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ABSTRACT 

In this paper, a dense motion field estimation technique 
based on the Bayesian framework is proposed to estimate 
the true dense motion fields of video sequences. Previous 
stochastic techniques of dense motion field estimation 
adopts piecewise smooth motion model and use MAP 
estimation to find the motion field with joint minimization 
of motion compensation errors and maximization of 
motion smoothness. However, such random process does 
not guarantee to converge to the true motion field. In this 
paper, the motion of landmark points in the video 
sequence is introduced into the MAP estimation process to 
regularize the estimated motion field. Experimental results 
show that the proposed algorithm produces estimated 
motion fields which preserve piecewise smooth nature and 
are visually close to the true motion of the video 
sequences.

1. INTRODUCTION
For the past decades, block-based motion estimation is one 

of the most popular topics for video coding [1]. However, the 
goal for motion estimation in video coding is to find a 
block-based motion fields that minimizes 
sum-of-absolute-differences (SAD) motion compensation 
errors. However, the motion field that minimizes SAD may not 
be the true motion field of a video sequence. With the arrivals 
of new applications, such as frame-rate upsampling for new 
LCD displays [2], intelligent content analysis or surveillance 
systems, and decoder-side motion compensation for distributed 
video coding [3], the estimation of dense true motion fields 
becomes more and more important. Unfortunately, it is also a 
well-known ill-posed high complexity problem in 
computational vision. 

Without incorporation of high-level knowledge of the 
video sequences, e.g. understanding of the objects in the scene, 
true motion estimation from low-level features such as local 
intensity changes always lead to multiple possible solutions. In 
order to rule out possible yet wrong solutions, a general 
assumption that derived from true motion model is usually 
adopted to regularize the solution fields. One of the 
well-accepted characteristics is that a true motion field should 
be piecewise smooth [4][5]. 

In [6], a stochastic approach is proposed for dense motion 
estimation. In the paper, the dense motion field is modeled as a 
two-dimensional random field Dt at time t, while the true 
motion field dt is a realization of Dt. The motion fields are 

segmented into piecewise smooth fields by a line process lt.
Two different estimation techniques, maximum a posteriori 
(MAP) probability estimation and minimum expected cost 
(MEC) estimation, are then used to jointly estimate both dt and 
lt. Although the mathematical formulation in [6] is quite 
elegant, the proposed algorithm does not always produce true 
motion fields even within an image region with underlying 
piecewise smooth true motion fields. One major problem with 
the Bayesian framework in [6] is that the conditional 
probabilities of the motion fields given the observed image 
fields are computed using local information only. At image 
areas where there are few textures, smoothness constraint alone 
cannot regularize the ill-posed problem to produce the true 
motion field. 

In this paper, the motion of image points with salient 
textures, i.e. landmark points, are incorporated into the MAP 
motion estimation process such that the estimate of the dense 
motion fields can be further regularized to close to true motion 
fields. Landmark points can provide semi-global information 
into the estimation process and produce better motion field 
estimates. This paper is organized as follows. In section 2, 
MAP estimation of dense motion fields is introduced. The 
landmark point selection and initial motion field estimation 
process is described in section 3. The proposed dense motion 
field estimation algorithm is presented in section 4. 
Experimental results are given in section 5 and some 
conclusions are made in section 6. 

2. MAP ESTIMATION OF DENSE MOTION FIELD
The formulation of the two-dimensional random field 

model for Bayesian reconstruction of corrupted image was 
presented in Geman and Geman [7]. The concept can be 
generalized to estimate other image features, such as dense 
motion field. In this section, the formulation of the MAP 
approach used in this paper to estimate piecewise smooth 
motion fields based on the concept in [6] is summarized first. 
Later in section 3, we will propose adding a landmark-point 
constraint to the cost function so that the estimated motion field 
will resemble the true motion fields better. 

The a posteriori probability of a motion field Dt given the 
observation of luma images gt and gt+1 at time t and t+1 can be 
written as 
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where Z is a normalization constant for the probability 
distribution, Dt is the random field model of the true motion, 
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td̂  is an estimate of the true motion field, and U( ) is a cost 
function that is derived from the likelihood model of the 
observed images gt and gt+1, and the prior knowledge that the 
true motion field should be piecewise continuous. Note that we 
do not adopt the line process field that models motion 
discontinuity as in [6] because it increase the parameter space 
and makes the optimization problem much more complex to 
solve. 

In (1), the conditional likelihood function is modeled by 
motion-compensated pixel differences while the prior term is 
modeled by the smoothness of the motion field estimate. To be 
more precise, the cost function can be expressed as follows, 
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where g is the weight of the reliability of observations, d is 
the weight of the smoothness of motion fields, )(~r  is the 
motion-compensated pixel difference function, Cd is the set of 
all neighborhood pairs in a Markov Random Field (MRF), and 
xi is the 2D position of the image pixel i. Since the parameter 
space of Eq (2) is very large, it is nearly impossible to find 
globally optimal solution of the cost function. Therefore, 
simulated annealing technique with Gibbs sampler as proposed 
in [6] is adopted in our implementation. 

The initial dense motion field for simulated annealing is 
computed using 16 16 block-based motion estimator at every 
pixel positions. The block matching window for SAD 
computation is weighted using a Gaussian window so that the 
pixels near the center have higher weights. 

3. LANDMARK POINT SELECTION 
In order to further regularize the dense motion field to the 

true motion fields, landmark point information is proposed in 
this paper to modify the cost function of the MAP estimation 
problem. A landmark point is defined to be the image point 
that has two properties. First of all, an image landmark point 
should have salient textures around it such that block-based 
motion estimation can be used to estimation the true motion at 
the landmark point reliably. Since block-based motion 
matching is used to find the true motion for landmark points, a 
second criterion for a landmark point is that the motions of 
pixels in a small (block) area around the landmark point should 
have the same translational motion such that the block-based 
motion model is not violated. 

In this section, the two-step algorithm for landmark point 
selection is presented. The algorithm begins with the initial 
dense motion field obtain from block-based motion estimation 
as described in section 2. Typically speaking, the initial motion 
field has many outliers around motion discontinuities and is 
over-smoothed around areas with very small motions. In the 
first step of landmark point selection algorithm, the image 
gradient of the luma channel is computed using the Sobel 
operator. If the sum of the luma gradient within a 16 16 block 
centered on an initial motion vector is larger than a threshold ,
the motion is considered to be estimated from texture-rich area. 

Such motion vectors and the associated positions are collected 
into a set L1.

However, a motion vector in L1 may not be a true motion 
vector. The second step of the selection process filters out the 
motion vectors in L1 that violates the block-based translational 
motion model. This is achieved by performing block-based 
motion compensation on both gradient and luma images. 
Assume that v is a motion vector in L1 and its associated pixel 
position is p. If the pixels in a 16 16 block area centered on p
follows translational motion model, the majority of the pixels 
should have small motion-compensated differences between 
the luma image pair and the gradient image pair using the 
vector v.  The ratio r1 of pixels 16 16 block area produce 
small motion-compensated difference in gradient images and 
the ratio r2 of pixels produce small motion-compensated 
difference in luma images are used to estimate the reliability of 
the landmark motion. If both r1 > 0.7 (i.e. 70%) and r2 > 0.7, 
the landmark point is considered reliable. The set of reliable 
landmark points is denoted as L2.

4. BAYESIAN FRAMEWORK FOR TRUE DENSE 
MOTION ESTIMATION 

In this section, we describe the method the landmark point 
constraint is incorporated into the cost function Eq. (2). For 
each landmark point p in L2, its motion v is assigned a 
reliability level 2= r1  r2. The cost term for landmark point 
conformance is computed as follows: 
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Note that the exponential term in Eq. (3) is a weighting 
function of the landmark cost based on the distance to the 
landmark point. The closer the pixel xi to a landmark point 
p, the higher the weight of landmark cost of. Eq. (3) is 
added to Eq. (2) to form total cost function. The overall 
framework of the proposed algorithm can be decomposed 
into the following three steps: 
Step 1:  Create initial dense motion fields. 
Step 2:  Pick out landmark motions. 
Step 3:  Energy minimization process. 

5. EXPERIMENTAL RESULTS 
Firstly in this section, two image sequences are 

visually exhibited to demonstrate the performance of the 
proposed algorithm. Secondly, eight standard test 
sequences [8] are tested and compared in a table. 

Fig. 1 and Fig. 4 show the original images of RACE 
HORSES and TEMPETE, respectively. In each figure, the 
two marked areas are the target areas for illustrating the 
performance of the proposed algorithm. The initial motion 
fields (Fig. 2a, 3a, 5a, 6a) are estimated using block-based 
dense motion estimator as described in section 2. The 

-parameters of the cost function are set to g = 0.1, d = 1, 
m = 1 for this two sequences. 

In RACE HORSES, one can easily see that 
block-based motion estimation typically does not perform 
well across motion discontinuities along object boundaries. 
Furthermore, for areas with low texture information, 
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block-based method may also produce erroneous motions.  
One the other hand, MAP estimation without the proposed 
landmark constraint tends to produce curvy smooth 
motion for low texture areas. In Fig. 2c and Fig. 3c, the 
over-smooth of motion field across object boundaries can 
be reduced by introducing line process model as described 
in [6]. However, line process will not improve the curvy 
behavior of MAP motion estimates within a low-texture 
object with consistent smooth motion. 

A
B

Fig. 1. RACE HORSES. 
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      c) MAP w/o landmarks          d) Proposed algorithm 
Fig. 2. Motion fields in area A of RACE HORSES.
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c) MAP w/o landmarks         d) Proposed algorithm 
Fig. 3. Motion fields in area B of RACE HORSES. 

Fig. 5 and Fig. 6 are the results from the TEMPETE 
sequence. In area-A, the dark area causes issues to both 
block-based motion estimator and MAP estimation 
without landmark constraint. In both cases, noises in the 
image sequence dominate the matching (cost) function 
and results in wild outliers in block-matching method or 
small, curvy perturbations in MAP technique. On the 
other hand, when landmark point constraint is introduced 
into the optimization process, reliable motions from 
nearby objects such as the fence by area-A will plays the 
role of regulator to overcome the aperture problem of low 
texture area. 

For area-B in the TEMPETE sequence, it seems that 
block-based motion estimation does a reasonable job. 
However, although there seems to be no large outliers 
from block-based motion estimation, the estimated motion 
field is probably not correct. Through visual inspection, 
the video sequence appears to have both zoom and 
rotational motions, while the motion fields obtained from 
block-based techniques produces only translational motion. 
One way to judge the overall quality of a dense motion 
estimation algorithm is to compute both the 
motion-compensated errors (SAD) between two frames, as 
well as the entropy of the motion fields, as shown in Table 
I.  

A

B

Fig. 4. TEMPETE. 
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      c) MAP w/o landmarks          d) Proposed algorithm 
Fig. 5. Motion fields in area A of TEMPETE. 

Note that the entropy is estimated by the file size of 
lossless compression of the dense motion fields using 
BZip2 (the column BZ2 in the table). As shown in 
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TABLE I, the proposed algorithm produces smallest SAD 
with low motion field entropy. 
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      c) MAP w/o landmarks          d) Proposed algorithm 
Fig. 6. Motion fields in area B of TEMPETE. 

TABLE I. THE QUALITY OF THE DENSE MOTION FIELD. 
MAP w/o Landmarks Proposed 

SAD
( 103)

BZ2 
(KB) 

SAD
( 103)

BZ2 
(KB) 

RACE HORSES 389 46 340 24 
TEMPETE 522 41 488 20 

A comparison based on the ground-truth in [8] is 
presented in TABLE II. In addition to the SAD and BZip2 
(BZ2) measures, we have added a new column, DIS, that 
shows the sum of absolute differences between the true 
motion field and the estimated motion field. 

TABLE II. THE QUALITY OF THE DENSE MOTION FIELD. 
MAP w/o Landmarks Proposed 

SAD
( 103)

DIS 
( 103)

BZ2 
(KB) 

SAD
( 103)

DIS
( 103)

BZ2
(KB)

DIMETRO
DON 420 738 99.4 357 155 35.4

GROVE2 1,413 901 141 1,368 462 99 

GROVE3 1,490 1,030 161 1,444 500 115 

URBAN2 649 1,825 159 586 931 104 

URBAN3 605 1,970 158 643 1,131 98 

HYDRANG
EA 530 800 107 439 187 43.4

RUBBER 
WHALE 404 701 89.6 322 74 22 

VENUS 383 614 72 358 183 32.5

The computational increment of the proposed 
algorithm are mainly concentrated in the energy 
minimization process; meanwhile, the complexity of 
picking landmark motions can be considered as trivial. 
Among the ten sequences we examined, the computational 
increments are less than 17%, even less than 1% for some 
sequences. The -parameters for the following eight 
sequences in TABLE II are set to g = 1, d = 1, m = 1. 

6. CONCLUSIONS 
In this paper, we propose a MAP dense motion 

algorithm with landmark point constraint. The proposed 
constraint incorporate semi-global information into the 
iterative MAP estimation process based on local cost 
updates. The experiments show that the proposed 
technique produces a dense motion field with very good 
quality. 
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