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Abstract: Control technology underpins the operation of many, and arguably all, modern high technology

systems. Such systems include transportation (aircraft, high speed trains, marine vessels, automobiles),

telecommunication systems, electricity networks, mining, minerals processing and agriculture. A

particular area where control is playing an increasingly important role is industrial electronics. In this

paper we will give a tutorial introduction to the application of control engineering concepts to such

systems and reflect on the opportunities and challenges that exist in this area.
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1. Introduction

Advanced control is a mature subject. It has gone through
various phases of development (Goodwin, Graebe, and Salgado,
1997) including classical control, L2 optimal control, robust control
and, most recently, networked control and quantum control. Often
it has been new application areas that have inspired control theory
developments. For example, the ideas of network control are
responding to the challenges arising from implementing control
over a telecommunication network. This problem leads to new
questions regarding the impact of limited channel capacity,
random delays and lost packets (Goodwin, Quevedo, & Silva,
2008; Silva, Goodwin, & Quevedo, 2010). Also, research in quantum
control is inspired by the potential of quantum computing.

A technology that underpins the operation of many modern
systems is that of switching electronics. This technology lies at the
core of many new systems including smart electricity grids, wind
and solar power, high speed trains and electric and hybrid vehicles.
These systems give rise to a unique set of control engineering
opportunities and challenges. Certainly many of these challenges
have already been addressed or are the subject of current research
§ An earlier version of this paper appeared in Goodwin, G.C., et.al., ‘‘Opportunities
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drives’’, Plenary Address, IEEE International Conference on Industrial Technology

(ICIT), Vina del Mar, Chile, March 2010.
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(Holmes & Lipo, 2003; Kazmierowski, Krishnan, & Blaabjerg, 2002;
Mohan, Underland, & Robbins, 1995). In this context, the aim of the
current paper is to give a tutorial introduction to the control of
power electronics and drives.

An overview of the remainder of the paper is as follows: In
Section 2, we briefly review control problems in power electronics
and drives. In Section 3, we give a brief overview of basic concepts
in control. In Section 4, we illustrate the ideas by reference to the
control of a synchronous reluctance machine. In Section 5, we
provide a brief overview of model predictive control. In Section 6
we discuss issues involved in providing a ‘‘certificate of stability’’
and we introduce the idea of ‘‘fusion control’’. In Section 7, we
discuss challenges and opportunities. Finally, in Section 8, we draw
conclusions.

2. Brief overview of control problems in switching electronics

2.1. General comments

In the area of switching electronics, a wide range of circuit
topologies are used in various applications. There are many
different types of switch mode converter and inverter circuits that
find use in power supplies, motor drives and power conditioning
applications.

Although the range of circuit architectures is diverse, it is also
true that the associated control problems share many common
elements. The controllers generally seek to regulate a voltage or
current with minimum steady state error while maintaining a fast
transient response. In each instance, the controller output is
limited to a finite set of values determined by the circuit’s
switching states. The controller must be robust, remaining
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insensitive to variations in plant parameters. For example, the
inductance and resistance values in motor drives can vary
significantly due to magnetic saturation and thermal effects. Also,
one typically wants to minimize excessive switching to enhance
efficiency. Finally, allowance must be made for the noise content in
feedback signals as power electronic circuits are inherently noisy.

2.2. Motivational example

The torque control of a synchronous reluctance motor (SynRM)
Lipo (1991) is used here as a representative problem to demonstrate
some of the key control issues in power electronics and drive circuits.
The example is also of interest in its own right. Although, the induction
motor (IM) is the most popular machine for industrial use, the modern
SynRM is considered to be a viable alternative. While providing a
torque comparable to that provided by an IM of a similar size, the
losses in a SynRM are about 50% of those in an IM. Thus, it is expected
that the SynRM will receive increasing attention in the future.

The SynRM is distinguished by its rotor structure where axial
laminations, or other techniques, are used to produce both a low
reluctance and a high reluctance magnetic flux paths (Matsuo & Lipo,
1994). By convention, the low reluctance axis is called the direct (D)
axis and the high reluctance axis is called the quadrature (Q) axis.
The stator of a SynRM is typically a three-phase distributed winding
as is common to other AC machines. The SynRM develops torque as it
seeks to align its low reluctance axis to the stator field.

The control of a SynRM is usually addressed in a rotating DQ
reference frame which is fixed to the rotor. This offers the
advantage of transforming the AC stator current variables to DC
values. Additionally, the transformation removes the position
dependence and mutual inductance terms otherwise obtained
when operating in stator variables. The voltage and torque
equations for a three-phase SynRM in the rotor DQ reference
frame are well known (Matsuo & Lipo, 1994):

vd ¼ Rsid þ Ld
did

dt
�vLqiq (1)

vq ¼ Rsiq þ Lq
diq

dt
þvLdid (2)

T ¼ 3 p

2
ðLd � LqÞidiq (3)

Fig. 1 shows the typical control structure for a SynRM drive (Vas,
2003). An outer speed control loop generates a torque reference
which translates into the quadrature current reference using (3).
Speed in the outer loop can be measured by a sensor (as shown) or
estimated using the natural SynRM rotor saliency. The combined
direct and quadrature currents are controlled by an inner current
control loop that determines the voltage to be applied to the motor
in the DQ reference frame. The direct axis current reference is
typically set to its rated value. This ensures the machine is fully
fluxed and maximum torque is obtained. In a three-phase drive
only eight (seven independent) voltage vectors can be applied to
the motor via the inverter. The switching selector chooses the most

[()TD$FIG]

Fig. 1. Synchronous relu
appropriate voltage vector or sequence of voltage vectors to apply
to the machine at each control cycle.

The most common approaches to implementing the current
control loop and inverter switching selection blocks are as follows
(Cortés, Kazmierowski, Kennel, Quevedo, & Rodrı́guez, 2008):

(a) Hysteresis control: The direct and quadrature current references
can be transformed to stator phase current values. These
reference values are then compared to the actual stator phase
currents. The individual inverter legs are switched to maintain
the associated phase current within a band around the
reference value (Coates, Platt, & Gosbell, 2001). While this
type of controller is simple to implement, it requires higher
switching frequencies leading to increased inverter switching
losses.

(b) Linear control with PWM: The error between the reference and
measured values of direct and quadrature currents are fed to
respective controllers (typically PI) that generate reference
values for the direct and quadrature axis voltages. A pulse
width modulator is then used to generate the switching signals
for the inverter (Xu, Xu, Lipo, & Novotny, 1991).

(c) Predictive control methods: Given the measured state of the
machine, the motor voltage equations can be used to determine
the ideal direct and quadrature voltages to move the current
vector to its desired value in one step. In this instance, the
switching selector chooses the inverter switching configura-
tion (or a combination of switching configurations) that is
closest to approximating the ideal voltage vector. This
switching configuration is applied over the next control cycle,
(Coates et al., 2001; Cortés et al., 2008).

(d) Other control techniques Various other strategies including
fuzzy logic and sliding mode have also been applied in this area.

We will use a multi-degree-of-freedom control architecture in
Section 4 for a nine-phase SynRM to illustrate basic ideas in this
area.

3. A tutorial overview of basic control concepts

3.1. Inversion

At a high level of abstraction, we can view the problem of
control as one of inversion (Goodwin et al., 1997). One has a
system – usually called the ‘‘plant’’ – which has outputs – process
variables. The plant is acted upon by inputs (manipulated
variables). The core problem is to choose the inputs so that the
outputs achieve certain objectives. If one has a model linking
inputs to outputs, then one sees that the above problem can, in
principle, be solved by inverting the model so as to evaluate the
necessary inputs which bring the outputs to their desired values.
Thus, conceptually, if the model takes the form:

y ¼ GðuÞ (4)
ctance motor drive
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where y, u denote the output and input respectively, and we want y

to be y�, then the required input is simply given by:

u� ¼ G�1ðy�Þ (5)

Of course, there are a number of practical issues which render this
solution too naive in most real situations. Some of the additional
features of real problems include (Goodwin et al., 1997):

(i) Disturbances: The output response y is influenced by (load)
disturbances in addition to the input, u.

(ii) Measurement errors: It is helpful, at least intuitively, to know if
y has reached the target value y�. However, the measurements
of y are typically corrupted by noise and other measurement
imperfections.

(iii) Input constraints: It is usual that we cannot apply desired
inputs to the plant. For example, in switching electronics, the
input will typically be restricted by the finite set of available
switch positions. Thus one must ‘‘make the best use of’’ the
available input options.

(iv) Dynamics: The model (4) implies that the effect of changing
the input is instantaneous on the output. However, all real
systems are subject to energy storage and delays, i.e., the
voltage in capacitors and the current in conductors cannot be
changed instantly.

(v) Model errors: Typically the model G( � ) is, at best, only
approximately known. Hence one needs to find a way of
obtaining an inverse which is insensitive to model errors.

(vi) Time Variations: Typically the model G( � ) will not be fixed,
e.g., resistor and inductor values can change as the tempera-
ture changes.

(vii) Robustness: This is a term used to describe control systems
that operate satisfactorily in the light of the kind of problems
mentioned under (v) and (vi) above.

In the sequel we will use a slightly more general way of
modelling the system. We will use a transfer function description
based on z-transforms:

yðzÞ ¼ GðzÞuðzÞ þ d0ðzÞ (6)

ymðzÞ ¼ yðzÞ þ nðzÞ (7)

where n, d0 represent (the z-transform of) measurement noise and
process disturbances (lumped at the output). (The z-transform
variable can also be interpreted as the forward shift operator thus
giving a direct mechanism for implementing the required control
law transfer functions.)

3.2. High gain feedback

It turns out that a remarkably robust way of achieving
‘‘inversion’’ is via feedback. Thus, if we have a desired value, y�,
for y, then we might envisage generating the input via a feedback
law of the form:

uðzÞ ¼ �CðzÞymðzÞ þM0ðzÞy�ðzÞ (8)

To simplify developments we will temporarily restrict attention to
single-input single-output systems. (The results apply more
generally.) Also, for the moment, we choose M0(z) = C(z). (Other
choices will be explored in Section 3.6).

Solving (6)–(8) simultaneously gives the following ‘‘closed
loop’’ relationship:

yðzÞ ¼ GðzÞCðzÞ
1þ GðzÞCðzÞ y

�ðzÞ � GðzÞCðzÞ
1þ GðzÞCðzÞnðzÞ

þ 1

1þ GðzÞCðzÞ d0ðzÞ (9)
Eq. (9) motivates us to introduce the two key closed loop transfer
functions T(z) and S(z). These are called the complementary
sensitivity and sensitivity, respectively:

TðzÞ ¼ GðzÞCðzÞ
1þ GðzÞCðzÞ (10)

SðzÞ ¼ 1

1þ GðzÞCðzÞ (11)

We can then write

yðzÞ ¼ TðzÞy�ðzÞ � TðzÞnðzÞ þ SðzÞd0ðzÞ (12)

We now see how feedback is a way of achieving inversion. All we
need to do is make C(z) ‘‘very large’’ to achieve:

TðzÞ ¼ 1 (13)

In this case, the ‘‘closed loop’’ transfer function from y� to y

becomes 1 and u(z) = G(z)�1[y�(z) � d0(z)] as required.

3.3. Design trade-offs

Alas, the above (high gain) solution to the control problem is not
as easy as it sounds. For example, Eq. (9) shows that putting
T(z) = 1, causes the measurement noise to be transferred to the
output y(z). Another slightly more subtle issue is that we see from
Eqs. (10) and (11) that

TðzÞ þ SðzÞ ¼ 1 (14)

Hence, if we want low sensitivity to measurement noise (T(z)! 0),
then necessarily we have 100% sensitivity to (output) disturbances
(S(z)! 1), and vice versa.

Actually, there is another reason why we may not want to have
infinite (or a least very high) gain in the controller. The reason is
that we usually only have an approximate model. To illustrate, let
us describe model errors in the frequency domain by saying that
the true plant transfer function, G(z) is related to the given model,
G0(z), by a relationship of the form:

Gðe jvDs Þ ¼ G0ðe jvDs Þ 1þ GDðe jvDs Þ
h i

(15)

where Ds is the sampling period.
We say that GD(ejvDs) is the multiplicative error at frequency v.
One can then easily derive the following relationship between

the true sensitivity function S(ejvDs) and the nominal sensitivity
function S0(ejvDs):

S0ðe jvDs Þ ¼ 1

1þ G0ðe jvDs ÞCðe jvDs Þ
(16)

Sðe jvDs Þ ¼ S0ðe jvDs Þ
1þ T0ðe jvDs ÞGDðe jvDs Þ

(17)

Say one designs S0(ejvDs) to be small (over some frequency range),
then T0(ejvDs) will be near unity over the same frequency range.
Thus we see that there is a potential danger arising from GD(ejvDs).
Indeed, a sufficient condition for closed loop stability is that
j T0(ejvDs) jjGD(ejvDs) j should be less than 1 at all frequencies. This
is a simple consequence of (17).

Usually, in practical models, jGD(ejvDs) j is large at high
frequency. Thus robustness to model errors typically places an
upper band on the frequencies over which jT0(ejvDs) j can be kept
near 1. In practice, one usually makes S(z) identically zero (i.e.,
T(z) = 1) at dc by including an integrator in the controller (i.e., a
pole at z = 1). Then one designs C(z) so that S(z) to approaches 1 at
some higher frequency. We call the resultant range of frequencies
where S(z) < 1 the ‘‘closed loop bandwidth’’.
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There are other reasons why one cannot make S0(ejvDs) small at
all frequencies. These constraints arise from the need to keep
S0(ejvDs) stable, i.e., to keep S0(z) an analytic function. In a key
result, Bode showed that for all analytic functions, we have
(Goodwin et al., 1997)

Z p=Ds

�p=Ds

log jS0ðe jvDs Þjdv�0 (18)

Of course, log j a j � 0 if a � 1. Hence, (18) tells us that there is a
remarkable ‘‘water bed’’ effect, i.e., if we have a range of
frequencies where j S0(ejvDs) j<1, then there must be another
range of frequencies where j S0(ejvDs) j>1.

3.4. State estimate feedback

In modern control it is common to replace the transfer function
model of (6) by a state variable model of the form:

xþ ¼ Axþ Bu (19)

y ¼ Cx (20)

where x+ is the next value of x.
If the state was directly measured, then one could design static

state variable feedback of the form:

u ¼ �KxþMðzÞy� (21)

Subject to mild assumptions (e.g., controllability) then K can be
chosen to give desired closed loop properties. (e.g., a specified
closed loop bandwidth.)

However, x is not usually directly measured. In this case one can
obtain an estimate of x by using an observer:

x̂
þ ¼ Ax̂þ Buþ Jðy� Cx̂Þ (22)

where J is so chosen that (A–JC) is stable, and implement the
control law as:

u ¼ �Kx̂þMðzÞy� (23)

We can actually reinterpret the controller given in (22) and (23) in
the Classical Transfer Function form as in Sections 3.2 and 3.3 by
taking z-transforms in (22). This leads to

u ¼ �T1ðzÞu� T2ðzÞyþMðzÞy� (24)

where

T1ðzÞ ¼ KðzI � Aþ JCÞ�1B ¼:
RðzÞ
EðzÞ (25)

T2ðzÞ ¼ KðzI � Aþ JCÞ�1J ¼:
PðzÞ
EðzÞ (26)

Rearranging (24) we obtain:

u ¼ �CðzÞyþM0ðzÞy� (27)

where C(z) = P(z)/[R(z) + E(z)] = : P(z)/L(z); M0(z) : = E(z)M(z)/L(z).
Thus we have given a modern interpretation (in the form of

state estimate feedback) to the classical control law given in (8).

3.5. Internal models

An important practical issue when designing feedback control
laws is to ensure that certain disturbances are exactly cancelled at
the output. We can achieve this goal by including a model for the
disturbances in the description (19).

To explain this idea in more detail, say that we have an input
disturbance di. We can model di as the output of a state space
model as shown in (28). The true input to the plant is u + di.

xþd ¼ Adxd (28)

di ¼ Cdxd (29)

Common choices for Ad would be a scalar matrix consisting of unity
(to describe a constant disturbance) or 2 dimensional matrix
having eigenvalues on the unit disc (to describe a sinusoidal
disturbance of a given frequency).

The system matrices for the observer and associated feedback
control law then take the form:

A ¼ A0 B0Cd

0 Ad

� �
; B ¼ B0

0

� �
(30)

J ¼ J0

Jd

� �
; C ¼ C0 0½ � (31)

K ¼ K0 Cd½ � (32)

Notice that this control law cancels the estimated disturbance at
the input.

It can readily be shown that, in this case, L(z) = R(z) + E(z) is
given by:

LðzÞ ¼ det ½zI � Aþ JC þ BK�

¼ det
zI � A0 þ J0C0 þ B0K0 �B0Cd þ B0Cd

JdC0 zI � Ad

� �

¼ det
zI � A0 þ J0C0 þ B0K0 0

JdC0 zI � Ad

� �

¼ det ðzI � AdÞdet ðzI � A0 þ J0C0 þ B0K0Þ (33)

Hence we conclude that L(z) will be zero at the zeros of the
disturbance model. In particular, we obtain an integrating control
law if we model the disturbance as containing an (unknown)
constant.

The significance of this observation will be made clear in the
next section.

3.6. Multi-degree-of-freedom control laws

The operation of a feedback control loop typically needs to deal
with multiple (and often conflicting) design objectives. For
example:

(a) We may want to minimize the impact of (unmeasured) load
disturbances on the output. (This is governed by S(z) = 1/
[1 + G(z)C(z)].)

(b) We may want to minimize the impact of measurement noise on
the output. (This is governed by T(z) = G(z)C(z)/[1 + G(z)C(z)].)

(c) We may want to track a given reference signal y�. (Also, y� will
typically be time varying.)

(d) We may want to minimize the impact of implementation
errors (e.g., quantization) in u(t) on the output.

3.6.1. Disturbances and noise

The situation regarding points (a) and (b) is fundamentally
constrained by the fact that

SðzÞ þ TðzÞ ¼ 1 (34)

The linking of goals (a) and (b) is inescapable since the relevant
part of the control law only uses the measurement y, i.e., it has only
one-degree-of-freedom, namely C(z).

The situation regarding points (b) and (c) is different because
we have extra measurements that we can exploit.
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3.6.2. Reference feedforward

We use feedforward to give an extra degree-of-freedom. Indeed,
this has already been included in the control law in (24) and (27)
via the transfer function M(z). A typical choice for M(z) is

MðzÞ ¼ PðzÞ
EðzÞ þ

LðzÞ
EðzÞ FðzÞ (35)

or, equivalently, M0(z) = C(z) + F(z).
The resultant transfer function from y� to y now becomes

Ty�yðzÞ ¼ 1� LðzÞ½AðzÞ � FðzÞBðzÞ�
AðzÞLðzÞ þ BðzÞPðzÞ (36)

We also recall the transfer function from d0 to y which is

Sd0yðzÞ ¼
AðzÞLðzÞ

AðzÞLðzÞ þ BðzÞPðzÞ (37)

Examination of (36) and (37) reinforces the importance of the
result derived earlier in (33), namely provided (28) and (29)
include a model for the disturbance and the reference, then
perfect tracking is obtained irrespective of model errors since
L(z0) = 0, where z0 is a zero of the disturbance (and reference)
model.

We also see the advantages of having F(z) in (36), namely we
can reduce the tracking error at every frequency where F(z) can be
chosen as an approximate inverse to the plant at these frequencies,
i.e.,

FðzÞ’ BðzÞ
AðzÞ

� ��1

; z ¼ e jvDs (38)

The transfer function F(z) provides feedforward control from the
measured reference signal.

3.6.3. Input imperfections

We next turn to point (d). This issue is of great importance in
switching electronics since the switched nature of the input
restricts the allowed input to a finite set. We can describe this
implementation ‘‘defect’’ via

uðtÞ ¼ Q u0ðtÞ½ � (39)

where uðtÞ 2U (the allowable set), u0(t) is the desired input coming
from the controller and Q is a nonlinear mapping (a generalized
‘‘quantizer’’ Gersho & Gray, 1992).

For design purposes, it is often helpful to think of the difference
between u0(t) and Q(u0(t)) as a noise source, q(t), where

qðtÞ ¼ Qðu0ðtÞÞ � u0ðtÞ (40)

or

uðtÞ ¼ u0ðtÞ þ qðtÞ (41)

We could rely upon the feedback controller, C(z), to reduce the
impact of q on the output. However, this may compromise the
design relative to the impact of d0 and n. Hence, we introduce an
extra degree-of-freedom by introducing another feedforward term
via a transfer function H(z) from the measured disturbance q(t).
This leads to the, so called, feedback quantizer shown in Fig. 2.

If we model the quantizer as a noise source as in (41), then with
H(z) = 0, we see that the local transfer function from q(t) to u(t) is 1.

On the other hand, if we introduce the additional transfer
function H(z) then the transfer function from q(t) to u(t) becomes
1 � H(z). Hence, we can choose H(z) to ‘‘shape’’ the frequency
content of the errors due to the quantizer. Most importantly, this
can be achieved without compromising or affecting any of the
other design objectives.

To illustrate, say we implement the controller digitally and we
want to eliminate errors due to the quantizer at v0.
Then we can choose

HðzÞ ¼ 2ð1� aÞ cos v0Ds½ �zþ ða2 � 1Þ
z2 � ð2a cosv0DsÞzþ a2

(42)

This leads to

1� HðzÞ ¼ z2 � ð2 cos v0DsÞzþ 1

z2 � ð2a cos v0DsÞzþ a2
(43)

This transfer function is zero at frequency v = v0.
The effectiveness of this strategy in eliminating unwanted

components arising from a quantizer is illustrated by the following
example. We simulate a feedback control loop for a first order plant
with integral action in the controller. We first use a simple (nearest
neighbour) quantizer. Fig. 3 shows the spectrum of the input signal
in this case. It can be seen that there is a significant spectral peak
near 45 Hz arising from ‘‘quantization noise’’. This might have
undesirable practical consequences, e.g., it may excite a resonance
in a motor. When we introduce an extra degree-of-freedom, via the
filter H(z) (see (42)) in the quantizer, then as shown in Fig. 4, the
unwanted spectral line disappears. Of course, the Bode integral
(18) also holds for S0(z) = 1 � H(z). This implies that there must be a
trade-off, i.e., reduction of ‘‘quantization noise’’ at one frequency
must be accompanied by an increase in ‘‘quantization noise’’ at
other frequencies. This effect is also evident in Figs. 3 and 4. This
idea can be used to eliminate (or at least reduce) any undesirable
frequency component on the input (subject to satisfaction of the
Bode integral trade-off).[()TD$FIG]
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3.7. Constrained observer feedback (COF)

A final problem that we wish to discuss is that of input
saturation. Specifically, a high gain linear feedback law is almost
certain to call for larger inputs (e.g., voltages) than are available.
This problem is central to many practical control problems
including switching electronics.

A key approach to dealing with these problems is to make sure
that the various controllers are ‘‘informed’’ that the (hypothetical)
input requested by the linear control law was not actually used.
This concept turns out to be a (mild) generalization of well known
ideas used in integral control to prevent integrator wind up. These
techniques are usually called Anti-Wind-Up (AWU) Control
(Goodwin et al., 1997).

We discuss this issue below for the feedback controller,
C(z) = P(z)/L(z), and the feedforward controller, F(z).

3.7.1. Feedback controller

In this case, the solution is rather simple. All we need to do is to
ensure that the observer part of the feedback controller ‘‘knows’’
about the true input rather than the hypothetical input generated
by the linear controller.

Hence the appropriate circuit is as shown in Fig. 5.

3.7.2. Feedforward controller

The situation with feedforward control is a little more subtle. To
deal with this, we factor F(z)�1 as follows:

FðzÞ�1 ¼ f 0 þ F̄ðzÞ (44)

where F̄ðzÞ is strictly proper.
[()TD$FIG]
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Fig. 5. COF implementation of feedback controller
We then implement the feedforward controller as shown Fig. 6.
We see that, in the absence of quantization, or saturation, that

utrue
f f ¼

f�1
0

1þ f�1
0 F̄ðzÞ

y� ¼ FðzÞy� as required (45)

However, in the presence of quantization, the circuit ensures that
the states of the feedforward filter which appear in F̄ðzÞ, ‘‘know’’
that utrue

f f was actually used rather than udesired
f f .

3.8. Composite design

Finally, we can put all of the elements together. One final point
to be addressed is that u comprises two signals, i.e., uff and ufb.

Hence we define

l ¼
Q udesired

f f þ udesired
fb

h i

udesired
f f þ udesired

fb

h i
������

������ (46)

Then we calculated

uactual
f f ¼ ludesired

f f

uactual
fb ¼ ludesired

fb

(47)

We can then draw the complete design as in Fig. 7.

4. Illustration via control of synchronous reluctance motor

To illustrate some of the ideas described above we will present
results for the (simulated) control of a nine-phase voltage source
inverter driving a SynRM – see Fig. 8 and Section 2. We will focus
on torque control with constant fluxing of the machine.

We will investigate the impact of the design and implementa-
tion (in COF form) of the feedback and feedforward loops. We use a
sample period of Ds = 0.2 ms.

4.1. The feedback controller

For simplicity, we examine the locked rotor scenario. Com-
ments on the non-locked case will be given in Section 6.4. We[()TD$FIG]
Fig. 7. COF implementation of complete control law
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Fig. 8. SynRM control

[()TD$FIG]

Fig. 11. Mean square error as a function of closed loop bandwidth

[()TD$FIG]

Fig. 12. Optimum bandwidth as a function of measurement noise amplitude
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assume a constant direct axis reference current of 2(A) and we
measure all currents in the presence of measurement noise. Hence, in
view of the comments made under headings (a) and (b) in Section 3.6,
we will need to limit the feedback bandwidth so as to obtain an
appropriate trade-off between disturbance rejection and noise
immunity.

We utilize a simple PI controller where we cancel the (stable)
plant pole by a zero in the controller and introduce integral action.
This leads to:

CðzÞ ¼ K pðz� 1Þ þ KIDsz

ðz� 1Þ (48)

where KI = (1 + g)(1 � a)/[Dsb]; Kp = a(1 � g)/b, where a is the
open loop (discrete time) pole, g is the desired (discrete time)
closed loop pole.

We implement the controller in COF form as shown in Fig. 9
where CðzÞ�1 ¼ c0 þ C̄ðzÞ, c�1

0 ¼ ðK p þ KIDsÞ, and where the
quantizer is placed immediately after c�1

0 .
The quantizer is a mechanism which ensures that the voltage

corresponds to one of the allowed switching states.
We simulate the measurement noise as uniformly distributed

white noise in the interval [ � 0.1, 0.1]. We then use this to give
about 10% measurement noise as shown in Fig. 10.

Fig. 11 shows the mean square torque error as a function of
closed loop bandwidth. As we increase the bandwidth the effect of
disturbances decreases but the effect of measurement noise
increases. Thus there is an optimal trade-off. We see from Fig. 11
that the optimal closed loop bandwidth is approximately 200 Hz.

Next we vary the noise amplitude and plot the optimum
bandwidth as a function of noise amplitude. The results are shown[()TD$FIG]
[()TD$FIG]

Fig. 10. Measurement noise generation

Fig. 9. COF implementation of feedback controller
in Fig. 12. As expected, the optimum bandwidth decreases as we
increase the measurement noise level.

Finally, we test the use of COF feedforward. We design the
(unconstrained) response time of the feedforward to be 1/5th that
of the feedback loop. We use a set point change of 10% downwards
after reaching steady state. (We choose a small reference change so
that the results are not dominated by input slewing resulting from
saturation effects.)

Fig. 13 compares the measured response time for 3 controllers
as follows:

(i) TFV – this is the predictive control method described in part
(b) of Section 2.

(ii) PI controller (in feedback COF form).
(iii) PI controller with compensator (feedback and feedforward

controller in COF form).

We see from Fig. 13 that controller (iii) gives approximately
50% reduction in closed loop transient time independent of the
closed loop bandwidth.[()TD$FIG]
Fig. 13. Response times achieved with different control laws
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5. A brief introduction to model predictive control

5.1. Overview

Model predictive control (MPC) (Camacho and Bordons, 1999;
Goodwin, Serón, & De Doná, 2005; Maciejowski, 2002; Rawlings &
Mayne, 2009) has emerged as a very successful method to solve a
wide range of problems in the process industries where the plant
being controlled is ‘‘slow’’ (Qin & Badgwell, 2003). The method is
being increasingly employed to control ‘‘fast’’ plants including
switching electronics Kouro et al. (2009), Linder and Kennel (2005),
Rodrı́guez et al. (2007), Vargas et al. (2007), Lezana et al. (2009),
Huang and Corzine (2006), Cortés et al. (2008), Cortés et al. (2009),
Aguilera et al. (2008). Here the sampling rate is high (<1 ms) and
hence special attention must be placed on computational issues.
MPC owes its success to its ability to (relatively easily) handle
nonlinearity of the plant and to allow one to impose hard constraints
on states and controls. These are requirements that are difficult to
satisfy with other control methods. The penalty is that an open-loop
optimal control problem (possibly nonlinear and constrained) has to
be solved at each instant to obtain the control.

5.2. Basic ingredients of deterministic MPC

To allow for consideration of nonlinear systems, suppose the
plant to be controlled is described by

xþ ¼ f ðx;uÞ (49)

where x and u denote, respectively, the state and control, and x+

denotes the successor state, i.e., the state at the next sampling
instant. Suppose the length of the horizon of the optimal control
problem to be solved is N and that the plant is subject to the control
(input) constraint u2U and state constraint x2X. We discuss the
deterministic case. By ‘‘deterministic’’ we imply that there is no
uncertainty in the system. In particular, the state x is assumed to be
known and there are no unknown disturbances. The optimal
control problem (solved on line) requires that, for the known
current state x at time t, a constrained minimization be carried out
with respect to the control sequence u = {u(0), u(1), . . ., u(N � 1)}.
Because the system is time-invariant, it is convenient to regard the
initial time in the optimization problem to be 0. The state at each
time k > 0 is a function of (x, u). Hence, the cost VN( � ) is defined by

VNðx;uÞ :¼
XN�1

i¼0

‘ðxðiÞ;uðiÞÞ þ V f ðxðNÞÞ (50)

in which x(i) = f(i;x, u) is the solution at time i of the difference
equation x+ = f(x, u) when the initial state is x and the control (input)
sequence is chosen as u. The minimization is carried out subject to
the control and state constraints uðiÞ 2U and xðiÞ 2X for all i 2 {0, 1,
2, . . ., N � 1}. It is also usual to impose a terminal state constraint of
the form x(N) 2 Xf. In this formulation, Vf( � ) is the additional
terminal cost (a Control Lyapunov Function in the neighbourhood of
the set point) and X f �X is the associated control positive invariant
set. (A discussion of control Lyapunov functions can be found in
Rawlings and Mayne (2009)). These are added to the optimal control
problem as a mechanism to provide a certificate of stability. The
minimization yields the optimal control sequence

u0ðxÞ ¼ fu0ð0; xÞ;u0ð1; xÞ; . . . ;uN�1ð0; xÞg (51)

This is a function of the current state x as well as the value function
V0

NðxÞ ¼ VNðx;u0ðxÞÞ. Model predictive control implements the
solution in a ‘‘rolling horizon’’ fashion, i.e., we use only u0(0;x),
the first element of this sequence, as the control u to be applied to the
plant. The control u = kN(x) : = u0(0;x) applied to the plant is a
function of the state. Hence a particular form of static (nonlinear)
state feedback control is obtained. When time advances one step, we
measure (or estimate) the current state and repeat the calculation.

5.3. Stability

Subject to conditions on f( � ), ‘( � ), Vf( � ) and Xf, then closed-loop
stability (i.e., asymptotic or exponential) can be established (Mayne,
Rawlings, Rao, & Scokaert, 2000) for the closed-loop system x+ = f(x,
kN(x)). This result is obtained using the value function V0

Nð�Þ as a
Lyapunov function. Satisfaction of the conditions mentioned above
ensures V0

Nð�Þ is zero at the target state, positive elsewhere and
satisfies:

V0
NðxþÞ � V0

NðxÞ � ‘ðx;kNðxÞÞ; xþ ¼ f ðx;kNðxÞÞ (52)

Thus V0
Nð�Þ decreases along closed-loop trajectories and this ensures

closed-loop stability. The analysis also shows that recursive feasibility

is maintained, i.e., if the optimal control problem can be solved at the
initial time, it can be solved at all future times. If the terminal cost is
chosen appropriately (this is easy when the system is linear) and the
set of states to be controlled restricted to a region around the target
state, performance is identical to that obtained using an infinite
horizon optimal control problem.

5.4. Nonconvex problems

If, the optimal control problem is non-convex (which is often
the case if f( � ) is nonlinear), then finding the global minimum of
VN( � ) is problematic. However, it has been shown (Rawlings &
Mayne, 2009) that determining, at each time, a feasible, rather than
an optimal, solution yields, under mild conditions, a stabilising
controller. Moreover, recursive determination of a feasible solution
is always possible if the initial problem is feasible.

5.5. Specialization to linear systems with quadratic cost

5.5.1. Formulation

Here we study the special case where the system f( � ) is linear as
in (19) and (20) and the cost is quadratic.

Say that the current state estimate is x̂ð0Þ, then the future states
over horizon N can be predicted via:

ˆ̂xðiÞ ¼ Aix̂ð0Þ þ
Xi

k¼1

Ai�kBuðk� iþ 1Þ (53)

where i = 1, . . ., N. (Note that here we do not include a terminal
cost.)

Let us assume a simple cost function of the form:

VNðx̂ð0Þ;uÞ ¼
XN

k¼1

ˆ̂e
2
ðkÞ þ lu2ðk� 1Þ (54)

where ˆ̂eðkÞ ¼ C ˆ̂xðkÞ. Clearly this is a quadratic function of x̂ð0Þ and
u = {u(0), u(1), . . ., u(N � 1)}.

Now the cost function (54) can be expressed in matrix notation as:

VNðx̂ð0Þ;uÞ ¼ ðHuþ rÞTðHuþ rÞ þ luT u (55)

where

H ¼
CB 0

}

CAN�1B � � � CB

2
4

3
5 (56)

u ¼
uð0Þ

..

.

uðN � 1Þ

2
64

3
75; r ¼

CA
..
.

CAN

2
4

3
5x̂ð0Þ (57)
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H contains the system Markov parameters and r is the extended
observability matrix.

5.5.2. Unconstrained solution

In the absence of constraints, we can easily find u that
minimizes (55) namely

u ¼ � HTHþ lI
� ��1HT r (58)

5.5.3. Constrained solution

In the presence of constraints, we need to minimize (55) subject
to satisfaction of the constraints.

When rolling horizon optimization is used, we implement u(0)
only. We then measure (or estimate) a new state x̂ð1Þ, reset the
current time to zero and repeat the problem. At each step, we
apply:

uð0Þ ¼ 1 0 . . . 0½ �u� (59)

where u� is the vector optimizing the cost function.

5.5.4. Horizon 1

In many applications (including switching electronics) the
sampling rate is often very high (e.g. Ds is typically chosen as a
fraction of a millisecond). In this case, it is usually prohibitive to
use large values for the horizon N. Hence it is common to use small
horizons, e.g., unity.

When there are no constraints, then it can be seen, by
specializing (58) to horizon 1, that the input is given by:

uð0Þ ¼ �Kx̂ð0Þ (60)

where, in this special case,

K ¼ BT CT CBþ lI
h i�1

CBCA:

When constraints are added, it is relatively simple to modify the
solution as shown below. Let uuc(0) be the solution to the
unconstrained problem. Then the cost can be factored as:

VNðx̂ð0Þ;uÞ ¼ uð0Þ � uucð0Þ½ �T BT CT CBþ lI
h i

uð0Þ � uucð0Þ½ �

þ constant (61)

Next say that we require that uð0Þ 2U, a given constraint set. (Note
that this set can be convex or finite.)

We factor the Hessian in the above expression as follows:

DT D ¼ BT CT CBþ lI
h i

(62)

and define

ū ¼ Duð0Þ
ūuc ¼ Duucð0Þ

We also transform the allowable constraint set by defining

Ū ¼ DU (63)

Then we see that

VNðx̂ð0Þ;uÞ ¼ ū� ūucð ÞT ū� ūucð Þ þ constant (64)

We also see that the constrained optimization problem is solved by
finding the closest value (in a Euclidean sense) within Ū to the
unconstrained solution ūuc.
In summary, we have that the constrained optimal solution is

uð0Þ ¼ D�1 Q Duucð0Þf g
h i

¼ Q uucð0Þ½ � (65)

where Q and Q denote a simple ‘‘nearest neighbour’’ quantizer and
a generalized quantizer respectively.

We thus see that the horizon 1 solution is defined via the
generalized ‘‘projection’’ quantizer given in (65). Moreover, it is
clear that the horizon 1 solution is a special case of the COF
principle described in Section 3.7 where the ‘‘quantizer’’ takes the
form given in (65). For this reason, using the term MPC in this
context is perhaps misleading. We thus prefer the term ‘‘COF’’
rather than ‘‘MPC’’ for the horizon 1 case, see (Goodwin, Quevedo,
and McGrath (2003), Quevedo and Goodwin (2005), De Doná,
Goodwin, and Serón (2000)). Extensions to longer horizons are
discussed in (Quevedo, Goodwin, and De Doná (2004) and
Quevedo, Müller, and Goodwin (2007)).

5.6. The spectra of uncertainty

We return to the general formulation described in Sections 5.2
and 5.3. Unfortunately, the core stability result assumes no
uncertainty (i.e., no disturbances or modelling error).

If uncertainty is present, the equivalence between open-loop
and feedback control disappears and the proven stability proper-
ties of deterministic model predictive control are lost. Thus it is no
longer true that the solution to an open-loop optimal control
problem (modified to compensate for its finite horizon) provides
optimal control of the uncertain system. We could envisage a
‘‘feedback’’ solution to account for uncertainty; however, an
optimal control problem that provides the optimal ‘‘feedback’’
solution would be impossibly complex. Hence, as in adaptive
control, ‘smart’ non-optimal solutions have to be devised. What is
often done in practice is to obtain model predictive control for the
nominal system, i.e., to ignore uncertainty in computing the on-line
control action. This can give satisfactory control (but is not
guaranteed to do so). To see what might happen, consider the
simple case when the state is measured but a disturbance, w,
enters additively; the system is then described by

xþ ¼ f ðx;uÞ þw (66)

Since now xþ ¼ f ðx;kNðxÞÞ þw rather than x+ = f(x, kN(x)), the
evolution equation for the value function V0

Nð�Þ (of the nominal
control problem) satisfies

V0
NðxþÞ ¼ V0

NðxÞ � ‘ðx;kNðxÞÞ þDðx;wÞ (67)

The extra term, Dðx;wÞ :¼ V0
Nð f ðx;kNðxÞÞ þwÞ � V0

Nð f ðx;kNðxÞÞÞ,
may well exceed ‘(x, kN(x)) in magnitude so that a decrease of the
candidate Lyapunov function is no longer ensured. Also, recursive
feasibility is no longer guaranteed.

To overcome these features of nominal MPC various schemes have
been proposed. One proposal, called tube model predictive control
(Rawlings & Mayne, 2009), uses nominal MPC to determine a nominal
trajectory from the current set point to the next set point and local
feedback to confine the trajectories of the uncertain system to remain
in a specified neighbourhood of the nominal trajectory. If the system
f( � ) is linear and if z(i) and vðiÞ are the state and control of the nominal
system at time i, the control u(i) applied to the plant is uðiÞ ¼
vðiÞ þ KðxðiÞ � zðiÞÞ where x(i) is the current state of the plant. If the
disturbance, w, is bounded, a bounded set S may be computed such
that the state x(i) of the plant satisfies x(i) 2 z(i) + S for all i and all
possible disturbance sequences. The state z(i) of the nominal system
converges to the set point x� and the state x(i) of the uncertain system
converges to the set x� + S; once the state x(i) enters the set x� + S, it
remains there. With this knowledge, nominal MPC may be designed
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to ensure that the uncertain system satisfies all constraints. If the state
is not directly measured, as is commonly the case, a similar procedure
is used to control the state estimator. The latter can be viewed as
another ‘‘uncertain system’’ with measured state.

5.7. Quantized control

The stability results described above assume the control u lies in,
say, U where the input constraint set U is a convex subset of, say, Rm.
In switching electronics, U is typically a finite subset of Rm, e.g.
U ¼ fu1;u2; . . . ;umg is the set of voltages, say, that may be generated
by the power electronics. A finite alphabetU raises new problems
regarding a proof of stability. Some of these problems are discussed
below.

6. Certificates of stability

6.1. General comments

It is desirable, but not always possible, to imbue a control law
with a ‘‘certificate of stability’’.

In the context of model predictive control, stability can be
achieved by adding to the optimal control problem a terminal cost
function that is a global Control Lyapunov Function or by adding a
terminal cost function that is merely a local Control Lyapunov
Function provided that a terminal constraint is also added such
that the local Control Lyapunov Function is valid within the
terminal constraint set. This, in turn, raises the issue of
‘‘feasibility’’, i.e., the ability to steer the system from its initial
state into the terminal constraint set. This is where a longer
horizon can be useful since it offers greater flexibility (i.e., more
control moves) to reach the terminal set.

Several special cases facilitate the search for a Control Lyapunov
Function. Two such cases are discussed below.

(i) When the B matrix in the system description is invertible. The
key point about this case is that it is always possible to steer
any initial state lying sufficiently close to the target state x� to
a point ‘‘closer’’ to the target state (even in one step). Hence,
in this case, there exists a wide range of local Control
Lyapunov Functions, such as the function jx � x� j used in
some switching electronic applications. In this case, the
Control Lyapunov Function is local because the control
constraint restricts the range of states that can be moved
‘‘closer’’ to the target state.

(ii) When the system is open loop stable. The key point about this
case is that one can choose the Control Lyapunov Function (CLF)
to be the function V f ðxÞ :¼ ð1=2Þðx� x�Þ0Pðx� x�Þwhere x� is the
target state and P is the solution of the Lyapunov equation

P ¼ AT PAþV (68)

where V is any positive definite symmetric matrix. With this choice
for Vf( � ), the control u = u�, which steers the system to x�, causes a
reduction in the CLF and any control that minimizes Vf(x

+),
x+ = Ax + Bu, will decrease the CLF more and steer the system to x�

even more quickly. This CLF is global and this makes it preferable to
the local CLF discussed in (i). Invertibility of B is also not required in
this case.

Obtaining a control by minimizing Vf(x+) with respect to u, is
actually equivalent to an old form of control in which a Control
Lyapunov Function (CLF) is directly employed to obtain a
stabilising controller. However, MPC provides extra freedom. For
example, a stabilising controller may also be obtained by
employing the cost V1(x, u) : = ‘(x, u) + Vf(Ax + Bu) in place of
V1(x, u) : = Vf(Ax + Bu). As before, Vf( � ) should be a CLF. The
function ‘( � ), which should satisfy some simple conditions, may be
used to improve performance if Vf( � ) is chosen appropriately.
Larger horizons would provide even more flexibility.

6.2. Quantization

Quantization introduces an extra layer of difficulty over those
described above. For example, with finite alphabet control it is
not a-priori obvious that one has the flexibility to steer the state
to a desired target x� that is an equilibrium state in the sense
that there exists a control u� satisfying x� = Ax� + Bu� even if B is
invertible. Difficulty arises if the control u� does not lie in the
finite alphabet. This problem requires a more detailed analysis.

One option would be to relax the problem by ignoring the
discrete nature of U, i.e., U is replaced in the optimal control problem
by V which is defined to be the convex hull of U yielding a control u.
The control actually applied to the plant is then utrue = Q(u) where Q

is a generalized quantizer. The quantizer noise q : = utrue � u is
bounded so that the plant, if it is linear, is now described by

xþ ¼ Axþ Butrue þ Bq (69)

and is an uncertain system with bounded additive disturbance
w ¼ Bq. This can be treated by using techniques from the emerging
theory of robust model predictive control – see Rawlings and Mayne
(2009), Løvaas, Serón, and Goodwin (2008), Løvaas, Serón, and
Goodwin (2009), Løvaas, Serón, and Goodwin (2010).

6.3. Fusion control

It has been suggested above that one way to treat quantization
is to transform the optimization problem into one with unquan-
tized control and additive bounded noise. Of course, noise comes in
different ‘‘flavours’’. Hence, there may be value in combining some
of the ideas used in Section 3 with model predictive control. We
term such strategies ‘‘fusion control’’ since the goal is to fuse
modern and traditional ideas.

6.4. The SynRM revisited

The voltage and torque equations for a three-phase synchro-
nous reluctance motor in the rotating DQ reference frame are given
in Section 2. If the state x for the current loop is defined to be the
vector (id, iq), then the system satisfies:

ẋ ¼ Āðv0Þxþ B̄u
y ¼ cðxÞ

where

Ā :¼ �a1 b1ðv0Þ
�b2ðv0Þ �a2

� �
; B̄ :¼ 1=L1 0

0 1=L2

� �
(70)

and

cðxÞ :¼ 3 p

2
ðLd � LqÞx1x2 (71)

where a1 : = Rs/Ld, a2 : = Rs/Lq, b1(v0) : = (Ld/Lq)v0, b2(v0) : = (Lq/
Ld)v0, u denotes the voltage vector ðvd; vqÞ, v0 is the ‘electrical’
angular velocity, y is the output torque and p is the number of pole
pairs in the motor. The open loop characteristic polynomial is

fðsÞ ¼ s2 þ ða1 þ a2Þsþ a1a2 þv2
0 (72)

This characteristic polynomial is lightly damped if v0 is large.
The outer loop of the speed control system provides a reference
current x� for an inner loop; x�1 is constant at a value that
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provides maximum flux while x�2 is varied by the outer loop to
achieve the desired angular velocity v�0. The discrete-time model
for the inner loop corresponding to a sampling period of Ds

seconds is:

xþ ¼ Axþ Bu (73)

where A : = exp (ĀDs) and B :¼
RDs

0 exp ðĀtÞB̄dt. This translates the
problem into a form where one could use MPC. However, the core
problem is the finite alphabet nature of the control. Hence MPC
with horizon length N requires choosing, via optimization, a
control sequence lying in UN . This is a difficult problem if N is large.
If we use a horizon length N = 1, then the problem becomes much
simpler as discussed in Section 5.5.4. Moreover, for this particular
problem, B̄ and hence B, are nonsingular and A is stable. Hence, the
ideas discussed in Section 6.1 (i) and (ii) are potentially useful.

7. Challenges and opportunities

7.1. Horizon length

Much of the literature on MPC for switching electronic
applications uses, for computational reasons, a horizon length N of
unity although there are a few exceptions (Cortés et al., 2008; Geyer,
Papafotiou, & Morari, 2009). As we have shown in Section 6.2, it is
possible to establish closed loop stability with N = 1, e.g., if the
system being controlled is invertible in one step or is open loop stable
which is the case in some applications. There is a need to investigate
whether significantly better performance can be obtained with
longer horizons together with suitable choice of the stage cost ‘( � ),
state constraint, and terminal cost. If a (global) control Lyapunov is
available, as is often the case, a terminal constraint is not required.
Indeed much of the power of MPC arises from its flexibility in choice
of cost function and from its ability to handle hard constraints.
Longer horizons may help with performance objectives such as
reduction of switching frequency (Geyer et al., 2009) although there
is inevitably a trade-off between switching losses and harmonic
minimization. It would also be helpful to know under what
conditions a horizon length of unity yields good performance.

7.2. Quantization effects

There appear to be two distinct possibilities in MPC for handling
the quantization that is induced by the switching converters. One,
that seems to be preferred in the current literature, is to pose the
optimal control problems as minimizing a cost subject to the
constraint u2UN where U is the discrete set specifying permissi-
ble switched voltages. This approach requires solution of an integer
program. The second alternative, also discussed above, is to
perform the minimization over VN where V is the convex hull of U.
The resultant optimal u is then quantised and the nearest
neighbour to u applied to the plant; alternatively PWM or SVF
modulation may be employed as is done when PI control is used.
The relaxed problem is simpler, being a conventional quadratic or
nonlinear programme. This permits a traditional analysis of closed
loop stability. It would be interesting to compare the performances
of these two approaches. Also, the potential advantages of using
feedback around the quantizer to modify the frequency spectrum
of the quantization errors should be explored.

7.3. Robustness

Existing design techniques for unconstrained control problems
permit a wide range of robustness issues such as undermodelling,
unknown parameters, unknown states, the effect of disturbances
to be addressed. Unfortunately, the same is not true for MPC since,
as pointed out above, the solution to the open loop optimal control
problem solved online is not equivalent to the feedback solution. A
consequence is that nominal MPC, which ignores uncertainty and is
widely used, may have poor robustness properties. Current
research is searching for modifications to nominal MPC that
ensure robustness. Some proposals have been made for the case
when the uncertainty takes the form of an unknown, but bounded,
disturbance and also when the state has to be estimated. Recent
work on unmodelled dynamics is given in (Løvaas et al., 2008;
Løvaas et al., 2009; Løvaas et al., 2010; Maciejowski, 2002; Matsuo
& Lipo, 1994; Mayne, Rawlings, Rao, & Scokaert, 2000; Miranda,
Cortés, & Rodrı́guez; 2009; Mohan, Underland, & Robbins, 1995;
Mulle, Ammann, & Rees, 2005; Nešić & Grüne, 2006; Papafotiou,
Geyer, & Morari, 2007; Papafotiou, Kley, Papadopoulos, Bohren, &
Morari, 2009; Perantzakis, Xepapas, Papathanassiou, & Manias,
2005; Qin & Badgwell, 2003; Quevedo, Aguilera, Pérez, & Cortés,
2010; Quevedo & Nešić, in press) .

7.4. Control architecture

In classical control several different architectures have been
employed to good effect. One of these is the multi-degree-of-
freedom controller architecture as described in Section 3.6. It would
be interesting to know if MPC would benefit from more complex
architectures Bemporad (1998) than the single loop that is currently
employed. A related question is the use of ‘inner’ and ‘outer’ loops. In
some applications, MPC is used for an inner current or torque loop
and a conventional controller for an outer speed loop. This raises the
question as to whether or not it would be advantageous to dispense
with the inner loop and use a single model predictive controller for
the outer loop? Another alternative would be to employ model
predictive controllers in both the inner and outer loop.

7.5. Cost function

The cost function for power electronic applications typically has
a ‘‘standard’’ form which assigns penalty coefficients to each
component of the output error. This is somewhat arbitrary and
subjective process. Development of a unified approach to cost
function design would be beneficial. Variable or adaptive cost
functions that achieve best performance under varying operating
conditions and alternative design requirements would be useful.

8. Conclusion

This paper has given a tutorial overview of the application of
control to switching electronic systems. We have also commented on
issues that arise when these techniques are applied to switched
systems and we have raised a number of open problems and
challenges.
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Quevedo, D. E. & Nešić, D. (in press). Input-to-state stability of packetized predictive
control over unreliable networks affected by packet-dropouts, IEEE Transactions
on Automatic Control

Rawlings, J. B., & Mayne, D. Q. (2009). Model Predictive Control: Theory and Design.
Madison, WI: Nob Hill Publishing.

Rodrı́guez, J. R., Pontt, J., Silva, C., Correa, P., Lezana, P., & Cortés, P. (2007, February).
Predictive current control of a voltage source inverter. IEEE Transactions on
Industrial Electronics, 54, 495–503.

Silva, E. I., Goodwin, G. C., & Quevedo, D. E. (2010, February). Control system design
subject to SNR constraints. Automatica, 46, 428–436.

Vargas, R., Cortés, P., Ammann, U., Rodrı́guez, J., & Pontt, J. (2007, October). Predictive
control of a three-phase neutral point-clamped inverter. IEEE Transactions on
Industrial Electronics, 54, 2697–2705.

Vas, P. (2003). Sensorless Vector and Direct Torque Control. Oxford university Press.
Xu, L., Xu, X., Lipo, T. A., & Novotny, D. W. (1991). Vector control of a synchronous

reluctance motor including saturation and iron loss. IEEE Transactions on Industry
Applications, 27(5), 977–985.

Graham C. Goodwin Graham Goodwin obtained a B.Sc. (physics), B.E. (electrical
engineering), and Ph.D. from the University of New South Wales. He is currently Professor
Laureate of electrical engineering at the University of Newcastle, Australia, and is director
of an Australian Research Council Centre of Excellence for Complex Dynamic Systems and
Control. He holds Honorary Doctorates from Lund Institute of Technology, Sweden, and
the Technion Israel. He is the co-author of eight books, four edited books, and many
technical papers. Graham is the recipient of Control Systems Society 1999 Hendrik Bode
Lecture Prize, a Best Paper award by IEEE Transactions on Automatic Control, a Best Paper
award by Asian Journal of Control, and 2 Best Engineering Text Book awards from the
International Federation of Automatic Control in 1984 and 2005. In 2008 he received the
Quazza Medal from the International Federation of Automatic Control. He is a Fellow of
IEEE; an Honorary Fellow of Institute of Engineers, Australia; a Fellow of the International
Federation of Automatic Control; a Fellow of the Australian Academy of Science; a Fellow
of the Australian Academy of Technology, Science and Engineering; a Member of the
International Statistical Institute; a Fellow of the Royal Society, London; and a Foreign
Member of the Royal Swedish Academy of Sciences.

David Q. Mayne David Mayne received the B.Sc. and M.Sc. degrees from the University
of the Witwatersrand, the Ph.D. and D.Sc. degrees from the University of London, and
the degree of Doctor of Technology, honoris causa, from the University of Lund,
Sweden. He has held posts at the University of the Witwatersrand, the British Thomson
Houston Company, University of California, Davis and Imperial College London where
he is now Senior Research Fellow. His research interests include optimization, optimi-
zation based design, nonlinear control and model predictive control.

Keng-Yuan Chen Keng-Yuan Chen received the B.S. degree from the Department of
Electrical and Control Engineering, National Chiao-Tung University, Taiwan, in 2003,
and the M.S. degree from the Department of Electrical and Control Engineering,
National Chiao-Tung University, Taiwan, in 2005. She is currently a Ph.D. candidate
in the Department of Electrical and Control Engineering, National Chiao-Tung Univer-
sity, Taiwan, ROC. Her main research interests cover digital signal processing and class-
d amplification.

Colin Coates Colin Coates received both the B.Math–B.E. degree in electrical engineer-
ing and Ph.D. from the University of Wollongong, Australia, in 1993 and 2002
respectively. He has over 10 years industry experience having worked for both BHP
Steel (automation and drives) and Zener Electric (power electronics design). He joined
the University of Newcastle, Australia, in 1999. His research interests include low
voltage distributed generation, wind turbine control and electric drives.

Galina Mirzaeva Galina Mirzaeva received M.E. (1990) and Ph.D. (1997) from the
South Ural State University, Russia. In 1993–1998 she worked with the Makeev
National Rocket Centre, Russia. In 2004–2009 she was a Research Academic with
CRC Mining at the University of Newcastle, Australia. Since 2009 she is a Senior
Lecturer with School of Electrical Engineering and Computer Science of the same
University. Her research interests include control and dynamic performance of AC and
DC machines and various aspects of power electronics and autonomous power
generation. She is a member of Industrial Drives Committee and the Chair of Mining
Industry Committee of the IEEE Industry Applications Society.

Daniel Quevedo Daniel E. Quevedo received Ingeniero Civil Electrónico and Magister
en Ingenierı́a Electrónica degrees from the Universidad Técnica Federico Santa Marı́a,
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researcher at ETH Zürich, Switzerland, at Uppsala University, Sweden, at The University
of Melbourne, Australia, at Aalborg University, Denmark, at Kyoto University, Japan,
and at KTH Stockholm, Sweden. Dr. Quevedo was supported by a full scholarship from
the alumni association during his time at the Universidad Técnica Federico Santa Marı́a
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