn�1,1 to �v . Let

Pkþ2n�1þ1
n�1 ¼ hu; �u; Tk; �xn�1;1; xn�1;1;U; �v ;vi; dþ 2n�1 � 2 6 kþ 2n�1 þ 1 6 2n � 2. Set l = k + 2n�1 + 1. So, Pl

i

n on�1

i¼1
form

n � 1 mutually independent paths with each even length l, d + 2n�1 � 2 6 l 6 2n � 2, joining from u to v. h
Lemma 8. Let u and v be two nonadjacent vertices from different partite sets of Qn for n P 4. There exist n � 1 mutually indepen-

dent paths Pl
i

n on�1

i¼1
of Qn with any odd length l; dQn ðu;vÞ þ 2 6 l 6 2n � 1, joining from u to v.
Proof. We prove the statement by induction on n. By Theorem 4, the statement holds for n = 4. Suppose that the result holds
for Qn�1, n P 5. Without loss of generality, let u be a black vertex and v a white vertex in Qn. We may choose a dimension to
divide the hypercube Qn into two subcubes Q0

n�1 and Q1
n�1 such that u 2 Q 0

n�1 and v 2 Q1
n�1. Hence, �u is a white vertex in Q 1

n�1

and �v is a black vertices in Q0
n�1. Assume that dQn ðu;vÞ ¼ d and d is odd, then it is easy to see that

dQn ðu; �vÞ ¼ dQn ðu;vÞ � 1 ¼ d� 1. According to the length l of the paths, we divide the proof into the following four cases.
In each case, the length l is assumed to be an odd number. We shall find n � 1 mutually independent paths with length l
joining from u to v.

Case 1. For odd length l and d + 2 6 l 6 2n�1 � 1.

By induction hypothesis, there exist n � 2 mutually independent paths Rk
i

n on�2

i¼1
between u and �v in Q0

n�1 with even

length k, d + 1 6 k 6 2n�1 � 2. For 1 6 i 6 n � 2, we let Rk
i ¼ hu; xi;1; xi;2; . . . ; xi;k�1; �vi. Now, we show how to con-

struct the required n � 1 mutually independent paths. Set Pkþ1
1 ¼ hu; x1;1; x1;2; . . . ; x1;k�1; �v ;vi; Pkþ1

i ¼
hu; xi;1; xi;2; . . . ; xi;k�1; �xi;k�1;vi for 2 6 i 6 n � 2, and Pkþ1

n�1 ¼ hu; �u; �x1;1; �x1;2; . . . ; �x1;k�1;vi; dþ 2 6 kþ 1 6 2n�1 � 1.

Let l = k + 1. So, Pl
i

n on�1

i¼1
form n � 1 mutually independent paths with each odd length l, d + 2 6 l 6 2n�1 � 1, joining

from u to v.
Case 2. For odd length l and 2n�1 + 1 6 l 6 d + 2n�1 � 2.

According to the induction hypothesis, there exist n � 2 mutually independent paths fRign�2
i¼1 of Q0

n�1 with even
length d � 1 between u and �v . We write Ri ¼ hu; xi;1; xi;2; . . . ; xi;d�2; �vi for 1 6 i 6 n � 2. Assume that 1 6m 6 d � 2

and m is odd, by Lemma 3, there exist n � 2 mutually independent hamiltonian paths fSign�2
i¼1 of Q1

n�1 beginning at
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v such that fSi : v ! �xi;mgn�2
i¼1 . Now, consider the first n � 2 mutually independent paths. For 1 6 i 6 n � 2, let

Pmþ2n�1

i ¼ hu; xi;1; xi;2 . . . ; xi;m; �xi;m; ðSiÞ�1
;vi; 2n�1 þ 1 6 mþ 2n�1

6 dþ 2n�1 � 2. Set l = m + 2n�1.
We have the first n � 2 mutually independent paths with each odd length l, 2n�1 + 1 6 l 6 d + 2n�1 � 2 joining u to
v. Finally, we construct the (n � 1) th path. Let z be any black vertex in Q 1

n�1 � f�xn�1;1g, and w be any white vertex

in Q0
n�1 � fxn�1;1g. By Lemma 4, there exists a path Tk of Q1

n�1 � fv ; zgwith any odd length k, 1 6 k 6 d � 2, joining �u

to �xn�1;1, and by Lemma 2, there exists a hamiltonian path U of Q 0
n�1 � fu;wg between xn�1,1 to �v . Let

Pkþ2n�1

n�1 ¼ hu; �u; Tk; �xn�1;1; xn�1;1;U; �v ;vi; 2n�1 þ 1 6 kþ 2n�1
6 dþ 2n�1 � 2. Set l = k + 2n�1. Hence, Pl

i

n on�1

i¼1
form

n � 1 mutually independent paths with each odd length l, 2n�1 + 1 6 l 6 d + 2n�1 � 2, joining from u to v.
Case 3. For odd length l and d + 2n�1 � 2 6 l 6 2n � 3.

Again, by induction hypothesis, there exist n � 2 mutually independent paths Rm
i

� �n�2
i¼1 of Q 0

n�1 with even length m,
d � 1 6m 6 2n�1 � 2, between u and �v . Without loss of generality, let Rm

i ¼ hu; xi;1; xi;2; . . . ; xi;m�1; �vi for 1 6 i 6

n � 2. By Lemma 3, there exist n � 2 mutually independent hamiltonian paths fSign�2
i¼1 of Q 1

n�1 beginning at v such

that fSi : v ! �xi;m�1gn�2
i¼1 . Let Pmþ2n�1�1

i ¼ hu; xi;1; xi;2; . . . ; xi;m�1; �xi;m�1; ðSiÞ�1
;vi for 1 6 i 6 n � 2,d + 2n�1 � 2

6m + 2n�1 � 1 6 2n � 3. Set l = m + 2n�1 � 1. We have the first n � 2 mutually independent paths with each odd
length l, d + 2n�1 � 2 6 l 6 2n � 3 joining u to v. Then, we construct the (n � 1) th path.
Assume that z is any black vertex in Q1

n�1 � f�xn�1;1g, and w is any white vertex in Q 0
n�1 � fxn�1;1g. According to

Lemma 4, there exists a path Tk of Q1
n�1 � fv ; zg with any odd length k, d � 2 6 k 6 2n�1 � 3, joining �u to �xn�1;1,

and by Lemma 2, there exists a hamiltonian path U of Q0
n�1 � fu;wg between xn�1,1 to �v . Let

Pkþ2n�1

n�1 ¼ hu; �u; Tk; �xn�1;1; xn�1;1;U; �v ;vi; dþ 2n�1 � 2 6 kþ 2n�1
6 2n � 3. Set l = k + 2n�1. Therefore, Pl

i

n on�1

i¼1
form

n � 1 mutually independent paths with each odd length l, d + 2n�1 � 2 6 l 6 2n � 3, joining from u to v.
Case 4. For odd length l = 2n � 1.

This case was proved by Theorem 1. h

By Theorem 4, Lemmas 5–8, we have the following theorem.

Theorem 5. Let u and v be any pair of vertices of Qn. For dQn
ðu;vÞP n� 1; Qn is (n �1, l)-mutually independent bipanconnected

for every l; dQn
ðu;vÞ 6 l 6 2n � 1 with ðl� dQn

ðu; vÞÞ being even. As for dQn
ðu;vÞ 6 n� 2, it is also (n � 1, l)-mutually

independent bipanconnected if l P dQn
ðu;vÞ þ 2, and is only (l, l)-mutually independent bipanconnected if l ¼ dQn

ðu;vÞ.
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