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Abstract
The probabilistic model building performed by estimation of distribution algorithms
(EDAs) enables these methods to use advanced techniques of statistics and machine
learning for automatic discovery of problem structures. However, in some situations, it
may not be possible to completely and accurately identify the whole problem structure
by probabilistic modeling due to certain inherent properties of the given problem. In
this work, we illustrate one possible cause of such situations with problems consisting
of structures with unequal fitness contributions. Based on the illustrative example, we
introduce a notion that the estimated probabilistic models should be inspected to reveal
the effective search directions and further propose a general approach which utilizes
a reserved set of solutions to examine the built model for likely inaccurate fragments.
Furthermore, the proposed approach is implemented on the extended compact genetic
algorithm (ECGA) and experiments are performed on several sets of additively sep-
arable problems with different scaling setups. The results indicate that the proposed
method can significantly assist ECGA to handle problems comprising structures of
disparate fitness contributions and therefore may potentially help EDAs in general to
overcome those situations in which the entire problem structure cannot be recognized
properly due to the temporal delay of emergence of some promising partial solutions.
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1 Introduction

Estimation of distribution algorithms (EDAs; Miihlenbein and Paafs, 1996; Larrafiaga
and Lozano, 2001; Pelikan, Goldberg, et al., 2002) are a class of evolutionary algorithms
that replace the traditional variation operators, such as mutation and crossover, by
building a probabilistic model on promising solutions and sampling the built model to
generate new candidate solutions. Using probabilistic models for exploration enables
these methods to automatically capture the likely structure of promising solutions and
exploit the identified problem regularities to facilitate further search. It is presumed that
EDAs can detect the structure of the problem by recognizing the regularities within the
promising solutions. However, for certain problems, EDAs are unable to identify the
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entire structure of the problem at a given time because the set of selected solutions on
which the probabilistic model is built contains insufficient information regarding some
parts of the problem and renders EDAs incapable of processing these parts accurately.

This paper starts by observing the evolutionary process of an EDA when dealing
with an exponentially scaled problem, and recognizing that the population on which
the probabilistic model is built does not necessarily contain sufficient information for all
problem structures to be detected completely and accurately. Based on the observation,
this study proposes a general concept that estimated probabilistic models should be
inspected to reveal the effective search directions, and we provide a practical approach
that utilizes a reserved set of solutions to examine the built model for the fragments
that may be inconsistent with the actual problem structure. Furthermore, the proposed
approach is implemented on the extended compact genetic algorithm (ECGA; Harik,
1999) and experimented on several sets of additively separable problems with different
scaling difficulties (Goldberg, 2002) to demonstrate the applicability.

The following section briefly reviews the research topics concerning this study. Sec-
tion 3 then demonstrates the interaction between the scaling difficulty and probabilistic
model building performed by EDAs. More specifically, we will investigate how the scal-
ing difficulty shadows the ability of EDAs to recognize problem structures and causes
inaccurate processing on the part of some solutions. Accordingly, a general approach
will be proposed in Section 4 to resolve this issue and enforce accurate processing dur-
ing the optimization process. In Section 5, an implementation of the proposed approach
on the extended compact genetic algorithm will be detailed. Section 6 presents the
empirical results, followed by discussion and analysis in Section 7. Finally, Section 8
concludes the paper.

2 Background

Genetic algorithms (GAs; Holland, 1992; Goldberg, 1989) are search techniques loosely
based on the paradigm of natural evolution, in which species of creatures tend to
adapt to their living environments through mutation and inheritance of useful traits.
Genetic algorithms mimic this mechanism by introducing artificial selections and ge-
netic operators to discover and recombine partial solutions. By properly growing and
mixing promising partial solutions, which are often referred to as building blocks (BBs;
Goldberg, 2002), GAs are capable of efficiently solving a variety of problems. The ability
to implicitly process a large number of partial solutions has been recognized as an im-
portant source of the computational power of GAs. According to the Schema theorem
(Holland, 1992), short, low-order, and highly fit subsolutions increase their share in the
final combined solution. Further, as stated in the building block hypothesis (Goldberg,
1989), GAs implicitly decompose a problem into subproblems by processing building
blocks. This decompositional bias is a good strategy for tackling many real-world prob-
lems, because real-world problems can oftentimes be reliably solved by combining the
pieces of promising solutions in the form of problem decomposition.

However, proper growth and mixing of building blocks are not always achieved.
GAs in the simplest form employ fixed representations and problem-independent re-
combination operators, which often breaks promising partial solutions while perform-
ing crossovers. This can cause crucial building blocks to vanish, thus leading to a
convergence to local optima. In order to overcome this building block disruption prob-
lem, various techniques have been proposed. In this study, we focus on one line of effort
often called the estimation of distribution algorithm (EDA; Miihlenbein and Paafs, 1996;
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Larrafiaga and Lozano, 2001; Pelikan, Goldberg, et al., 2002). These methods construct
probabilistic models of promising solutions and utilize the built models to generate
new solutions. Ideally, by detecting dependencies among variables through probabilis-
tic modeling, these approaches can capture the structure of the problem and thus avoid
the disruption of identified partial solutions. Early EDAs, such as population-based
incremental learning (PBIL; Baluja, 1994) and the compact genetic algorithm (cGA;
Harik et al., 1999), assume no interaction between decision variables. That is, decision
variables are assumed to be independent of each other. Subsequent studies progressed
from capturing pairwise interactions, such as mutual-information-maximizing input
clustering (MIMIC; De Bonet et al., 1997), Baluja’s dependency tree approach (Baluja
and Davies, 1997), and the bivariate marginal distribution algorithm (BMDA; Pelikan
and Miihlenbein, 1999), to modeling multivariate interactions, such as the extended
compact genetic algorithm (ECGA; Harik, 1999), the Bayesian optimization algorithm
(BOA; Pelikan et al., 1999), the estimation of Bayesian network algorithm (EBNA;
Etxeberria and Larrafaga, 1999), the factorized distribution algorithm (FDA; Miihlenbein
and Mahnig, 1999), and the learning version of FDA (LFDA; Miihlenbein and Hons,
2005). Along this line of research, questions arose naturally regarding the ability of
EDAs to solve problems and the probabilistic models employed to learn the problem
structures. Early studies recognized that solving problems composed of higher order
building blocks is not expected to be accomplished by using just any probability density
structure. Bosman and Thierens (1999) demonstrated that even when the set of vari-
ables forming a building block is linked and expressed by the best possible MIMIC-like
chain structure, directly sampling that chain to generate new solutions is not a good
strategy for reliable optimization. More recently, Echegoyen et al. (2007) compared the
behavior of EBNA with approximate and exact Bayesian network learning. In another
vein, Hauschild et al. (2007) analyzed the structure and complexity of learned proba-
bilistic models and attempted to facilitate the model building process by incorporating
the knowledge acquired from previous models (Hauschild et al., 2008).

Another topic relevant to this study is the impact of disparate scale among differ-
ent building blocks on the behavior and performance of evolutionary algorithms. It is
commonly observed that building blocks with higher marginal fitness contributions—
salient building blocks—converge before those with lower marginal fitness contri-
butions. This sequential convergence behavior is referred to as domino convergence
(Thierens et al., 1998). In real-world applications, it is often the case that some parts
of the problem are more prominent and contribute more to the fitness than the other
parts.! Such a situation can pose two types of difficulties. Firstly, because the processing
on the population is statistical in nature, building block scaling can cause inaccurate
processing of less fit building blocks (Goldberg et al., 1992; Goldberg and Rudnick,
1991). The second difficulty arises because the lower fitness of a building block gener-
ally causes it to be processed at a later time compared to those of higher fitness. This
delay on timeline can cause the building block to converge under random pressure,
instead of proper selective pressure. Previous studies on this topic include the explicit
role of scale in a systematic experimental setting (Goldberg et al., 1990), a theoretical

IThe reader may note that this statement cannot be formally proved nor disproved because we do
not know nor even have a way to estimate the distribution of all real-world problems. However, this
intuition can be better articulated by the explanation provided in Goldberg (2002): differences in scale
are likely to be common across the space of likely problems, that is, the chance that we encounter
differences in scale may be much larger than encountering equivalence in scale.
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model on the convergence behavior of exponentially scaled problems (Thierens et al.,
1998), an extension of that model to building blocks more than one variable long (Lobo
et al., 2000), and a convergence model of linkage learning genetic algorithms (LLGAs;
Harik, 1997) on problems with different scaling setups (Chen and Goldberg, 2005).

Although the aforementioned scaling difficulty exists in a number of problems
and degrades the performance of many evolutionary algorithms (EAs), there are scant
investigations concerning the behavior of EDAs in the presence of scaling difficulties.
Therefore, this study attempts to explore how the scaling difficulty affects EDAs, and
proposes a practical countermeasure to assist EDAs on problems with different scalings.
Specifically, we propose the notion that the estimated probabilistic models should be
examined to enforce accurate processing of building blocks and prevent random drift
from taking place. In the remainder of this paper, our approach will be demonstrated
and evaluated on the test problems constructed by concatenating several trap functions.
A k-bit trap function is a function of unitation? which can be expressed as

Foun ( ) k, ifu==k
S1Sy -+ S — s

trap, 7172 k k—1—u, otherwise

where u is the number of ones in the binary string s, - - - 5¢. The trap functions were used

pervasively in the studies concerning EDAs and other evolutionary algorithms because

they provide well-defined structures among variables, and the ability to recognize

intervariable relationships is essential to solve the problems consisting of traps (Deb
and Goldberg, 1993, 1994).

3 Linkage Sensibility

The ability of EDAs to handle the building block disruption problem comes primarily
from the explicit modeling of selected promising solutions using probabilistic models.
The model construction algorithms, though they differ in their representative power,
capture the likely structures of good solutions by processing the population-wise statis-
tics collected from the selected solutions. By reasoning the dependencies among differ-
ent parts of the problem and the possible formations of good solutions, reliable mixing
and growing of building blocks can be achieved. As noted by Harik (1999), learning
a good probability distribution is equivalent to learning linkage, where linkage refers
to the dependencies among variables. Bosman and Thierens (1999) further recognized
that in order to achieve reliable optimization, linkage information should be utilized
in a way such that each corresponding building block can be identified and used as a
whole.

In most studies on EDAs, it is presumed that EDAs can detect linkage and recognize
building blocks according to the information contained in the set of selected solutions.
However, in this study, we argue that in some situations, accurate and complete linkage
information cannot be acquired by distribution estimation because the selected set of
solutions on which the model is built contains insufficient information on the lower
fitness parts of the problem. For example, consider a 16-bit maximization problem

2A function of which the function value depends only on the number of ones in the binary input
string.
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Table 1: Marginal product models built by ECGA when solving an exponentially scaled
problem. Each group of variables represents a marginal model in which a marginal
distribution resides. The converged variables are crossed out.

Generation Marginal product model

1 [s1 52 83 541 [s5 510 8161 [s6 571 [s8 89 $12] [511 514 515] [513]

2 fsr} fso3 fssd fsad [s5 86 857 5] [s9 513 s16] [510 514 515] [s11512]

3 ford 523 551 52 fss1 Fssd Fs73 Bssd [s0 $10 S11 8121 [513 5161 [514 515]

4 51 ts2d f551 fsad f551 Ll £571 fssd f50d fsvor It f51od [543 514 $15 836]

formed by concatenating four 4-bit trap functions as subproblems,

3

i
fls1s2- -+ 516) = 2(5 ' frrap, (S4i+154i+254i+354i+4))
i=0

where 5157 - - - 516 15 a solution string. Note that in contrast to other studies of EDAs, in
which the test problems are scaled uniformly, that is, the subproblems are of equal fit-
ness, in this problem, each elementary trap function is scaled exponentially. This scaling
is an abstraction for problems of distinguishable prominence or solving priority among
the constitutive subproblems. Suppose that we choose ECGA (Harik, 1999), which uses
a class of multivariate probabilistic models called marginal product models (MPMs) to
tackle this problem.? By observing subsequent generations of the optimization process,
a series of models built by ECGA can be obtained like those listed in Table 1. In this
table, the variables enclosed by the same pair of brackets are considered dependent and
are modeled jointly. Each group of variables represents a marginal model in which a
marginal distribution resides, and the converged variables are crossed out.*

It can be observed that the models shown in Table 1 are only partially correct in
each generation. More specifically, in each generation, only the most fit building block
on which the population has not converged is correctly modeled. This is due to the fact
that some part of the problem contributes much more than all the others combined. If
one part of the problem is worth more than the others, then this part of the solution
solely determines the chance regarding whether or not the solution will be selected.
As a consequence, only the most fit building block can provide sufficient information
to be modeled correctly, since the model searching is performed based on the selected
solutions. The remaining parts of the model are primarily the result of low fitness partial
solutions “hitchhiking” on the more fit building blocks.

From the above example, we can see that not all building blocks can be detected
from a given set of selected solutions by probabilistic model building. Model building
algorithms cannot “see” the entire structure of the problem from the selected set of
solutions because the disparate scale among different building blocks prevents complete
linkage information from being included in the selected population. In this work, we
will refer to this concept as linkage sensibility and those problem structures that can be
identified properly using the given set of solutions are called sensible linkage. Based on
this notion, we reexamine EDAs on the building block disruption problem. It is clear

3See Section 5.1 for a more detailed description of ECGA and marginal product models.

“The convergence of a variable is defined as all solutions in the population possessing the same
value for that variable, that is, no further changes for that variable will occur.
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that the disruption problem still exists in the insensible portion of the problem because
that part of the problem cannot be modeled properly. Although the above example is
an extreme case of scaling, in that each subproblem is exponentially scaled, in real-
world problems, it is often the case that the constitutive subproblems are weighted
significantly differently, which implies that the linkage might be only partially sensible.
In addition to the building block disruption problem, the random drift of the less
salient parts of the problem mentioned in Section 2 further worsens the situation. These
situations and issues are usually handled by increasing population size when EDAs are
adopted. However, we may gain a new way to deal with these situations if it is possible
to distinguish a sensible linkage from an insensible linkage.

4 Effective Distributions

The idea of sensible linkage can be closely mapped into another notion called effective
distributions. By effective distributions, we mean that by sampling these distributions,
the solution quality can be reliably advanced. Hence, the crucial criteria for effective dis-
tributions are the consistency with building blocks and the provision of good directions
for further search. If it is possible to extract effective marginal distributions from the
built probabilistic model, we can perform partial sampling using only these marginal
distributions and leave the remaining parts of the solutions unchanged. Thus, the diver-
sity is maintained and we are free from the building block disruption and random drift
problems. For instance, returning to the earlier 16-bit optimization problem, if it is pos-
sible to identify those partial models that are built on the sensible linkage like [s1 57 53 54]
in the first generation and [ss s¢ s7 s3] in the second generation, we can sample only the
corresponding marginal distributions which are, in this case, effective. That s, in the first
generation, for each solution string, we resample only s;525354 according to the marginal
distribution and keep sss¢ - - - 516 unchanged. In the second generation, we resample only
51 to sg according to the marginal distributions and keep sos19 - - - 516 with the same val-
ues (note that s1s2s354 converged). In this way, we do not have to resort to increasing the
population size to deal with the problems caused by the disparate building block scaling.

The above thoughts leave us one complication: the identification of effective distri-
butions. However, the direct identification of effective distributions may be a difficult
if not impossible task. It may be wise to adopt a complementary approach—to iden-
tify those marginal distributions that are not likely to be effective. If there is a way to
identify the ineffective distributions, we can bypass them and use only the rest of the
probabilistic model, and thus approximate the result of knowing effective distributions.
Our idea is that we can split the entire population into two subpopulations, use only
one of the subpopulations for building the probabilistic model, and utilize the other
subpopulation to collect some statistics for possible indications of ineffectiveness of cer-
tain marginal distributions in the probabilistic model built on the first subpopulation.
That is, with some appropriate heuristics or criteria, we can prune the likely ineffective
portions of the model.

In the next section, our implementation in ECGA of the proposed concept will
be detailed. More specifically, a judging criterion will be proposed to detect the likely
ineffective marginal distributions of a given marginal product model.

5 ECGA with Model Pruning

This section starts with a brief review of the ECGA (Harik, 1999). Based on the idea
of detecting the inconsistency of statistics gathered from two subpopulations of the

552 Evolutionary Computation = Volume 18, Number 4



Sensible Linkage and Effective Distributions

Table 2: Anexample of a marginal product model that defines a probability distribution
over four variables. The variables enclosed in the same brackets are modeled jointly,
and each variable subset is considered independent of the other variable subsets.

[s1] [s2 s4] [s5]

P(s;=0)=04 P(s; =0,54=0)=0.2 P(s3=0)=0.5
P(s;=1)=0.6 P(s; =0,54=1)=0.1 P(s3=1)=05
P(52 = 1,S4 :0) =0.1
P(Sz = 1,S4 = 1) =0.6

same source, a mechanism is devised to identify the possibly ineffective parts of the
built probabilistic model. Finally, an optimization algorithm incorporating the proposed
technique is described in detail.

51 Extended Compact Genetic Algorithm

ECGA uses a product of marginal distributions on a partition of the variables. This kind
of probability distribution belongs to a class of probabilistic models known as marginal
product models (MPMs). In this kind of model, subsets of variables are modeled jointly,
and each subset is considered independent of the other subsets. In this work, the
conventional notation is adopted that variable subsets are enclosed in brackets. Table 2
presents an example of MPM defined over four variables: s1, 57, 53, and s4. In this
example, s, and s; are modeled jointly and each of the three variable subsets ([s1], [s2 s4],
and [s3]) is considered independent of the other subsets. For instance, the probability
that this MPM generates a sample 5525354 = 0101 is calculated as follows,

P(s15085354 = 0101) = P(s1 =0) x P(sp =1,54 = 1) x P(s3 =0)
=04x06x05.

In fact, as its name suggests, a marginal product model represents a distribution that is
a “product” of the marginal distributions defined over variable subsets.

In ECGA, both the structure and the parameters of the model are searched and
optimized in a greedy fashion to fit the statistics of the selected set of promising solu-
tions. The measure of a good MPM is quantified based on the minimum description
length (MDL) principle (Rissanen, 1978), which states that any regularity in a given
set of data can be used to compress that data, and the success of a model in capturing
those regularities can be measured by the cost of expressing the model and the length
of the data compressed according to the model. The MDL principle thus penalizes both
inaccurate and complex models, thereby leading to a descriptive yet not overly com-
plicated distribution. Specifically, the search measure is the MPM complexity which is
quantified as the sum of model complexity, C,,, and compressed population complexity,
C,. The greedy MPM search first considers all variables as independent and each of
them forms a separate variable subset. In each iteration, the greedy search merges two
variable subsets that yield the greatest reduction in C,, + C,. This process continues
until there is no mergence that can further decrease the combined complexity.

The model complexity, C,,, quantifies the model representation in terms of the
number of bits required to store all the marginal distributions. Suppose that the given
problem is of length ¢ with binary encoding, and the variables are partitioned into m
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subsets each of size k;,i = 1...m,such that ¢ = /" k;. Then the marginal distribution
corresponding to the ith variable subset requires 2% — 1 frequency counts to be com-
pletely specified. Taking into account that each frequency count is of length log,(n 4 1)
bits, where n is the population size, the model complexity, C,,, can be defined as

Cn =log,(n +1))Y (2" —1).

i=1

The compressed population complexity, C,, quantifies the suitability of the model
in terms of the number of bits required to store the entire selected population (the
set of promising solutions picked by the selection operator) under an ideal compres-
sion scheme. The compression scheme is based on the partition of the variables. Each
subset of the variables specifies an independent “compression block” on which the
corresponding partial solutions are optimally compressed. Theoretically, the optimal
compression method encodes a message of probability p; using —log, p; bits. Thus,
taking into account all possible messages, the expected length of a compressed mes-
sageis ), —p; log, p; bits, which is optimal. In information theory (Cover and Thomas,
1991), the quantity —log, p; is called the information of that message and ), —p; log, p;
is called the entropy of the corresponding distribution. Based on information theory, the
compressed population complexity, C,, can be derived as

m 2k

Cp=nY_ Y —pilog, pi.

i=1 j=1

where p;; is the frequency of the jth possible partial solution to the ith variable subset
observed in the selected population.

Note that in the calculation of C,, it is assumed that the jth possible partial solution
to the ith variable subset is encoded using —log, p;; bits. This assumption is funda-
mental to our technique of identifying the likely ineffective marginal distributions.
More precisely, the information of the partial solutions, —log, p;;, is a good indicator of
inconsistency of statistics gathered from two separate subpopulations.

5.2 Model Pruning

Our technique of identifying the possibly ineffective fragments of a marginal product
model is based on the notion that ECGA uses compression performance to quantify the
suitability of a probabilistic model for a given set of solutions. The degree of compression
is a quite representative metric to the fitness of modeling, because all good compression
methods are based on capturing and utilizing the relationships among data (Griinwald,
2007). Thus, if the compression scheme of the MPM built on one set of solutions is
incapable of compressing another set of solutions produced under the same condition,’
then we can speculate that some of the constitutive marginal models observed in the
first set of solutions are likely inconsistent with the distribution of the corresponding
partial solutions observed in the second set of solutions. Such inconsistency can be seen

5For example, if all individuals are produced by sampling the same probabilistic model and selected
using the same selection technique under the same pressure.
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as a disagreement on the direction of further search. However, under the premise that
these two sets of solutions are produced under the same condition, they are supposed to
reveal similar directions of further search. Thus, we can reasonably speculate that proper
selection pressures were not applied on these partial solutions (causing them to drift
toward two different directions), and the true linkage structures on these parts of the
problem are not sensible under this condition. Recalling our definition in Section 4, an
effective distribution should be capable of providing a good direction for further search
and consistent with the linkage structure. Thus, if the aforementioned inconsistency is
found, we can expect that with a high probability,® the inconsistent marginal models
are ineffective. Based on the reasoning, we can perform a systematic checking on the
given MPM for the likely ineffective portions.

Suppose that the population of solutions, P, is split into two subpopulations S and
T. The model searching is performed on §’, the set of promising solutions selected from
S. Then we can use the statistics collected from 7’, the set of solutions selected from
T, to examine the built probabilistic model, M. Since each marginal model functions
independently, they can be inspected separately. Recall the former description that a
variable subset, which specifies a marginal model, is viewed as a “compression block”
that encodes each possible partial solution according to the marginal distribution. The
Jjth possible partial solution to the ith variable subset is encoded using — log, p;; bits,
where p;; is the frequency of the jth possible partial solution to the ith variable subset
observed in §'. Assuming that the given problem is of length ¢ with binary encoding,
and there are m variable subsets with each of size k;, i = 1...m, in the built model M,
for the ith marginal model, i = 1...m, we can check whether or not

2ki

Z qij(—log, pij) > ki,

j=1

where g;; is the frequency of the jth possible partial solution to the ith variable subset
collected from 7”. If the inequality holds, then the compression scheme employed in
the ith marginal model is not a good one for compressing the corresponding partial
solutions in 7’ because it encodes a k;-bit partial solution to a bit string with an expected
length of more than k; bits. Based on the earlier reasoning, such a condition indicates
that the marginal model is likely ineffective because T’ does not agree on this part of the
model. Otherwise, the scheme should be able to compress the partial solutions in 7".
Further explained from a machine learning perspective (Mitchell, 1997), a good
model should generalize well to unseen instances. Otherwise, it captures coincidental
regularities among the training data or what it has observed. If model building is
performed on the portion where linkage is not sensible from the given set of solutions,
it will “overfit” these partial solutions (i.e., take on hitchhikers) that were not subject
to proper selection pressures. Consequently, the regularities captured by this part of
modeling tend to be inconsistent with the true problem structure. Furthermore, the
partial solutions that were not subject to proper selection pressure appear to be random,
and such a situation brings about the phenomenon of random drift mentioned in
Section 2. By its nature, drift is random, and two different subpopulations tend to drift
in two different directions. Thus, we can use the statistical inconsistency between S’ and

Because the solutions are generated probabilistically, we cannot be absolutely sure.
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Algorithm1 ECGA with Model Pruning

Initialize a population P with n solutions of length ¢.
while the stopping criteria are not met do
Evaluate the solutions in P.
Divide P into two subpopulations S and T at random.
S’ < apply t-wise tournament selection on S.
T’ < apply t-wise tournament selection on 7.
M <« build the MPM on §’ with greedy search.
M’ < prune M based on the inconsistency with 7".
for each remaining marginal distribution D in M’ do
for each solution s = 5155 - -5, in P do
Change the values in s partially by sampling D.
end for
end for
end while

T’ to locate the possible drift portions of the solutions and identify the likely ineffective
parts within the whole model. By removing these likely ineffective parts, we can forge
a partial but more effective model.

An issue in practice concerning the calculation of the inequality is that sometimes
one or more possible partial solutions are absent in the set of selected solutions, leaving
—log, pij undefined because p;; = 0. In the present work, we handle this technical
problem by assigning a very small value, smaller than 1/x, to the p;;’s that are zero and
normalizing them such that p;;’s sumto 1 (ie., }_; pij = 1).

5.3 Integration

In this section, the optimization process incorporating ECGA and the proposed tech-
nique is described. This combination helps ECGA to achieve better performance when
a disparate scale exists among different parts of the problem.

The procedure is presented in Algorithm 1. This process starts with initializing a
population of solutions. After initialization, the solutions are evaluated, and then the
entire population is randomly split into two subpopulations. Selection operations are
performed on the two subpopulations separately with the same operator and selec-
tion pressure. Model building is performed on one of the subpopulations. The other
subpopulation is used to prune the built model using the technique described pre-
viously. Finally, all solutions in the population are altered by sampling the remaining
marginal distributions, which are considered effective, in the pruned model. These steps
are repeated until the stopping criteria are satisfied.

A prominent difference between the above process and the regular EDAs is that
the sampling might not include all variables. As introduced in Section 4, the existing
solutions are altered by sampling only the marginal distributions surviving the model
pruning process. Thus, a solution string might not be entirely modified in an iteration.
This technique hence avoids random drift and inaccurate processing of low-fitness
building blocks by postponing the processing until sufficient linkage information is
available. Similar to the concept proposed by Bosman and Thierens (1999) that link-
age information estimated from the selected solutions has to be utilized to recognize
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Table 3: Marginal product models before and after pruning when solving a 16-bit
exponentially scaled problem with the proposed approach.

| Generation | Marginal product model (before and after pruning) |

1 Before | [s1 52 55 54] [s5 513 s16] [56 57 5121 58 5111 [59 510] [514 515]
After | [s1 s 53 54]

2 Before | fst Esod Fssd Fsad [s5 56 57 53] [so s14] [s10 $15] [s11 813 S16] [512]
After | st} fsod sl bsad [s5 56 57 s8]

3 Before | s fs23 fss1 s Fsst Esed 74 Bssd [so s10 511 s12] [513 514] [515 5161
After | st} bsod b5t bsad Bsst Esed b5 bssd Lso 510 511 512]

4 Before MW%MB&%M%M%M{&Z}BB 514 815 Sle]
After Tt Bsod st Bsad Bssd Bsed Bs73 Bssd ol fsrod o) st [543 514 515 5161

building blocks, we further address that the validity of the linkage information should
be confirmed beforehand. In this way, better performance in terms of function evalua-
tions can be achieved if a disparate scale exists among different parts of the problem.

In order to confirm that the proposed method meets its design purpose, Table 3 lists
the models before and after pruning when the earlier exponentially scaled problem is
solved by Algorithm 1. It can be seen that the proposed approach appropriately removes
the ineffective parts during each stage of the optimization process. In order to further
illustrate the behavior and effect of the proposed approach, the algorithm is applied to
another problem with a different scaling called overloaded scaling”

1
f(5152+++516) = Y firap, (S4i 41541 4254i 13541 +4)
i=0
3

1
+ Z gf trap, (S4i+154 +254i +354i+4) »
i—2

where 5157 - - - 516 is a solution string. The overloaded cases are those with two scales,
where some subproblems are at the high level and the rest are at the low one. The
models before and after pruning when such a problem is solved are shown in Table 4.
It can be observed that the proposed method works as expected in splitting the solving
process according to the scaling structure. The two subproblems of higher fitness are
handled first, and the two subproblems of lower fitness are solved later.

6 Experiments

The experiments are designed to reveal the behavior of the proposed approach in han-
dling sets of problems with different scaling difficulties. Because ECGA is limited in
handling overlapped building blocks, we use only test problems that are additively
separable. In this study, three bounding models of scalings (Goldberg, 2002) are consid-
ered: exponential, power law, and uniform. While the uniform and exponential cases

7 As mentioned by Goldberg (2002), the word “overloaded” is a reference to the application of this
idea in the early messy GA work (Goldberg et al., 1990), where such distributions were used to try
to overload or overwhelm the ability of the messy GA to keep all building blocks present through all
phases of the process.
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Table 4: Marginal product models before and after pruning when solving a 16-bit
problem of the overloaded scaling with the proposed approach.

| Generation | Marginal product model (before and after pruning) |
1 Before | [s1 52 53 54] [s5 56 57 58] [59 516] [s10 514 5151 [511 513] [52]
After | [s1 57 53 54] [s5 56 57 53]
2 Before | [s1 52 53 541 [s5 56 57 58] [59 513 514] [s10 8121 [s11 $15] [516]
After [Sl S§2 83 S4] [S5 S6 7 S3]
3 Before | fsr) fsod {5l fsad fss3 fsd £573 Tssd [so s10 11 8121 [513 514 515 516]
After | fsrdFsod fs5d bsad Bsst bsed s Bssd [s9 510 511 512 [513 514 515 516]
4 Before | fsr} fs2d 55 bsad fss1 fsd £573 Essd [so 10 s11 5121 [513 514 515 516]
After | fsrdfsod sl bsad fsst Ised fs73 Bssd [so s10 811 8121 [513 514 515 516]

bound the scaling performance of an algorithm at two extremes, the power law cases
enable us to see the behavior in between. Based on the different scalings, three sets of
test functions are constructed using firap, as the elemental function:

m—1
Exponential: Z(k + 1) forap, (Stxi+1kxi+2 *** Skxi+k)
i=0
m—1
. 1)
Power law: Z(l + 1)” firap, (Ski+1Skxi+2 *** Skxi-+k)
i=0

m—1
Uniform: E Sirap, (ki +18kxi42 * * * Skxi+k)
i=0

By adopting different scaling setups, we can compare the original ECGA with our
approach under different degrees of linkage sensibilities. By varying k& and m, we can
observe the behavior of the proposed method with respect to different problem and
subproblem sizes in a controlled manner. Furthermore, various selection pressures are
also taken into consideration to make a more thorough observation.

The purpose of the following experiments is to understand the impact of the pro-
posed method on the computational resource (population size and function evaluations)
required to solve a problem. Thus, we do not use solution quality as a measure of
comparison but treat it as a minimum requirement. More precisely, we use a bisection
method (Sastry, 2001) to bound the minimum population size capable of achieving
reliable convergence to the optimum. Of course, solution quality can be an important
indicator for evaluating a newly invented approach. However, the primary goal of this
study is to design a more economic approach for solving problems, and the experiments
are designed to evaluate the ability of the proposed approach in this aspect.

6.1 Effect of Selection Pressure

This section describes the experiments designed for observing the effect of selection
pressure on both the original ECGA and the ECGA combined with the proposed ap-
proach. The purpose of these experiments is twofold.

¢ First, we want to determine the range of selection pressure with which the pro-
posed approach works as we designed. Appropriate selection pressure is quite
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Figure 1: Empirical results of the proposed method and original ECGA on 40- and 80-
bit (k = 4, m = 10 and 20) exponentially scaled problems. Five tournament sizes ranging
from 8 to 24 were used to observe the behavior of the algorithms under different selection
pressures.

important to the proper functioning of our approach because the pruning mech-
anism is designed according to the statistical inconsistencies between the two
subpopulations.

® Second, because the proposed approach will be compared with the original ECGA
in the subsequent experiments, in order to make a fair and meaningful compar-
ison, the selection pressure must be set to an appropriate value for the original
ECGA to work under good conditions.

6.1.1 Experimental Settings

Because tournament selection is adopted, the selection pressure is altered by changing
the tournament size. We consider tournament sizes ranging from 8 to 24, and the
problem instances used to make the observations are of length 40 bits and 80 bits with
4-bit trap functions as subproblems (k = 4, m = 10 and 20, respectively).

For simplicity, the splitting of population is performed in the way that the two
resulting subpopulations are disjoint and of equal size. The stopping criterion is set
such that a run is terminated when all solutions in the population converge to the
same fitness value. For each tournament size, the minimum required population size is
determined by a bisection method (Sastry, 2001) such that on average, m — 1 building
blocks converge to the correct values in 50 runs for each of the two problem instances.

6.1.2 Results and Observations

The results for exponentially, power law, and uniformly scaled problems are presented
in Figures 1,2, and 3, respectively. It can be observed from Figures 1(b), 2(b), and 3(b) that
for all three scalings, the original ECGA works best (in terms of the number of function
evaluations) under tournament size 12 or 16. Based on that, we will use these two
tournament sizes in the following sets of experiments to ensure that the improvement
of our approach over the original ECGA is not a result of improper selection pressure. In
fact, we also performed experiments using a tournament size of 4, of which the results
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Figure 2: Empirical results of the proposed method and original ECGA on 40- and 80-bit
(k =4, m = 10 and 20) power law scaled problems. Five tournament sizes ranging from

8 to 24 were used to observe the behavior of the algorithms under different selection
pressures.
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Figure 3: Empirical results of the proposed method and original ECGA on 40- and 80-bit
(k =4, m =10 and 20) uniformly scaled problems. Five tournament sizes ranging from
8 to 24 were used to observe the behavior of the algorithms under different selection
pressures.

are listed in Table 5. This demonstrates that adopting a lower selection pressure does
not yield better performance for ECGA or for our approach.

The results of these experiments give some insights into the pruning mechanism. It
can be observed that the appropriateness of a particular selection pressure is related to
the linkage sensibility of the problem at hand. This property could cause inconvenience
in choosing selection pressure for the algorithm because when dealing with black box
optimization, we usually do not have any information about the problem at hand.
Fortunately, Figures 1(b), 2(b), and 3(b) also suggest that under tournament sizes ranging
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Table 5: Empirical results of the proposed method and original ECGA using a tour-
nament size of 4. Experiments were conducted on 40- and 80-bit problems formed by
concatenating 4-bit trap functions with three different scalings. The symbols ¢, n, and
fev denote problem size, population size, and function evaluations, respectively.

L n S SD f,,

Exponential ECGA 40 1,719 44 ,487.72 2,682.02
80 3,748 187,549.92 5,912.06

ECGA+MP 40 1,405 37,373.00 2,027.11

80 4,221 210,881.16 8,568.54

Power law ECGA 40 1,604 32,946.16 2,105.37
80 5,507 163,557.90 6,017.21

ECGA+MP 40 1,248 27,755.52 1,929.44

80 4,361 141,034.74 5,884.63

Uniform ECGA 40 1,346 17,228.80 1,489.44
80 3,479 58,308.04 3,411.61

ECGA+MP 40 2,181 30,446.76 2,411.81

80 5,598 100,540.08 5,535.96

from 8 to 16, our approach works better than the original ECGA in the exponentially
and power law scaled cases. Under this range of tournament sizes (8 to 16), the behavior
of the proposed approach in uniformly scaled cases is relatively stable compared to that
under higher selection pressure. This observation demonstrates that for a broad range
of selection pressure, the improvement obtained by using the pruning mechanism can
be expected in cases of limited linkage sensibility, while in cases for which linkage
information is completely sensible, the overhead is relatively stable.

6.2 Impact on Population Requirement with Increasing m

This section describes experiments designed to reveal the behavior of the proposed
approach when the number of subproblems within a problem is growing (i.e., increasing
m while fixing k). In order to illustrate the effectiveness and benefit of adopting the
pruning mechanism and to estimate the overhead when it is not needed, the proposed
approach will be compared with the original ECGA on three sets of problems with
different scaling setups.

6.2.1 Experimental Settings

The problem instances used in this set of experiments are composed of 4-bit trap func-
tions and range from 40 to 80 bits (k =4, m = 10...20). Two selection pressures are
adopted by setting tournament size ¢ to 12 and 16. The reason for using these two tour-
nament sizes is because our approach is compared with the original ECGA, which seems
to perform better with r = 12 or r = 16 according to the previous set of experiments.
Otherwise, a question might arise as to whether or not the inferior performance of the
original ECGA under some scaling difficulties comes from the inappropriate setting of
selection pressure.

As in the previous experiment, the splitting of population is also performed in the
way that the two resulting subpopulations are disjoint and of equal size. The stop-
ping criterion is set such that a run is terminated when all solutions in the population
converge to the same fitness value. For each problem instance, the minimum required
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Figure 4: Empirical results of the proposed method compared to the original ECGA on
exponentially scaled problems with tournament sizes t = 12 and ¢ = 16. Problem sizes
ranging from 40 to 80 bits (k =4, m = 10...20) were used to observe the performance
of the algorithms.

population size is determined by a bisection method such that on average, m — 1 build-
ing blocks converge to the correct values in 50 runs.

6.2.2 Results and Observations

The empirical results for exponentially scaled problems are shown in Figure 4. The
minimum population sizes required by the proposed method are much smaller than
the sizes needed by the original ECGA and grow at a relatively slow rate. The same sit-
uation is also observed in the function evaluations for which our approach performed
remarkably well. This improvement can be explained by the previous discussion on
random drift and linkage sensibility presented in earlier sections. If simultaneous de-
tection and processing of all building blocks cannot be achieved, additional costs have
to be paid for the inaccurate processing and random drift of subsolutions. By adopting
the pruning mechanism, we can save these costs by detecting possibly ineffective partial
models and postponing the changes on them until accurate processing can be made.

Figure 5 shows the results for power law scaled problems. The results of the mini-
mum population sizes are similar to those obtained in the previous set of experiments.
The proposed method still uses fewer function evaluations, but the differences are re-
duced. This is because the linkage sensibility of the power law scaled problems is less
limited compared to that of the exponentially scaled problems.

The empirical results for uniformly scaled problems are presented in Figure 6. As
expected, the proposed method requires larger population sizes than those needed
by the original ECGA. Due to the fact that for uniformly scaled problems, the model
building process can correctly identify all building blocks, the verification on the built
model may just be useless and wasteful. The results also suggest that the function
evaluations used by the proposed method are about twice the number of those needed
by the original ECGA.

In order to support the significance of the observations, we have also performed
Welch's t-test on the results. For each problem size, a t-test of the null hypothesis that the
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Figure 5: Empirical results of the proposed method compared to the original ECGA
on power law scaled problems with tournament sizes t = 12 and ¢ = 16. Problem sizes
ranging from 40 to 80 bits (k = 4, m = 10...20) were used to observe the performance
of the algorithms.
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Figure 6: Empirical results of the proposed method compared to the original ECGA
on uniformly scaled problems with tournament sizes t = 12 and ¢ = 16. Problem sizes
ranging from 40 to 80 bits (k =4, m = 10...20) were used to observe the performance
of the algorithms.

number of function evaluations spent by ECGA and the number of function evaluations
spent by the proposed approach are with equal means (against the alternative that
the means are not equal) was performed. The significance level was set to 5%, and
the respective statistics are listed in Table 6. The resulting statistics suggest that the
outcomes of the proposed approach are significantly different from those of the original
ECGA for all three scaling setups.

6.3 Impact on Population Requirement with Varying k

This section describes the experiments that accompany the previous ones to further
demonstrate the performance of the proposed approach. The experiments were designed

Evolutionary Computation =~ Volume 18, Number 4 563



C.-Y. Chuang and Y.-p. Chen

Table 6: Welch'’s t-test on empirical results presented in Figures 4, 5, and 6. The null
hypothesis is that the number of function evaluations spent by ECGA and the number of
function evaluations spent by ECGA-MP are with equal means (against the alternative
that the means are not equal). The first three rows indicate whether the null hypothesis
is rejected, the p-value, and the z-statistics from the tests, respectively. The last row lists
whether the number of average function evaluations needed by ECGA-MP is smaller
(<) or larger (>) than the number needed by the original ECGA.

Problem size 40 48 56 64 72 80
(a) Exponentially scaled cases with tournament size 12
Reject null True True True True True True
p-value 4.409 x 107 2.137 x 107% 2.031 x 107 1.102 x 10~% 2.053 x 10~7° 5.563 x 10~%
t-statistics 41.9194 64.0567 82.6409 66.3387 97.2660 82.4819
Comparison < < < < < <
(b) Exponentially scaled cases with tournament size 16

Reject null True True True True True True
p-value 1.458 x 107*% 6.409 x 107> 2.149 x 107%* 1.847 x 1078 4.341 x 10~ 8.518 x 10~
t-statistics 40.7834 60.9651 71.7845 81.9204 89.1136 87.8952
Comparison < < < < < <

(c) Power law scaled cases with tournament size 12
Reject null True True True True True True
p-value 1.094 x 107 1.208 x 107 5.515 x 107* 4.294 x 107" 6.05 x 10~ 1.608 x 107
t-statistics 14.5298 18.4542 29.4004 48.5933 44.0576 63.2243
Comparison < < < < < <

(d) Power law scaled cases with tournament size 16
Reject null True True True True True True
p-value 1.582 x 1072 6.032 x 107%° 1.047 x 10™% 1.717 x 107> 3.383 x 107% 7.91 x 10~¢
1-statistics 12.7581 30.2641 28.5023 37.5145 38.8386 49.2693
Comparison < < < < < <

(e) Uniformly scaled cases with tournament size 12
Reject null True True True True True True
p-value 3.356 x 107% 1.23 x 107 4.264 x 10~** 3.399 x 1073 4.006 x 10~% 4.903 x 10~
t-statistic —25.4683 -26.7928 -23.7365 -22.9905 -29.0505 -33.4524
Comparison > > > > > >

(f) Uniformly scaled cases with tournament size 16
Reject null True True True True True True
p-value 1.126 x 107 1.776 x 10~ 8.802 x 107 6.649 x 10732 3.684 x 107 4.062 x 10~
t-statistic —25.7066 —-25.9356 -31.5460 —-25.0263 —28.6037 -34.0405
Comparison > > > > > >

to observe the behavior of the proposed approach when the size of the constitutive sub-
problem changes (i.e., varying k while fixing m). As in the previous set of experiments,
the original ECGA will also be tested for comparison.

6.3.1 Experimental Settings

In contrast to the previous set of experiments, we use trap functions of different sizes to
form our test problems. While the size of constituting subproblem varies, the number of
the subproblems remains fixed. The problem instances are constructed by concatenating
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Figure 7: Empirical results of the proposed method compared to the original ECGA
for exponentially scaled problems composed of subproblems of sizes 3, 4, and 5 (k = 3,
4, and 5). In this experiment, tournament size t = 16 was used and the number of
subfunctions forming the test problems was fixed at 10 (i.e., m = 10).

10 trap functions of size 3,4, or 5 (k = 3, 4, or 5, m = 10). Tournament size t = 16 is used
in this set of experiments.

As in the previous experiments, the splitting of the population is also performed so
that the two resulting subpopulations are disjoint and of equal size. The stopping crite-
rion is set such that a run is terminated when all solutions in the population converge
to the same fitness value. For each problem instance, the minimum required population
size is determined by a bisection method such that on average, m — 1 building blocks
converge to the correct values in 50 runs.

6.3.2 Results and Observations

The results for exponentially and power law scaled problems are presented in Figures 7
and 8, respectively. It can be observed that for these three different subproblem sizes,
the proposed approach uses smaller population sizes and fewer function evaluations
to solve the test problems. Furthermore, the degree of improvement over the original
ECGA seems to increase with the size of the constituting subproblems. As can be seen in
the problems composed of 5-bit trap functions, the pruning mechanism achieves great
savings in function evaluations compared to the original ECGA.

On the other hand, for the uniformly scaled problems, our approach still requires
larger population sizes than what was needed by the original ECGA. This result is
expected, as it can be conjectured that in solving uniformly scaled problems, the veri-
fication on the built model may be useless and wasteful. A further observation is that
these results seem to be consistent with what we observed in the previous set of experi-
ments in which the function evaluations used by the proposed method are about twice
the number needed by the original ECGA.

6.4 Building versus Verifying

This section describes the sets of experiments on the proposed method to reveal the
change in performance when different splitting ratios of the two subpopulations are
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Figure 8: Empirical results of the proposed method compared to the original ECGA for
power law scaled problems composed of subproblems of sizes 3,4, and 5 (k = 3, 4, and
5). In this experiment, tournament size t = 16 was used and the number of subfunctions
forming the test problems was fixed at 10 (i.e., m = 10).
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Figure 9: Empirical results of the proposed method compared to the original ECGA for
uniformly scaled problems composed of subproblems of sizes 3, 4, and 5 (k = 3, 4, and
5). In this experiment, tournament size t = 16 was used and the number of subfunctions
forming the test problems was fixed at 10 (i.e., m = 10).

adopted. It presents the experimental results to illustrate the behavior under different
scalings. The purpose for performing these experiments is twofold:

® First, we would like to observe how the splitting ratio is related to the scaling or
linkage sensibility of a problem.

® Second, we wish to empirically study the change in performance obtained from
decreasing or increasing the proportion of population for checking the model.

It is important in practice to spend function evaluations wisely. Since using too large a
proportion of the population for pruning may result in a waste of resources, it should
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Figure 10: Empirical results of the proposed method for a 60-bit exponentially scaled
problem with different splitting ratios between the two subpopulations. The splitting
ratio (|T'|/|S + T'|) ranging from 0.0 (ECGA without pruning) to 0.8 was used to observe
the change in performance of the proposed approach.

be estimated to what degree the expense on checking the built model yields savings,
and how the scaling of the problem is related to this matter.

6.4.1 Experimental Settings

The problem instances used in this set of experiments were of 60 bits formed by con-
catenating 4-bit trap functions (k = 4, m = 15). The splitting ratio (|7'|/|S + T|) ranged
from 0.0 to 0.8. The ratio 0.0 represents the result of running the original ECGA (without
pruning), which serves as a baseline. Two selection pressures were adopted by setting
tournament size ¢ to 12 and 16.

As in the previous experiments, the stopping criterion is set such that a run is
terminated when all solutions converge to the same fitness value. For each splitting
ratio, the minimum required population size was determined by a bisection method
such that on average, m — 1 building blocks converge to the correct values in 50 runs.

6.4.2 Results and Observations

The empirical results for exponentially scaled problems are presented in Figure 10.
For both tournament sizes, the required population size decreases as the splitting ratio
increases. However, the number of generations increases with the splitting ratio. The
combined effect is that the minimum required function evaluation is obtained when
the splitting ratio is 0.6, and the required function evaluation grows when the splitting
ratio either increases or decreases.

Figure 11 shows the results for power law scaled problems. In contrast to the
previous case, the required population size does not strictly decrease with the increment
of the splitting ratio. The population size first decreases as the splitting ratio grows and
then hits a turning pointat 0.5 (+ = 16) or 0.6 (+ = 12). Similar to the exponentially scaled
case, the number of generations increases with the splitting ratio. The combined effect
is that the number of function evaluations first decreases and then increases. For both
tournament sizes, the minimum is obtained when the splitting ratio equals 0.3.
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Figure 11: Empirical results of the proposed method for a 60-bit power law scaled
problem with different splitting ratios between the two subpopulations. The splitting
ratio (|T'|/|S + T'|) ranging from 0.0 (ECGA without pruning) to 0.8 was used to observe
the change in performance of the proposed approach.
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Figure 12: Empirical results of the proposed method for a 60-bit uniformly scaled
problem with different splitting ratios between the two subpopulations. The splitting
ratio (|T'|/|S + T|) ranging from 0.0 (ECGA without pruning) to 0.8 was used to observe
the change in performance of the proposed approach.

Figure 12 shows the results for uniformly scaled problems. As expected, Figures 12(a)
and 12(b) both share a common pattern in which the population size and the number of
function evaluations increase with the splitting ratio. This is because in the uniformly
scaled case, the linkage is always completely sensible, and there is no need to verify or
prune the built probabilistic model.

These experimental results demonstrate that under different scaling setups, the
behavior of the proposed approach corresponding to the splitting ratio varies differently.
The empirical results suggest that if the given problem is evidently with distinguishable
prominence among the constituting subproblems, using higher splitting ratios will yield
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better performance. Lower ratios are more suitable if the problem at hand is composed
of subproblems with roughly equal salience.

Another insight provided by this set of experiments is that reducing the size of the
proportion of population spent on the pruning mechanism can considerably improve
the performance. As shown in Figures 10(b) and 11(b), compared to the original ECGA
(splitting ratio = 0.0 in the figures), significant performance gain can be obtained by
using a mere 10% of the population to validate the built model. On the other hand,
Figure 12(b) also demonstrates that using this small percentage of population on the
pruning mechanism will not bring serious overhead to the overall performance.

6.5 Splitting Ratio versus Subproblem Size

This section describes the experiments extending the previous set of experiments for
observing the interaction between the splitting ratio and the performance. The focus of
this set of experiments is to study the effect of different splitting ratios when the size of
the constitutive subproblem changes (i.e., varying k while fixing m). Our main purpose
is to see whether the result of adopting a particular splitting ratio changes significantly
when the complexity of the problem varies. Furthermore, we want to empirically ex-
amine whether or not the improvement of using just 10% of the population to validate
the built model is still prominent for different sizes of the constitutive subproblems.

6.5.1 Experimental Settings

In this set of experiments, we use trap functions of different sizes to construct our
test problems. While the size of constitutive subproblems varies, the number of the
subproblems forming the test problems remains the same. The problem instances are
built by concatenating 10 trap functions of sizes 3, 4, or 5 (k =3, 4, or 5, m = 10).
Tournament size t = 16 is adopted in this set of experiments.

As in the previous set of experiments, the splitting ratio (|T'|/|S + T|) ranges from
0.0 to 0.8. The ratio 0.0 represents the result of running the original ECGA (without
pruning), which serves as a baseline. The stopping criterion is set such that a run is
terminated when all solutions in the population converge to the same fitness value.
For each splitting ratio, the minimum required population size was determined by a
bisection method such that on average, m — 1 building blocks converge to the correct
values in 50 independent runs.

6.5.2 Results and Observations

The results for exponentially, power law, and uniformly scaled problems are presented
in Figures 13, 14, and 15, respectively. We can see that the result of adopting a particular
splitting ratio does not change significantly relative to other splitting ratios for all three
subproblem sizes. It can also be observed that several kinds of behavior similar to
what we have seen in the previous experiments are presented in these results. For the
uniformly scaled problems, the results presented in Figure 15(b) show a similar pattern
to what is observed in the previous set of experiments in which the number of function
evaluations increases with the splitting ratio. In addition, similar to the results from
the previous set of experiments, we can see that using a small percentage (10%) of
population on the pruning mechanism does not bring serious overhead to the overall
performance for all three subproblem sizes.

On the other hand, for exponentially and power law scaled problems, the greatest
improvements are obtained when using 10% of the population to validate the built
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Figure 13: Empirical results of the proposed method using different splitting ratios
(IT|/IS + T|) for exponentially scaled problems composed of subproblems of sizes 3, 4,
or5 (k = 3,4, or 5). In this experiment, tournament size t = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)
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Figure 14: Empirical results of the proposed method using different splitting ratios
(IT|/1S + T|) for power law scaled problems composed of subproblems of sizes 3, 4, or
5 (k =3, 4, or 5). In this experiment, tournament size t = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)

model. Furthermore, similar to what we have observed in the experiments described
in Section 6.3, the degree of improvement over the original ECGA (splitting ratio = 0.0)
increases with the size of the constitutive subproblem.

7 Discussion

We utilized the existence of disparate scales in problems to create a controlled experi-
mental environment in order to study the situation in which complete, accurate linkage
information may or may not be available for the estimation of distribution algorithms.
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Figure 15: Empirical results of the proposed method using different splitting ratios
(IT|/1S + T|) for uniformly scaled problems composed of subproblems of sizes 3, 4, or
5 (k = 3,4, and 5). In this experiment, tournament size t = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)

According to the obtained results shown in Figures 4(b) and 5(b), the proposed ap-
proach does improve the original ECGA for the test problems where disparate scales
exist among building blocks. In this section, we discuss some interesting aspects of the
proposed approach and possible extensions of this work.

7.1 Overhead in Uniformly Scaled Problems

The empirical results presented in Figure 6(b) show that for the uniformly scaled cases,
the proposed approach uses nearly twice as many function evaluations as the original
ECGA does. We speculate that this double expenditure is a general property of the
proposed approach when dealing with uniformly scaled problems.

This speculation can be explained through a reverse thinking on a hypothetical
situation described as follows. Suppose that given a uniformly scaled problem, the
original ECGA with appropriate selection pressure needs a population of size n to
handle that problem properly. Now, consider adopting the proposed approach to handle
the same problem. If we use a population of size 2n, then in our algorithm, the entire
population will be divided into two subpopulations of size n, assuming that the splitting
of population is disjoint and of equal size. If the original ECGA is capable of detecting
the accurate problem structure with a population of size n, then in our algorithm, a
subpopulation of size n will also do the job. In the ideal case, there will be no statistical
inconsistency between the built model and the set of promising solutions selected from
the second subpopulation. As a result, we waste half of the population for the use of
pruning which causes the extra cost compared to the original ECGA.

In order to support the inference, we performed an experiment based on the scenario
just described. Table 7 lists some of the empirical results obtained from the experiments
described in Section 6.2. This table shows that for 40-bit and 80-bit uniformly scaled
problems formed by concatenating 4-bit trap functions, the original ECGA needs pop-
ulations of sizes 646 and 2,042, respectively, to solve the given problem. Based on these
results, we used population sizes that are twice that to run our approach. The results are
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Table 7: Empirical results of the original ECGA using tournament size 12. Experiments
were conducted on 40-bit and 80-bit uniformly scaled problems formed by concatenat-
ing 4-bit trap functions. The symbols ¢, 1, g, and f., denote problem size, population
size, generation, and function evaluations, respectively.

¢ n 8 SDg Sev SD fe
ECGA 40 646 8.36 0.92 5,400.56 594.65
80 2,042 10.72 1.01 21,890.24 2,064.38

Table 8: Empirical results of the proposed approach using a tournament size of 12.
Experiments were conducted on 40-bit and 80-bit uniformly scaled problems formed
by concatenating 4-bit trap functions. The symbols ¢, 2n, g, and f,, denote problem
size, twice the population size required by the original ECGA, generation, and function
evaluations, respectively.

V4 2n g SDg Jfev SD f,,
ECGA+MP 40 1,292 9.24 0.89 11,938.08 1,154.42
80 4,084 10.58 0.70 43,208.72 2,868.90

listed in Table 8. It can be observed that the function evaluations spent by the proposed
approach for 40-bit and 80-bit problems are about twice the amount of the original
ECGA needed in each case.

Although the inference together with the empirical validation can serve as an
intuitive explanation, it cannot fully explain the results presented in Section 6.2. As il-
lustrated in Figure 6(a), the minimum population sizes needed by the proposed method
is not exactly twice that required by the original ECGA. In fact, the numbers are much
lower than twice what is needed by the original ECGA. On the other hand, our approach
uses more generations compared to the original ECGA because the subpopulation for
model building was not sufficiently large for all problem structures to be detected
properly in the beginning of the process. In this situation, the processing was slowed
down because the pruning mechanism removed certain parts of the model exhibiting
statistical inconsistencies. As a consequence, the originally expected simultaneous pro-
cessing of building blocks was not fully achieved and delay of convergence occurred.
Nevertheless, spending more generations seems to yield an equivalent use of function
evaluations as the hypothetical case described above. We think that the pruning mech-
anism introduces an additional interaction between population size and generations.
Further empirical or theoretical studies are needed to investigate such an interaction.

7.2 A Deeper Look at the Pruning Criterion

This section provides a more detailed elaboration on the adequacy of the proposed
pruning metric. To start this discussion, let

2ki
Ai = Z qij(—1og, pij)
Jj=1
which is the quantity to be examined by the pruning criterion (i.e., whether ; > k;).

Based on A;, we can reformulate the issue of adequacy more concisely as “is it possible
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that p; is not effective but A; < k; or p; is effective but A; > k;?” To elaborate on this, we
have to separate the discussion into two cases:

1. p; is not effective and A; < k;, and
2. p;iseffective and A; > k;.

For the first case, if p; is not effective and its ineffectiveness is caused by drift, it
is possible that A; < k; if the set of solutions on which g¢; is estimated also drifts in
the same direction. However, by its nature, drift is random, and two different sets of
solutions tend to drift in two different directions. Thus, we can expect the chances of
this situation to be small and our empirical results also support this conjecture.

For the second case, if p; is effective, that is, it provides a good direction for further
search, then the (sub)solutions on which p; is estimated must be subject to proper
selection pressure. Based on the premise that these two sets of solutions are produced
under the same condition, we can expect that the (sub)solutions on which g; is estimated
should also be subject to the same pressure. In this case, if these two sets of solutions
are produced under the same condition and the selection pressure is properly applied
(i.e., no drifting), it would be unreasonable to see inconsistencies between p; and ¢; (i.e.,
Ai > k;.) However, the above discussion is based on the assumption that the population
size is sufficiently large. If the population size if not sufficiently large, inconsistencies
tend to be observed because there are too few samples to reveal the true statistical
property.

Using the above discussion, we can further analyze what would happen if we use
more than one set of solutions to prune the built model. This kind of technique is used
frequently in machine learning research to assess the performance of a learning algo-
rithm, in which multiple reserved subsets of testing instances are examined. Extending
from the above discussion, let P be the probability of the above case 1 (p; is not effective
and X; < k;) and use r sets of solutions for validating the built model. Then the proba-
bility that we cannot detect the ineffectiveness of a marginal model will be P, for it is
tested independently on r different sets, which is smaller than the probability of using
only one set of solutions (i.e., P). However, in this paper, we focused on the baseline
behavior of the proposed approach, since we know that employing a larger r should
yield better performance and should also incur higher costs.

7.3 Pruning Network-Based Probabilistic Models

In this work, we have introduced a technique to prune a given marginal product model
based on the statistics collected from a reserved set of solutions. It is possible to extend
the fundamental idea and concept to design pruning mechanisms for other EDAs.
For example, consider the EDAs that use network-based probabilistic models with the
Bayesian information criterion (BIC; Schwarz, 1978) as the model scoring metrics, such
as EBNA (Etxeberria and Larrafiaga, 1999) and a variant of BOA (Pelikan et al., 2001).
In the binary case, BIC assigns a given network structure B of £ variables a score

12
1
SB)=Y" (—n X H(Xi|M;) — 2'“1'%)
i=1
14

£
1
= —Zn X H(XAH,) — szi\_oan N

2
i=1 i=1
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where X;, i =1...¢, are variables, H(X;|I1;) is the conditional entropy of X; given its
parent IT; in the network, and » is the population size. The conditional entropy H (X; |TI;)
is given by

H(X;|T) = = > plxi, m) log, p(x;|m;),

XiZ i

where p(x;, ;) is the probability of instances with X; = x;, I1; = m;, and p(x;|m;) is the
conditional probability of instances with X; = x; given that IT; = 7;.

The term Y i_, n x H(X;|T1;) provides the same functionality as the compressed
population complexity (C,) in ECGA because H (X;|I1;) denotes the average number of
bits required to store a value of X; with compression given the information of IT;. Thus,
we can check whether or not variable X; should be pruned away by using the following
inequality

— " g, ) log, plxilm) > 1,

X, T

where g(x;, ;) is the frequency of X; = x;, and Il; = 7; is observed in the set of solutions
selected from the reserved subpopulation. Using the idea described in Section 5.2, if this
inequality holds, X; should be removed because it encodes a one-bit partial solution to
a bit string with an expected length of more than one bit.

However, despite the similarities in ideas, some technical complications remain
to be overcome before we can finish the design of a pruning mechanism for network-
based probabilistic models. For instance, what if a variable which we intend to pruneisa
parent node of some other variables? In summary, pruning network-based probabilistic
models is potentially feasible but requires further investigation.

8 Summary and Conclusions

This paper reviewed previous studies on EDAs and scaling difficulties. It then illus-
trated how the scaling difficulty shadows the EDA ability in recognizing building
blocks. Following that, a notion called linkage sensibility was introduced to describe the
observation, and we used the term sensible linkage to refer to the problem structures
that can be extracted by inspecting only the set of selected solutions. Based on this
concept, we briefly defined the effectiveness of distributions estimated by probabilistic
model building and proposed a general approach to achieve more effective modeling.
Finally, an implementation of the proposed approach on ECGA was introduced and
experiments were done using several test functions of different scaling difficulties. In
this section, we briefly summarize the major results derived from this work and outline
the possible future extensions of this research.

8.1 Contributions

In this work, we have shown that the underlying facilities for EDAs to solve problems
efficiently and reliably do not work as expected when the problem at hand is composed
of subparts of unequal fitness contributions. More specifically, under this situation, the
model built from the selected solutions cannot fully reflect the true problem structures.
Although there are previous studies and discussion on the parameter selection (Pelikan
et al., 2002; Lima and Lobo, 2004; Pelikan and Lin, 2004; Yu et al., 2007), selection
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mechanisms (Lima et al., 2007, 2008), and model building algorithms (Echegoyen et al.,
2007) related to the model accuracy, we consider the conditions discussed in this paper
to be more fundamental and closer to the problem nature than those other factors.
This is because in our discussion, the condition that suppresses modeling accuracy
is embedded in the problem inherently. For some situations, we can reasonably fine-
tune algorithmic parameters or select between alternative model building approaches;
however, in general we do not have a way to remove a property (e.g., scaling) that exists
inherently within the problem to improve modeling accuracy.

Alongside the modeling inaccuracy is the phenomenon of random drift. In a fi-
nite population, the selection process can cause convergence to some subsolutions for
reasons other than the fitness contribution of these subsolutions. The converged sub-
solutions might be hitchhikers that appear with other high quality building blocks in
selected solutions, or just a result of stochastic errors of sampling due to small pop-
ulation accumulated over generations. As demonstrated in the earlier sections with
problems having disparate scalings among subparts, a problem property (e.g., scaling)
can cause drift in population as well as making some parts of the problem structure un-
detectable to the model building process. This situation is usually resolved by increasing
the population size to prevent convergence caused by random drift. In contrast, our
approach handles this situation by relating these two co-occurring events and by using
a pruning mechanism to avoid building models on, and sampling from, the possible
drift portions. In this way, we effectively save the cost that we originally have to pay
for the maintenance of diversity by using larger populations.

Empirical results show that our approach improves the original ECGA in cases
where disparate scales exist among constitutive subproblems and in the uniformly
scaled problems (i.e., all the constitutive subproblems have the same fitness contribu-
tion), the overhead of using the proposed pruning mechanism is about the amount
of function evaluations spent by the original ECGA. The experimental results further
suggest that this constant overhead in uniformly scaled cases is not affected by the size
of the subfunction (i.e., k) forming the problem, and the improvement in nonuniformly
scaled cases seems to increase with the size of the problem. Moreover, we also demon-
strated through experiments that in the nonuniformly scaled cases, a small proportion
(10%) of population spent on the pruning mechanism can greatly reduce the amount of
required function evaluations compared to that spent by the ECGA without pruning.

The experiments with different scaling setups also led to another consideration:
that whether uniformly or near-uniformly scaled problems adopted by many previous
studies are suitable to fully test the performance of an algorithm designed for solv-
ing black box optimization problems. In our humble opinion, presuming a black box
optimization problem to be handled is uniformly scaled is too strong an assumption,
because there will be no information to confirm this assumption prior to the application
of the algorithm. Thus, we believe that in order to generalize beyond the assumption
that all subproblems are uniformly scaled, the constant-time overhead for solving the
uniformly scaled cases is a reasonable tradeoff.

In addition, several efficiency enhancement techniques for EDAs (Sastry and Gold-
berg, 2004; Sastry et al., 2004, 2005, 2006; Lima et al., 2005, 2006) rely on the structure
information delivered from the probabilistic models. Their good functioning crucially
depends on the structural accuracy of the built models. Thus, it is conceivable that if
the built model does not properly capture the true structure of the underlying problem,
the model-based enhancement mechanism will not fully work as expected. Further-
more, as we demonstrated in this paper, the condition that hinders the model building
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algorithm from constructing models that truly reflect the problem structure may be an
inherent property of the underlying problem (e.g., different scales among constitutive
subproblems). Thus, we think that adapting pruning mechanisms will provide a more
appropriate circumstance for the model-based enhancement techniques to work.

8.2 Future Work

In this paper, we demonstrated a pruning mechanism design and its integration into
ECGA. It may also serve as a basis for developing other techniques for more efficient
and robust optimization. Some possible extensions of this work are outlined as follows.
First of all, the immediate direction is to design pruning mechanisms for other
EDAs. As illustrated in Section 7.3, we can extend the pruning metric described in
this paper to handle network-based models with a Bayesian information criterion.
However, a pruning mechanism for network-based models requires more than that. We
also need to consider the possible disruption of variable dependencies after pruning a
particular variable. The simplest solution is to consider only those variables that are not
depended upon by other variables as possible candidates for pruning. However, the
validity of such an approach requires further investigation. A more promising yet more
sophisticated approach is to first identify the tightly related components (e.g. cliques
or strongly connected subgraphs) in the model and then process each component as a
unit which is similar to how we process the marginal product models in this work.
Another direction for future research is to assist efficiency enhancement techniques
that use the information contained in the built model. As described previously in
Section 8.1, some model-based efficiency enhancement techniques for EDAs crucially
rely on the structural accuracy of the probabilistic models. However, most of those
studies implicitly assume the information contained in the given population is suffi-
cient for learning accurate model structures. As demonstrated in the previous sections
by nonuniformly scaled problems, this assumption does not always hold. From this
perspective, incorporating pruning mechanisms to preprocess the built model for these
enhancement techniques is a promising direction for designing more robust approaches.
From an abstract point of view, this work also demonstrates an instance of a new
class of techniques operating on built models to control, adapt, or regulate the opti-
mization process. Another example based on this viewpoint is the termination criterion
proposed by Ocenasek (2006) which uses an entropy-based measurement to evaluate
the built model for detecting an appropriate stopping point. According to the informa-
tion collected in the model, we can gain better control over the process compared to
the conventional evolutionary algorithms. Such an idea may be carried over to other
designs of EDAs so that more robust and efficient optimization can be realized.
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