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A Hierarchical Bayesian Generation Framework
for Vacant Parking Space Detection
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Abstract—In this paper, from the viewpoint of scene under-
standing, a three-layer Bayesian hierarchical framework (BHF) is
proposed for robust vacant parking space detection. In practice,
the challenges of vacant parking space inference come from
dramatic luminance variations, shadow effect, perspective distor-
tion, and the inter-occlusion among vehicles. By using a hidden
labeling layer between an observation layer and a scene layer,
the BHF provides a systematic generative structure to model
these variations. In the proposed BHF, the problem of luminance
variations is treated as a color classification problem and is tack-
led via a classification process from the observation layer to the
labeling layer, while the occlusion pattern, perspective distortion,
and shadow effect are well modeled by the relationships between
the scene layer and the labeling layer. With the BHF scheme,
the detection of vacant parking spaces and the labeling of scene
status are regarded as a unified Bayesian optimization problem
subject to a shadow generation model, an occlusion generation
model, and an object classification model. The system accuracy
was evaluated by using outdoor parking lot videos captured
from morning to evening. Experimental results showed that the
proposed framework can systematically determine the vacant
space number, efficiently label ground and car regions, precisely
locate the shadowed regions, and effectively tackle the problem
of luminance variations.

Index Terms—Bayesian inference, image labeling, parking
space detection, semantic detection.

1. INTRODUCTION

SING AN INTELLIGENT surveillance system to man-

age parking lots is becoming practical nowadays. A
recent technology review about smart parking system can be
found in [1]. To assist users to efficiently find a vacant parking
space, an intelligent parking space management system can
not only provide the total number of vacant spaces in the
parking lot but also explicitly identify the location of vacant
parking spaces. Among those smart parking systems, vision-
based systems have gathered great attention in recent years.
Unlike using trip sensors or other types of sensors to mon-
itor a parking lot, a vision-based system may provide many
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value-added services, like parking space guidance and video
surveillance.

In practice, the major challenges of vision-based parking
space detection come from occlusion effect, shadow effect,
perspective distortion, and the fluctuation of lighting con-
ditions. In Fig. 1, we show several parking lot images in
our dataset. In these images, some environmental factors
are mixed together in a sophisticated way. For instance, the
illumination in a sunny day is quite different from that in
a cloudy day, a parked car may occlude or cast a shadow
over the parking space next to it, a shadowed region may be
mistakenly recognized as a dark-colored vehicle, and a light-
colored vehicle under strong sunlight may look very similar
to a vacant parking space.

Up to now, many methods have been proposed to overcome
the aforementioned difficulties. These methods can be roughly
classified into two categories: car-driven and space-driven. For
a car-driven method, cars are the major target and algorithms
are developed to detect cars. Based on the result of car
detection, vacant parking spaces are determined. To detect
objects of interest, plentiful object detection algorithms can
be used. For example, the object detection method proposed
in [2] by Schneiderman and Kanade is a trainable detector
based on the statistics of localized parts. The adaboosting-
based detection algorithm [3] is another widely used technique
for the detection of specific objects in 2-D images. The method
proposed by Felzenszwalb et al. [4] offered an efficient way to
match objects based on a part-based model that well represents
an object by pictorial structures. A global color-based model
had been proposed by Tsai er al. [5] to efficiently detect
vehicle candidates. In that approach, a Bayesian classifier
based on corner features, edge features, and wavelet coef-
ficients was trained to verify the detection of vehicles. On
the contrary, Lee er al. [6] and Masaki [7] kept tracking and
recording the movement of vehicles to identify empty parking
spaces. Even though these object detection-based frameworks
had gained impressive achievement in many circumstances,
such as highway and roadway, most of these algorithms are
not specifically designed for vacant parking space detection
in a typical parking lot. For example, as shown in Fig. 1, the
captured images may include some cars with unclear details.
Besides, due to the perspective distortion, a car far away from
the camera only occupies a small area in the captured image.
This fact may also affect the performance of car detection.

For a space-driven method, the property of a vacant parking
space is the major focus and available parking spaces are
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Fig. 1. Image shots of a parking lot. (a) Captured in a normal day.
(b) Captured in a day with strong sunlight. (c) Captured in a cloudy day.

detected directly. When the camera is static, several back-
ground subtraction algorithms, such as [8]-[10], can be used to
detect foreground objects. Typically, these algorithms assume
that the variation of the background is statistically stationary
within a short period. Unfortunately, this assumption is not
always true for an outdoor scene. For example, a passing cloud
that block the sunlight may suddenly change the lightness. To
handle the dynamic variation of an outdoor environment, a
possible solution is to build a complete background reference
set under all kinds of lighting conditions. However, lots of
memory and heavy computational cost will be needed to
support this approach. To solve this problem, Funck er al. [11]
proposed an eigen-space representation that models a huge
set of background models with much less memory space and
computational cost.

With a suitable background model, a typical way to deter-
mine the status of a parking space is to check the ratio of
foreground pixel number to background pixel number. If the
ratio is larger than a predefined threshold, that parking space
is considered as occupied. However, even if the background
model is well learned, this kind of method still suffers from
the occlusions and shadows caused by neighboring cars. To
improve the performance of detection, Huang er al. [12]
proposed a Bayesian detection framework to take into account
both ground plane model and car model. Both occlusion
effect and illumination variation were modeled under that
framework. Recently, Bong et al. [13]-[14] proposed a car
park occupancy information system by using a “bi-stream”
detector to overcome the shadow effect. In their approach, one
stream used the background subtraction method to perform car
detection, while the other stream adopted edge information to
achieve shadow-insensitive detection. By using an “And” oper-
ator to combine both detection results, detection performance
was improved.

On the contrary, some other space-driven methods assume
that a vacant parking space possesses homogeneous appear-
ance and use this property to detect vacant spaces. For
example, Yamada and Mizuno [15] designed a homogeneity
measure by calculating the area of fragmental segments. In
principle, a vacant space has fewer but larger segments, while
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the area of a parked car has an opposite property. Lee et al.
[16] suggested an entropy-based metric to determine the status
of each parking space. Once the entropy inside a space region
is larger than a threshold, that space is considered as occupied.
However, these two systems ignored the shadow and occlusion
caused by adjacent cars. In [17], Fabian used a segment-based
homogeneity measure similar to that in [15] and proposed a
method for occlusion handling. By pre-training a weighting
map to indicate the image regions that may get occupied
by neighboring cars, the influence of the occlusion effect
can be reduced. However, due to the perspective distortion,
a distant parking space only occupies a small region in
the captured image. This leads to instable measurement of
homogeneous areas. In order to overcome the perspective
problem, Lépez-Sastre et al. [18] suggested the rectification
of the perspective effect by transforming the original parking
lot image into a top-view image. A Gabor filter bank was used
to derive the homogeneity feature for vacant space detection.
Even though their homogeneity measure is effective for most
parking spaces, the environmental variations, especially the
shadow effect and the over-exposure effect caused by strong
sunlight, may fail the assumption of homogeneous appear-
ance. In practice, the shadow effect makes a parking space
less homogeneous while the over-exposure effect makes the
appearance of a car more homogeneous.

Some other authors tried to detect vacant parking spaces via
classification. For example, Dan [19] trained a general support
vector machine (SVM) classifier by directly using the cascaded
color vectors inside a parking space as the classification fea-
ture. However, the occlusion patterns were not well modeled in
their approach. On the contrary, Wu et al. [20] grouped three
neighboring spaces as a unit and defined the color histogram
across three spaces as the feature in their SVM classifier. With
this arrangement, the inter-space correlation can be learned
beforehand to overcome the inter-occlusion problem. However,
the performance of classification is greatly affected by the
environmental variations. In general, the lighting changes may
cause the variations of object appearance in both brightness
and chromaticity. This effect may dramatically degrade the
accuracy of classification-based detection.

Besides the aforementioned smart parking lot management
(SPLM) systems, which detect vacant parking spaces based
on static surveillance cameras installed around the parking
lot, the automobile parking (AP) system is another approach
that detects vacant parking spaces based on vehicle-embedded
cameras. These in-car AP systems help drivers to identify
available parking spaces while they are driving. For example,
Suhr et al. [21] proposed an optical flow-based method to
estimate the 3-D scene of the rear-view of a moving car.
The reconstructed Euclidean 3-D scene is further analyzed to
detect vacant parking spaces. In [22], the side-view images are
captured for analysis as a car moves along a row of parking
spaces. By classifying each captured image frame as either
“vehicle” frame or “background” frame, they can identify
vacant parking spaces. Even though the AP approach provides
an interesting way for detecting vacant parking spaces, the
focus of our approach is to improve the performance of an
SPLM system, which can easily fit into today’s parking lot
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management systems. In this paper, we propose a hierarchical
Bayesian generation framework to model the generation of
environmental variations, including the perspective distortion,
the occlusion effect, the shadow effect, and the fluctuation of
lighting condition. As will be shown in Section VI, accurate
results can be obtained based on the proposed framework.

The rest of this paper is organized as follows. In Section II,
we present the main idea of our algorithm. The top-down in-
formation from the 3-D scene model is detailed in Section III,
while the message from image observation is presented in
Section IV. The whole inference procedure is explained in
Section V. Experimental results and discussions are presented
in Section VI. Last, Section VII concludes this paper.

II. ALGORITHM OVERVIEW

In our system, the scene understanding and vacant parking
space detection are accomplished based on the integration of
scene prior and image observation. By treating the status of
each parking space as a part of the scene parameters, the
vacant space detection is achieved via the process of scene
inference. The general concept of the proposed system is
illustrated in Fig. 2. Based on a three-layer Bayesian hierar-
chical framework, called BHF, the bottom-up messages from
image observation and the top-down knowledge from the scene
model are effectively integrated. In BHF, the illumination
variations are overcome by transferring the fluctuating red,
green, and blue (RGB) observations into meaningful labels.
The labeling process is treated as a color classification process
between content labeling and image observation. Since the
observation difference is mainly caused by the object type and
the lighting condition, we decompose the image observation
into an object component and a lighting component. The
object type is either “car” or “ground,” while the lighting
condition is either “shadowed” or “unshadowed.” To adapt to
the time-varying lighting condition, we online build the color
classification models for object type and lighting condition.
On the contrary, some global knowledge of the 3-D scene
offers useful information for the labeling of image pixels. The
top-down knowledge is propagated downward to influence the
labeling process via the generation of an “expected object
map” and an “expected shadow map.” Here, we explicitly
define a generative model that takes into account the inter-
occlusion effect, the expected shadow effect, and the perspec-
tive distortion. The relationships among these effects and the
status of parking spaces are explicitly modeled via a Bayesian
probabilistic model. By compromising between the expected
labeling maps and the labeling from image observation, the
status hypotheses of each parking space are evaluated. Finally,
to avoid incorrect inference caused by unexpected occlusions,
the global status hypotheses from the scene model provides
useful constraints to handle partially inconsistent labels. Under
the proposed BHF, the vacant parking space detection problem
and the optimal image content labeling problem are integrated
in a unified manner.

In principle, we can formulate the vacant space detection
problem as a status decision process based on image obser-
vations from a single camera. Since the status of a parking
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Fig. 2.

space may actually affect the inference of neighboring spaces,
it is unsuitable to decide the status of each parking space
individually. Instead, we analyze the status of neighboring
parking spaces at the same time. Moreover, both bottom-up
message and top-down knowledge are modeled as probabilistic
constraints in the proposed BHF. The vacant parking detection
process is regarded as a Bayesian inference problem and is
solved by finding the most reasonable parking space status
that fits both scene prior and image observation.

In Fig. 3, we show a simplified three-layer structure to
explain the BHF framework. For vacant space detection, we
define the image observation layer as Ij, where each node
I;,(m, n) indicates the RGB color feature at the (m, n) pixel
of an image of size M x N. On the contrary, we define the
labeling layer as H;, where each node Hj (m, n) represents the
categorization of the image pixel at (m, n). The labeling result
of H;(m, n) could be (C, S), (G, S), (C, US), or (G, US), where
C denotes ‘“car,” G denotes “ground,” S denotes “shadowed,”
and US denotes “unshadowed.” Moreover, we define the scene
layer as S, which indicates the status hypotheses of the
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Fig. 3. Illustration of the three-layer BHF.

parking spaces. The node S. (i) in S; denotes the status of
the ith parking space. Its value can be either 1 (occupied) or 0
(vacant). Note that Fig. 3 is for illustration purpose only. The
exact model of BHF is to be explained later in Section IV.

In this model, the topology of the inter-layer connections
represents the probabilistic constraints between nodes. Given
the observation I, the status of the parking spaces is deter-
mined by finding the pair (H}, S}) such that

H;,S] :arggzas)i p(Hyp, Splyp). (1

Furthermore, (1) can be reformulated as follows:
Hf, S} =arg gzasyi In p(Hy, Sp|11)
= arg max In[p(IL|HL, SL)p(HL|SL)p(SL)]
= arg max In[p(IL1HL)p(HLISL)p(SL)]
= arg gz'ié[ln pULIHL) +1n P(HL|SL) +1n p(SL)].

@

In (2), we assume p(Iy|Hp, Sp) = p(IL|Hy). That is, we
assume the probabilistic property of the observed image data is
conditionally independent of the scene model once if the pixel
labels are determined. Moreover, p({;|H}) stands for the con-
straints between the labeling layer and the observation layer. In
our approach, the labeling results should be consistent with the
RGB values of the observed image, and the labels of adjacent
pixels should follow some kind of smoothness constraint.
On the contrary, p(H.|S.) stands for the constraints between
the scene layer and the labeling layer. In our approach, the
labeling of parked cars and shadowed regions should match
the expected inter-occlusion pattern and the expected shadow
pattern in a probabilistic sense. Finally, p(S.) represents the
prior knowledge of the parking space status. In our system, we
assume that the “occupied” status and the “available” status are
equally possible for every parking space. With this assumption,
the In p(Sy) term in (2) can be ignored. Moreover, to find
the optimal solution in (2), we adopt the graph-cuts technique
[23]-[25].
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III. TOP-DOWN KNOWLEDGE FROM SCENE LAYER

Since the parking spaces in a parking lot are well structured,
we can synthesize an expected object map once if we have the
3-D car model and a hypothesis about the status of parking
spaces. On the contrary, if we know the lighting condition
(sunny or cloudy) and have the direction of sunlight, we may
also synthesize an expected shadow pattern. In our system,
both expected object map and expected shadow map are
created to help the labeling of image pixels.

In our approach, p(H;|S.) is reformulated as follows:

pHLISL) = [[T] p(HL (. m)1S10) 3)
in which we assume the labeling nodes H; (m, n) are condition-
ally independent of each other once if the knowledge from the
scene layer Sy is given. Since the object type and the lighting
type are physically independent, we formulate p[Hy (m, n)|S]
as follows:

p(HL(m,n)|SL) = p(h®(m, m)|SL)p(h" (m,n)|SL).  (4)

In physics, the object labeling model p[h%(m, n)|S.] includes
the expected car mask and the inter-occlusion effect among
neighboring cars, while the light labeling model p[h*(m,
n)|S.] includes the expected shadow mask to indicate shad-
owed pixels. To define these two labeling models, we first
introduce a parametric model to define the 3-D structure of a
parking lot. Based on the parametric scene model, we propose
a generation process to generate the expected object labeling
map and the expected shadow labeling map.

A. 3-D Scene Model

In our system, the number of parking space (N;) and their
locations on the 3-D ground plane are defined and learned in
advance. In a normal situation, a car is parked inside a parking
space. To simulate a parked car, we assume each car is a cube
in the 3-D world. The length (/), width (w), and height (/) of
the cube are modeled as three independent Gaussian random
variables, with the probability density functions p(l), p(w), and
p(h). Besides, the random vector (I, w, k)T is assumed to be
identically and independently distributed at different parking
spaces. Here, the probability density functions p(/), p(w), and
p(h) are pre-learned based on 120 parked cars. On the contrary,
the 3-D ground plane of the parking lot is defined as a 2-D
plane (X, ¥, 0). Inside the ith parking space, we assume the
projection of the car center on the ground plane is represented
by (X;, ¥;0), where X; and Y; are modeled as two randomly
distributed Gaussian random variables with the probability
density functions p(X;) and p(Y;). The mean values of p(X;)
and p(Y;) are set to be the center of the ith parking space on
the ground plane. Moreover, we assume the location pattern of
parked cars in difference parking spaces is similar. That is, we
assume the variances of p(X;) and p(Y;) are independent of i.
To train the variance values of p(X;) and p(Y;), we measured
for each of these 120 cars the deviation of the car center from
the center of the parked space.

To predict the shadowed regions, we model the lighting
condition in the 3-D scene. In general, we may assume there
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(a) ®)

Fig. 4. (a) 3-D car model. (b) Expected car labeling map.

are two major types of illumination in an outdoor environment:
direct illumination from the sun and ambient illumination
from the sky. For each image pixel, it may be lighted by
the skylight only, or lighted by both skylight and sunlight.
Basically, shadow reflects the contrast of brightness for regions
illuminated by different types of lighting. If the sunlight exists
in the environment, the regions lighted by skylight only appear
to be shadowed. On the contrary, when sunlight is absent, we
assume there is no shadowed region.

Moreover, when sunlight is present, we assume the
direction of sunlight is represented by a 3-D vector
[Dx(t), Dy(t), Dz(®)]", which is a function of time
t. In our approach, the 3-D scene model of a park-
ing lot is determined by the parameter set @, where
® = {Dx(1), Dy(t), Dz(t), {SL(0), li, wi, hy, X;, Vi, fori =
1,2,...,Ng}}. In @, {S.()} is the main unknown variable.
The detailed deduction of the sunlight direction [Dx(?),
Dy(t), Dz(1)]" is to be explained later in Section III-A and
Appendix I.

B. Generation of Expected Labeling Maps

1) Object Labeling Model: In our system, once the 3-D
scene parameters P are given, the expected object labeling
and the expected shadow labeling on the captured images are
automatically generated. Based on the projection matrix of
the camera, a synthesized car parked at (X;, ¥;, 0) inside the
ith parking space, with length /;, width w;, and height #;, is
projected onto the camera view to get the projection image
M;(m, n|X;, Y;, l;, w;, h;), which has the value 1 if the pixel
(m, n) is within the projected region, and 0 otherwise. Since
the size parameters (/;, w;, h;) and the parked location (X;,
Y;) may vary from car to car, we take into account the prior
probabilities p(l;), p(w;), p(h;), p(X;), and p(Y;) and define the
expected car labeling map to be a probabilistic map C;(m, n),
which is the expectation value of M;(m, n|X;, Y;, i, w;, h;),
that is

Ci(m,n) = E
Y;

Xi,Yili,wi hi

[Mi(m1n|XiaYivliawishi)]' (5)

On the contrary, since the object type of an image pixel is
either “car” or “ground,” the expected ground labeling map is
deduced to be

Gim,n)=1—E

Xi,Yili,wi hi

[Mi(m1n|XiaYivliswishi)]' (6)

In our system, we numerically calculate the expectation in
(5) and (6) based on the Monte Carlo approach. Here, based
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Fig. 5. (a) Expected car labeling. (b) Expected ground labeling.

on the prior probabilities p(l;), p(w;), p(h;), p(X;), and p(Y;),
we draw a large set of sample tuples. For each sample tuple,
say (I, wi, hy, Xk, Yi), we synthesize a projection image. By
averaging all projection images for all sample tuples, we get a
probability map that approximates C;(m, n). In Fig. 4(b), we
show the expected car labeling map of the car in Fig. 4(a).

While taking all parking spaces into consideration, an image
pixel at (m, n) in the ith parking space may get occluded
not only by a car parked at that parking space but also by a
car parked at an adjacent parking space. To model the inter-
occlusion effect in the object labeling model, we define the
probability

N

p(h°(m, n) =0|S.) = H [Gi(m, ny*?] (7
i=1

where Sy (i) is the status of the ith parking space. With (7),
the probability of car labeling at (m, n) given the status of all
parking spaces can be formulated as follows:

NS

p(m,my=11Sp) = 1 = [ [Gitm, ny* @] (8)
i=1

In Fig. 5(a) and (b), we show the examples of p(h°(m, n) =
11S2), and p(h®(m, n) = 0|S;), respectively.

2) Shadow Labeling Model: Similarly, by using a cube
model for a parked car, the expected shadowed regions on
the ground plane can be quickly determined in the 3-D space
whenever the sunlight direction is known and the status of
parking spaces are determined. An example is illustrated in
Fig. 6. Here, we define T;(m,n|X;,Y;, l;, w;, h;) to be the
projected shadow labeling image generated by a car parked
at (X;, Y;, 0) inside the ith parking space, with length /;, width
w;, and height h;. Similarly, by taking into account the prior
probabilities p(l;), p(w;), p(h;), p(X;), and p(Y;), we define
the expected shadow labeling map S;(m, n) in a probabilistic
manner as follows:

Sim,n)= E
Xi Yol

i Yol wishy

[Y}(man|Xia Yialiawiahi)]' (9)

Similarly to (6), the expected non-shadow labeling map is
defined as US;(m, n) = 1 — S;(m, n). In Fig. 6(b), we show the
expected shadow labeling map of the car in Fig. 6(a).

To model the shadow labeling model p(h™(m, n)|S;) with

the consideration of all parking spaces, we define
Ny

p(hL(m, n)=0|S.) = H[Usi(m, n)SL(i)]

i=1

(10)
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(a) (b)

Fig. 6. (a) Shadow formation. (b) Expected shadow labeling map.

Fig. 7. (a) Illusion of shadow formation. (b) Expected shadow labeling map.
(c) Expected car labeling map. (d) Refined shadow labeling map.

where Sy (i) is the status of the ith parking space. With (10),
the probability of shadow labeling at (m, n) given S; can be
modeled by
Ny
p(h*(m,n) = 1|S.) = 1 = [ [1USi(m, n)*©].

i=1

(1)

In Fig. 7(a) and (b), we show an example of the 3-D parking
lot model and its expected shadow labeling map. To simplify
the problem, we ignore the shadows cast upon the parked
cars and only consider the shadows cast on the ground plane.
With this assumption, a pixel with a higher probability of car
labeling is less likely to be shadowed. Hence, we refine the
probabilistic shadow labeling map to be

p(ht(m,n) = 1]Sp)
N,
= (1= p(h®m,n) = 1|S)) x (1 = [[[US;(m, n)*©]).

i=1
(12)
A refined shadow labeling map is shown in Fig. 7(d).

C. Sunlight Direction

To generate the expected shadow labeling map, we need the
direction of sunlight. The information of sunlight parameters
is available on the Internet, such as the U.S. Naval Observatory
website [26]. By providing the date and the geo-location
of the parking lot, including longitude and latitude from a
global position system, the web service can provide samples
of sunlight direction for every 10 min.

In our system, we adopt the concept proposed in [27] to
calculate the sunlight direction. In principle, the solar motion
model and the sunlight direction can be estimated based on
the variations of intensity values in a day. In a single day,
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D) oy

Fig. 8. [Illustration of solar movement and sunlight direction.

the solar motion follows a circle on the solar plane in the
3-D space, with a constant angular frequency wy, as illustrated
in Fig. 8. The angular frequency depends mainly on the self-
rotation of the Earth and is known in advance. The whole set
of sunlight directions in a day form a conical surface and the
cone aperture is equal to -2, where § is the sun declination
angle approximated as

8§ =—-2345° 360 Ny + 10 '
o () o) |

In (13), N, is the number of days counted from January 1 to
the current date. With this cone model, the sunlight direction
over time can be parametrically represented by

13)

-

D(f) = —{sin(8) 7 +cos(8)[cos(ws(t —15)) W +sin(w,(t—15)) 5" 1}
(14)
where u is a unit reference vector on the solar plane at time
ty, 11 is the normal vector of the solar plane, and 5 =7 X i.
On the contrary, we assume the scene surfaces are mainly
Lambertian surfaces. Hence, the intensity value reflected from
a surface is proportional to the incident angle of the incident
light with respect to the surface normal. The intensity value at
an image pixel will climb to its maximum when the subtended
angle between the corresponding surface normal vector and
the sunlight direction reaches the minimum. As explained in

Appendix I, if P is the normal vector of a surface patch in
the 3-D scene, the intensity value at the corresponding image
pixel can be approximated as follows:

Lyy(m, n, t) = B(m, n) cos(wst — 0,(m, n)) + C(m,n) (15)

which is a scaled cosine function plus a constant offset.
Moreover, if 6 represents the angle subtended by u and the

projection of P on the solar plane, the phase shift 6, of
the cosine function is equal to 6 up to a constant offset.
In principle, if we pick up three image pixels whose 3-D
scene points lie on different surfaces with linearly independent
normal vectors, we can deduce the geometric relationship
between the solar plane and these three surface normal vectors
[27]. For detailed deduction, please refer to Appendix I.

In Fig. 9(a), we show three manually selected image pixels
in the parking lot scene, one from the driveway and two
from the bushes. These image pixels locate at three mutually
orthogonal planes. The intensity profile of a pixel in the green
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Fig. 9. (a) Parking lot image with three manually selected image pixels,
marked in RGB. (b) Intensity profiles (blue) of the green pixel, overlapped
with the fitted skylight profile (green) and the fitted skylight + sunlight profile
(red).

region is shown in Fig. 9(b) as an example. By identifying the
phase shift 6, from each of these three intensity profiles, we
can determine the sunlight direction D(f) at any time instant .
Moreover, if a parking lot cannot provide these three mutually
independent planes, an artificial cube is recommended to be
set up in the parking lot scene.

IV. BOTTOM-UP MESSAGES FROM OBSERVATION LAYER

In our system, the bottom-up messages are embedded in the
likelihood function p(I;|Hy), which links the observation data
with the labeling results. We assume the observation nodes are
conditionally independent when the status of the labeling layer
is given. In addition, we assume the connections between the
observation layer and the labeling layer are one-to-one and
these connections can be modeled in terms of a “classification
energy” Epl[l.(m,n), H (m,n)]. Moreover, since the local
labeling results of adjacent nodes are usually highly correlated,
an “adjacency energy” E4[I;(m, n), H (m, n); N,]is used. By
combining these two kinds of energy, we have

p(I |Hy) = KH H e~ EpliL(m,n), HL(m,m)] ,—Eal11(m,n), Hy (m,n);Np]

m n

(16)
In (16), N, denotes a neighborhood around (m, n) and K is
a normalization term.

A. Classification Energy
1) Energy Model: In our approach, we attempt to convert
the RGB color features Irgp of each pixel into a semantic
labeling. Here, we model the classification energy as follows:
EplI1(m,n), H.(m, )] = —In(p(rgs(m, n)|h”(m, n)
h*(m, n)) a7
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where p(Irgg|h?, h') is the conditional probability distribu-
tion of Irgp given the semantic labeling (h©, h%). In (17),
h9m, n) could be C or G, and h'(m, n) could be S or
US. Since the lighting condition changes from time to time,
we need to dynamically adjust p(Irgg|h¥, h™). Based on
the image formation model explained in Appendix II, the
trichromatic color vector Irgp at an image pixel can be
represented as Irgp = ||Irgp |l Ri, where ||Irgg]|l is the norm
of Irge, R is a 3 x 3 matrix depending on surface reflectance,
i is a vector depending on illumination, and ||Ri|| = 1. With
this image formation model, we formulate p(Irgg|h ¢, ht) as
follows:

p(Irgelh?, i) = p(|lIrgall 119, BY) pR|A?) p(|h"h).

Since the reflectance of target objects (ground or cars) can
be learned beforehand but the lighting condition is varying
over time, p(R|h?) is learned off-line while p(||Irggl||2°,
h') and p(i|h%) are determined dynamically. Here, we build
those probability models similar to the approach of [28] with
a few modifications. First, instead of training the reflectance
functions of only two objects (grass and ground in [28]) based
on a single singular value decomposition (SVD) over one
set of data, our application needs to collect the reflectance
functions of various cars at different positions and at different
time instants. This requires multiple SVDs over different
sets of data. Hence, we need to register the solutions of
different SVDs to deal with the ambiguity in SVD. Second,
instead of clustering the daylight spectrums into only three
classes, we determine p(i/h’) dynamically to deal with the
continuously changing lighting condition. Third, in [28], the
trained chromaticity values of different classes are used to
initialize the classification of image content. Their intensity
model is then on-line determined. However, owing to the wide
range of car appearance, some cars may get confused with the
ground in the chromaticity space. In our approach, we add in
the scene knowledge to dynamically determine the intensity
model p(|[Irgg|||#®, h1). Basically, given an image, there
are two types of light: skylight and sunlight. Also, the ratio of
reflectance between any two scene patches can be well pre-
learned. These two facts offer a possibility to on-line determine
the intensity model of scene patches based on a few reference
patches. Below, we explain the details of our approach.

2) Learning of p(R|h%): We collected 5000 training
samples of ground and cars to learn p(R|2° = G) and p(R|h©
= (), respectively. Since the camera pose in our system is
fixed, the captured images can be easily registered. To get the
reflectance function of an object, we select a small surface
patch with uniform illumination. To simplify the problem, we
normalized IRgp by its norm to get the normalized RGB
IgGB = Irg/ Il Irgall. Assume there are P pixels inside the
patch and we collect the samples for F' registered frames. The
illumination condition is the same for the whole patch at a
certain time instant, but could be different at different time
instants. On the contrary, the reflectance function could be
different at different image pixels but is temporally invariant
at the same pixel. Hence, for an image pixel at the spatial
location p, its normalized RGB value at time instant k can be

(18)
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Fig. 10. (a) Reference ground patch (red) and the ground patches (pink) for
the learning of ground reflectance function. (b) Car patches (pink) for the
learning of car reflectance function.

expressed as follows:
IR (P, k) = R(P)i(k).

By arranging the normalized RGB values of all pixels inside
the surface patch over F frames into a 3P x F matrix, we
obtain the formula as follows:

19)

Ree(P1, k1) Ree(P1s kr)

Mgga (P, k) = : :
R TRep(Pr. k1) LRee(Pr ki) | 5p p
R(p1)
= : [i(ky) ikp) |5, , = Mr(PMi(k)
R(pr) 3Px3
(20)
where p = {p1, - - -, pp} is the spatial locations of the P pixels
and k = {ky, - - -, kF} is the temporal indexes of the F frames.

Given MRgB, we can decompose it into a reflectance matrix
MR and an illumination matrix M;, up to a 3 x 3 non-singular
matrix Q. That is, if Mgy and Mjq is a pair of matrices that
decompose MRgg, then Mgz = Mg1Q and Mjy = Q'M;
is another decomposition pair. Fortunately, in the detection of
vacant parking spaces, we only care about the difference in
the surface reflectance matrix R but not the true value of R.
As long as we fix the matrix Mj, two surface patches with
different R will always have different MR.

To decompose Mgrgp, we adopt the SVD method. The
SVD process is applied over several planar patches to collect
samples for the ground reflectance function and car reflectance
function. For the car samples, we select the car roof as the
planar patch, which is usually parallel to the ground plane. To
deal with the ambiguity in matrix decomposition, we collected
a set of image frames and manually selected a ground region
in the parking lot scene as the reference patch, shown as the
red patch in Fig. 10(a). By performing SVD over the reference
patch, we got the reference truth Mgg and M;q. The reference
truth M is used to register the illumination matrix of another
spatial patch that are under the same lighting condition in the
same set of image frames. On the contrary, the reference truth
Mgy is used to register the reflectance matrix of the reference
ground patch in another set of image frames. Based on SVD,
with enough reflectance samples of cars and ground, we can
construct the reflectance probability model p(R|h?).

3) Learning of p(i|h%): The illuminant probability model
p(i|hl) is determined based on the pre-trained model and the
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current image observation. Given an image, there are two
types of regions: shadowed regions and unshadowed regions.
By collecting many illumination samples i’s in shadowed
regions and unshadowed regions, we can approximate p(ilh”
= ‘S’) and p(i|ht="US"). Since the reflectance matrix R of
a scene patch can be learned in advance, we extract the
illuminant component of some manually selected shadowed
and unshadowed regions to learn the off-line models poff(i|hL
= ‘S’) and po(ilht = ‘US’). On the other hand, to deal with
the continuously changing lighting condition, we also build
the on-line models po,(i|2X = “S) and pon(i|ht = ‘US’) based
on the current image observation. The illuminant probability
model is then determined based on a weighted combination of
off-line and on-line models. That is

p(ith =5)= a)lpon(i“’lL =)+ - CU])Poff(i|hL =5
2D
and

pGlh" = US') = 02 pon(ilh" = ‘US' )+(1=w2) posi(ilh*=-US").

(22)
Here, w; and w, are determined by the ratio of the on-line
training samples to the total training samples.

During on-line modeling, we need to determine whether a
given illuminant sample is shadowed or unshadowed. Here,
for the period from 10:30 to 14:00, we suppose all samples
are unshadowed. For the other periods, the lighting situation
is more complicated. In our parking lot scene, we identified
a few regions that are always unshadowed, like some regions
in the driveway. These driveway regions can be used as the
reference regions for the ‘unshadowed’ case for both skylight-
plus-sunlight case and skylight-only case. On the contrary,
as shown in Fig. 9(b), the green region in the bush in
Fig. 9(a), together with all the other planes parallel to that
green region, is only lighted by skylight in the morning, while
the blue region in Fig. 9(a), together with all the other planes
parallel to that blue region, is only lighted by skylight in the
afternoon. These two types of regions can be used as the
reference regions for the “shadowed” case when both sunlight
and skylight are present. In Section V-A, we will further
explain how we check the presence of sunlight in the current
image.

4) Learning of p(|Igggll |h°, h™): The intensity informa-
tion |[Irgg|| is crucial in distinguishing cars from ground, es-
pecially when some cars may get confused with the ground in
the chromaticity space. Unfortunately, |[Irgs||is affected by
the lighting source, the object reflectance, the object geometry,
and even some unknown factors in the imaging pipeline such
as automatic gain control and white balance. Therefore, the
modeling of the intensity model p(||Irgg||| £, h%)is more
difficult. To build an adaptive intensity model based on current
image observation, we propose a simplified linear model as
expressed in (23) to model the intensity mapping from one
object type (O;) in a scene patch to another object type (O3)
in another scene patch, under the same illumination type (L)
as follows:

80,,L =40,,0,.L - §0,,L T+ N0,,0,,L- (23)
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In (23), go.. denotes an intensity sample from the object
type O under the illumination type L. Note that go ;. value is
equal to the norm ||Irgg|| of a color pixel. ag, . ,.. represents
the intensity ratio between objects O, and O; under illumina-
tion type L. no, 0,1 is defined as a zero mean Gaussian noise
that expresses the uncertainty in modeling the intensity ratio.
Even though ag, 0,1 is actually a random variable, we found
a deterministic setting works very well in our experiments.
Here, we learn ag, o,, L and the variance of ng, ¢, 1 based
on the equations as follows:

40,,0,,L =80,.0/80,.L (24)

and
(25)

In (24) and (25), go.r and 6;0‘1‘ are the sample mean and
sample variance of the intensity training samples. The training
samples are manually collected from training image patches,
with classified light type L and object type O.

In our system, a few transformation models were pre-
learned to generate the intensity model p(|[Irggl|| 7%, h%)
dynamically. Here, we adopt the aforementioned reference
regions, like the driveway regions that are always unshadowed
and the bush regions that are always lighted by the skylight
only. By using these reference regions, in which the lighting
condition is already known, we learned the transformation
models from each of these reference regions to the parking
space ground and to the cars, respectively. After that, based
on the learned transformation models and the current intensity
values at these reference regions, we can dynamically con-
struct the intensity model p(||[Irgg||| #°, h1). Similar to the
deduction of the sunlight direction, if the parking lot scene
cannot provide such reference regions, an artificial cube is
suggested to be set up in the scene to form reference regions.

B. Adjacency Energy Model

In the parking lot scene, the local decisions of two adjacent
labeling nodes are usually highly correlated. In our system,
with the use of the original intensity image I, (m, n), we define
the adjacency energy E4[Ip(m,n), H (m,n); N,] in terms of
a Markov random field model [29] to provide the smoothness
constraint between adjacent labeling nodes. Here, we define

E4llL(m, n), H (m, n); Np]
P

p
=px Y > CallL,Hy, mn,Am, An]  (26)

Am=—p An=—p
where
Cually, Hp,m,n, Am, An]

=(1—-46[H(m,n), HL(m + Am,n + An)])
X Gs(|Ip(m,n) — I.(m + Am, n + An)|)).

27

In (26), N, denotes the (2p + 1) x (2p + 1) neighborhood
around (m, n), and B is a pre-selected penalty constant. In
27), 8[pa, qa] is defined as 1 if p, = q,, and 0 otherwise. The

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 12, DECEMBER 2010

function Gy is designed to be a function similar to a logistic
sigmoid function as follows:

Gs(U)=(1 — eP(U_Crh))/(l + eﬂ(U—Crh))_ (28)
Here, Gg(U) is used to preserve the discontinuity of the
original image. Both C,, and p are determined empirically.
With (26), L;(m, n) and L;(m + Am, n + An) tend to share
the same label when the difference between I;(m, n) and I;(m

+ Am, n + An) is small, and tend to have different labels
otherwise.

V. VACANT PARKING SPACE DETECTION

A. Optimal Inference of Parking Space Status

With the top-down knowledge and the bottom-up message,
we can infer the optimal H} and S} by solving the optimiza-
tion problem in (2). In our approach, we get the initial guess of
Hjy (m, n) by find the labeling that minimizes the classification
energy in (17). That is, we find the labeling image H' (m, n)
such that

Hi(m, n) = arg n}lin Epll (m,n), H (m, n)]. 29)

On the contrary, since the status inference of a parking
space depends on its neighboring parking spaces, we need
to take into account relevant parking spaces when we infer
the status of a parking space. In our experiments, a parked
car casts a shadow to the right in the morning and to the left
in the afternoon. Hence, we sequentially infer the status of
each parking space from the bottom row to the top row and
from left to right in the morning, and reverse the order in
the afternoon. In Fig. 11, we show an example in the status
determination of a parking space. Due to the direction of
sunlight, we check the parking spaces from left to right and
from bottom to top. The red regions indicate those parking
spaces whose status has already been inferred. The yellow
circle indicates the parking space to be inferred at this moment.
The green triangles indicate the relevant parking spaces. In
this case, by trying different status combination of A and
B spaces, four status hypotheses are to be tested. For each
status hypothesis, we deduce the optimal H;(m, n) by using
the graph-cuts algorithm [23]-[25], with the initial guess
Hi(m, n). The status hypothesis that achieves the maximum
posterior probability is picked to infer the status of the current
parking space. In our process, since the status of a parking
space is only affected by its adjacent spaces, the system
complexity grows linearly as the number of parking spaces
increases.

Moreover, in an outdoor environment, the sunlight does not
always exist. In the inference of parking space status, we need
to determine whether the sunlight is present or not. In our
approach, we first perform the optimal labeling based on the
assumption that sunlight is present. After the optimal inference
for the whole image, we divide those “ground” pixels into
shadowed pixels and unshadowed pixels. In principle, if the
sunlight is present, the RGB values of these two pixel groups
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Fig. 11. Illustration of parking space status inference.

should reveal obvious difference. Hence, by calculating the
Davies-Bouldin index (DBI) [30], which is defined as

DBI = (S5 + Sys) /(s — nusll) (30)

we can decide whether to accept the “presence” hypothesis
or not. In (30), uy and u,s are the mean RGB values of the
shadowed cluster and the unshadowed cluster. S, and §,; are
the centroid distance of these two clusters defined as follows:

S = (Z Ifi = ucn) /nk
i=1

where ¢ €{S, US}, ny is the total pixel number of the cluster,
and f; is the RGB value of the ith pixel. When the DBI is
smaller than a predefined threshold, we accept the “presence
of sunlight” hypothesis. Otherwise, we take the “absence of
sunlight” hypothesis and perform the optimal inference over
the whole image again to get the final detection result.

€1y

B. Refinement of Classification Energy Model

In our system, after performing the optimal inference over
an image, we obtain a semantic labeling (hO, h%) of the
image that may provide useful information for the refinement
of p(Irgg|h?, h*). The inferred semantic labeling (h©, hl)
includes not only the bottom-up information but also the
top-down knowledge. With the inclusion of the top-down
knowledge, some pixels, which would be incorrectly labeled
if only based on the classification models, can be correctly
labeled. Those pixels usually correspond to non-Lambertian
surfaces, like the car windows. Hence, based on the inferred
optimal labeling (R, h'), we recompute the classification
model p(Irgg|h?, h') by checking the distribution of Irgp
in the current image over different object types and different
lighting types. The new model is then merged into the existing
model for refinement as follows:

Prefind (IRGB|h0» hL) = Whew * Pnew (IRGB|hOv hL)

+Woia - Pora (Irgelh®, ") . (32)

In (32), wys and w,,,, determine the weights of the existing
model and the new model. In our system, we empirically select
(Wold, Wyew) to be (0.2, 0.8). Based on the refined model,
the optimal labeling is re-estimated again. This optimization-
refinement process is iteratively performed until the status
inference of the parking spaces becomes stable. In our ex-
periments, the refinement process usually converges in one or
two iterations.
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C. System Setup and Online Vacant Space Detection

To implement the whole system, several preparatory pro-
cesses are required, as listed below.

1) Calibration steps.

a) Define a 3-D coordinate system for the parking
lot. Measure the 3-D location of each parking
space. Here, we record the 3-D information in a
blueprint.

b) Perform camera calibration to compute the camera
projection matrix.

2) Off-line learning of 3-D information.

a) Estimate the parameters of solar direction model
based on the method introduced in Section III-C.

b) Collect 3-D training samples of vehicle length,
width, and height to train the priors p(l), p(w),
p(h).

c) Collect 3-D location deviation samples to train

p(X) and p(Y).
3) Off-line learning of 2-D information.

a) Collect reflectance samples to train the reflectance
models of ground and cars, based on the method
mentioned in Section [V-A2.

b) For different time periods, manually select un-
shadowed and shadowed reference regions in the
image.

c) Collect illuminant samples to train the off-line illu-
minant probability model of the shadowed regions
and unshadowed regions, based on the method
mentioned in Section IV-A3.

d) Based on the method mentioned in Section IV-A4,
learn the intensity mapping models from each of
these reference regions to the ground and to the
cars.

In our experiments, it took about five days to finish the
above system setup processes for each parking lot. After
system setup, the following processes are performed to dy-
namically detect vacant parking spaces.

1) Determine the current sunlight direction based on the
pre-learned solar movement model. This solar movement
model is updated for every few days.

2) Based on the learned 3-D information, the sunlight de-
tection, and the projection matrix, generate the expected
object and shadow labeling models.

3) Extract illuminant samples from pre-selected reference
regions to update the illuminant probability model.

4) Based on the pre-learned intensity mapping models,
establish the intensity model of different classes.

5) Combine object reflectance models, illuminant probabil-
ity models, and intensity models to build the classifica-
tion models.

6) Incorporate classification models, expected labeling
models, and adjacency model into the BHF to detect
vacant parking spaces.
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(©)

Fig. 12. Comparison of car pixel labeling. (a) Test images. (b) Regions
labeled as car pixels based on [5]. (c) Regions labeled as car pixels based on
the proposed method.

VI. EXPERIMENT RESULTS AND DISCUSSION
A. Experiment Setup and Test Data

In our experiments, we tested two different parking lots for
performance evaluation. In each test, we set up an Internet
protocol camera on the roof of a building near the parking
lot. The camera was geometrically calibrated beforehand and
monitored the status of parking spaces from morning to
evening. Both experiments report similar detection accuracy.
To avoid confusion, we mainly present the results and the
analysis over the first parking lot. At the end of this section,
we briefly present the detection performance over the second
parking lot.

Fig. 1 shows a few image shots of the first parking lot.
Within the image view, there are 46 parking spaces in total.
To evaluate the performance of our system, we tested three
image sequences under different weather conditions. The first
sequence was captured in a normal sunny day. The second se-
quence was captured in a day with very strong sunlight so that
there were plentiful over-exposed regions in the images. The
third sequence was captured in a day with unstable lighting
condition. In this sequence, the lighting condition dramatically
switched between sunny and cloudy. For each sequence, the
recording time was from 8:00 to 17:00. Since the status of
the parking condition was slowly changing, we performed
vacant parking space detection for every 5Smin. In total, we
tested the status of 14 766 spaces. In these three sequences, the
shadow patterns varied from morning to evening. Sometimes,
the shadowed regions suddenly disappeared when the sunlight
was blocked by a cloud. The variations of illumination caused
apparent drifts in color and brightness. These three sequences
with vacant space detection results and ground truth are
available at our website [31].

B. Object and Shadow Labeling

Many previous studies suggested the vacant spaces be
detected by labeling the car pixels, such as Tsai er al. [5],
or by labeling the ground pixels, such as Funck e al. [11].
In our method, we modeled both cars and ground plane for
object labeling. In Fig. 12, we compare the results of car
pixel labeling based on Tsai’s method [5] and ours. Here,

we show the image portions that were labeled as “car.”
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(b) ©

Fig. 13.  Comparisons of ground pixel labeling. (a) Test images. (b) Regions
labeled as ground pixels based on [11]. (c) Regions labeled as ground pixels
based on our method.

(a) (b) ©

Fig. 14. Detection and labeling results at three different time instants.
(a) Captured on a cloudy day. (b) Captured on a normal day. (c) Captured on
a day with strong sunlight. For each case, the images from the top are the test
image, the car labeling without scene knowledge, the car labeling with scene
knowledge, the shadow labeling without scene knowledge, and the shadow
labeling with scene knowledge.

Based on Tsai’s method, many shadowed ground regions were
labeled as car pixels, many over-exposed car regions were
labeled as ground pixels, and some car regions were mis-
takenly labeled as ground pixels. In comparison, our parking
space detection system provided more accurate car regions
and was less sensitive to the shadow effect. In Fig. 13, we
compare the results of ground pixel labeling based on [11]
and our method. Both [11] and our method used adaptive
models for labeling. However, the method in [11] did not
take into account the shadow effect and many shadowed
ground regions were classified as car pixels. In comparison,
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ROC Curve of Image Sequence 1 (Day1)

ROC Curve of Image Sequence 2 (Day?2)

ROC Curve of Image Sequence 3 (Day3)
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Fig. 15. ROC curves of our method, Huang’s method [12], Wu’s method [20], and Dan’s method [19], with the values of the area under ROC (AUC) for

(a) Day 1, (b) Day 2, and (c) Day 3 image sequences.

most shadowed ground regions are correctly identified by our
method.

Even though the proposed adaptive models can better handle
the shadow effect, many pixels were still misclassified if the
scene knowledge was not involved. An example is presented in
Fig. 14, where we show the labeling results with and without
the scene knowledge. Especially, there were some pepper-like
errors inside the car regions as shown in Fig. 14(c) which were
caused by the ambiguity in color appearance. It is difficult to
remove those errors if we only rely on color models. In our
system, the scene information in the expected labeling maps
provides useful constraints to remove that kind of errors. To
deal with the color ambiguity between dark cars and shadowed
ground, the expected shadow labeling map clearly constrains
the location of shadowed regions. On the contrary, if a region
is to be occupied by a car, the expected object labeling map
reveals the probable regions of car pixels and disfavors the
occurrence of pepper-like labeling. Moreover, the expected
object labeling map also reveals the expected occlusion effect
and the perspective distortion. By taking into account these
kinds of scene knowledge, more accurate and reliable detection
results were obtained, as shown in Fig. 14.

C. Accuracy of Vacant Space Detection

To assess the detection accuracy of our system, we manually
built the ground truth of 14 766 parking spaces. To evaluate our
system from different aspects of environmental variations, we
assessed the detection performance over a day, over different
periods of a day, and over different regions of the parking lot.
To quantitatively evaluate the performance, the false positive
rate (FPR), false negative rate (FNR), and system accuracy
(ACC) were calculated. In our simulation, the methods pro-
posed by Dan [19], Wu et al. [20], and Huang et al. [12] were
tested for comparison. The receiver operating characteristic
(ROC) curves of the four methods are also plotted in Fig. 15
for comparison. Here, we consider three test image sequences.
For each image sequence and each method, the area under the
ROC curve (AUC) is also calculated and provided in Fig. 15
for reference.

As listed in Table I, the proposed method worked well in
all three test sequences. We further divide a day into three

periods: morning (8:00 ~ 11:00), noon (11:00 ~ 14:00), and
afternoon (14:00 ~ 17:00). Generally, the afternoon period
has the most serious shadow effect, while the noon period
has almost no shadow at all. By calculating the ACC of those
three periods, we found the ACC is inversely proportional to
the degree of shadow effect. Moreover, we also evaluated the
performance of detection over different regions to evaluate
the influence of perspective distortion. As shown in Table I,
perspective distortion does not cause serious degradation in
our experiments. Moreover, even though some portions of the
first row were occluded by the trees, the proposed system still
accurately inferred the status of the parking spaces.

We also implement our system in another parking lot. For
each 320 x 240 tested image, there are 64 spaces inside. In
total, we tested the statuses of 6912 spaces in that parking
lot. In Fig. 16, we show some detection results in the second
parking lot. The ACC, FPR, and FNR are 0.988, 0.0185, and
0.0097, respectively. The complete detection results of the
second parking lot are also available at our website [31].

D. System Complexity

The whole system has been implemented in the Visual
C++ environment on a personal computer with a 2.0 GHz
Pentium-4 central processing unit (CPU). It takes about 30s
to perform the space detection and labeling of parking spaces
for a 320 x 240 color image with 46 spaces inside. The major
CPU time is spent on building the online models, including the
expected object labeling model, the expected shadow labeling
model, and the color classification model. Even though the
execution time takes a little while, the speed of the proposed
system 1is still reasonably fast to support practical parking
space detection systems.

E. Discussion and Future Works

Although the complexity of our system is already affordable
for practical applications, the speed can be further boosted
if we either adopt parallel programming techniques, such as
open multiprocessing, to fully use the computing power of a
multi-core processor, or to adopt general-purpose computing
on graphics processing.

In our system, people in the parking lot may affect the
detection of vacant parking spaces. However, people tend
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TABLE I
PERFORMANCE COMPARISON OF FOUR VACANT SPACE DETECTION ALGORITHMS

Test Data No. of Tested Spaces Proposed Method Huang [12] ‘Wu [20] Dan [19]
Vacant | Parked | Total | FPR | FNR | ACC | FPR | FNR | ACC | FPR | FNR | ACC | FPR | FNR | ACC
Image Seq 1 (Day 1) 491 | 4431 [4922(0.0004|0.0081 [0.9988|0.0004 [0.1690|0.9827 [0.0111|0.7115|0.9193|0.0307 [ 0.5748 |0.9153
Image Seq 2 (Day 2) 278 | 4644 |4922|0.0024 |0.0324]0.9959|0.0002 [ 0.2626|0.9850|0.0016 | 0.7837|0.9577 | 0.0101 | 0.7061 | 0.9537
Image Seq 3 (Day 3) 206 | 4716 |49220.0040|0.04370.9943(0.0042|0.1019(0.9917]0.0018 [ 0.7012]0.9739 [ 0.0073 | 0.6524 | 0.9703
Morning period of Seq 3 380 | 4588 |49680.0031|0.0105|0.9964 [0.0011 |0.2026 | 0.9835|0.0004 | 0.4955|0.9646 [ 0.0097 | 0.4478 | 0.9594
Noon period of Seq 3 367 | 4601 |4968|0.0015|0.00820.9980(0.0015|0.0381|0.9958|0.0045 | 0.8632]0.9360 |0.0179|0.7629 | 0.9306
Afternoon period of Seq 3 228 | 4602 |4830(0.0024 |0.0658|0.9946 |0.0024|0.3772{0.9799|0.0091 | 0.8920 | 0.9502 [ 0.0195 | 0.6948 | 0.9494
First and second rows of Seq 3| 644 | 6739 |7383|0.0019(0.0233|0.9962 |0.0025|0.1770|0.9823 | 0.0068 | 0.6960 | 0.9377|0.0179 | 0.5641 | 0.9381
Third and fourth rows of Seq 3| 98 5359 [5457(0.0015]0.0306 |0.9980 | 0.0009 [ 0.3163|0.9934 | 0.0028 | 0.6933 | 0.9871 | 0.0059 | 0.6933 | 0.9840
Fifth row of Seq 3 233 | 1693 [1926(0.0065|0.0172{0.9922|0.0006 |0.1373|0.9829 [ 0.0024 | 0.8240 | 0.8982 | 0.0366 | 0.7554 | 0.8764

N

Fig. 16. Proposed detection and labeling results at three different time
instants in another parking space. (a) Captured in the morning. (b) Captured
in the afternoon. (c) Captured in the evening. For each case, the images from
the left are the test image, the parking space detection results, and the car
labeling results.

to dynamically move in the scene. By taking the temporal
information into consideration, the problem of walking pedes-
trians can be relieved.

On the contrary, even though our system works very well
in an outdoor parking area during the daytime, there exist
still several challenging issues, like how to management an
indoor parking area, how to detect vacant spaces in an outdoor
parking lot during the night, and how to handle the unexpected
shadow caused by other environmental objects. For an indoor
parking area, the severe occlusion and the limited camera field
of view could be the major challenges. Considering cost and
efficiency, a possible solution is to build a low-cost camera
sensor network. To detect vacant spaces in evening, we may
need to consider multiple lighting sources while generating
the expected shadow maps. We also require a new mechanism
to handle the unpredictable lighting change caused by car
headlights. All these discussions would be the future works
of our vacant parking space detection system.

VII. CONCLUSION

We proposed a Bayesian hierarchical framework to simul-
taneously detect vacant parking spaces and interpret the scene
content through image labeling. In practice, the challenges

of vacant space detection come from the shadow effect, the
occlusion effect, the perspective distortion, and the dramatic
luminance variations. In our system, we explicitly defined a
scene model of the parking lot. Based on the model, the gen-
eration of shadow, the generation of occlusion, the variation
of lighting, and the perspective distortion are closely coupled
with the status of the parking spaces. By utilizing the proposed
BHF, the scene generation process is well modeled and the
optimal inference of the parking space status is resolved.
Our results showed that our system can achieve up to 99%
accuracy in vacant parking space detection under different
lighting conditions. This system can also be integrated into
an existing parking lot management system.

APPENDIX |
ESTIMATION OF SUNLIGHT DIRECTION

Based on the vectors #, s, and 7 in Fig. 8, we define
a coordinate system named USN and represent the sunlight
direction as follows:

(—cos(8) cos(ws(t — tg)), —cos(8) sin(w,(t — ty)), — sin(8))ysN-
(AD)
Here, “USN” indicates the basis vectors i, s, and 7.

On the contrary, any unit vector P in the 3-D scene can
be represented as (cosgcosf, cosgsing, sing)ysn, where ¢

represents the angle between P and the solar plane, and 6
represents the angle subtended by u# and the projected vector

of P on the solar plane. In our system, we assume the scene

surfaces are mainly Lambertian. Hence, if P is the normal
vector of a surface patch in the 3-D scene, the intensity value at
the corresponding image pixel can be approximated as follows:

Tgun <17(?), ;>
o — cos(8) cos(¢p) cos(wst — wyty — B) — sin() sin(¢p).
(A2)

Based on (A2), I, can be modeled as follows
Lyn(m, n, t) = B(m, n) cos(wst — 0,(m, n)) + C(m,n) (A3)

where the angular frequency of the cosine function is equal to
the angular frequency of Earth’s self-rotation.
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Fig. 17. Three normal vectors in the USN coordinate system.

Assume we denote P;, P,, and P; as the unit normal vectors
of three selected surface patches in the parking lot. Since
we manually select these three surface patches, the relative

relationship among P;, P,, and P3 are obtained beforehand.

Suppose Pj, Pj, and P} are the unit vectors along the pro-
jections of these three normal vectors onto the solar plane,
and 0y, 6, and 05 are the angles subtended by # and each of
these three projected vectors, as illustrated in Fig. 17. Since the
phase shift 6, in (A3) is equal to 6 up to a constant offset, the
angles between these three projected vectors can be estimated
b)’ (epl_epZ), (0p2_9p3)s and (epl _9p3)~ R
Assume we represent 7 as a linear combination of Pj, P,

and Ps, i.e., i = a Py +b P, +c P,. If we take the inner product

of 77 and P;, where i = 1,2, 3, we obtain three equations to
solve a, b, and ¢ as follows:

<1?1;> =a+b<;’1, 1§2> +c <1?1 I?3> = sin(py)
<Fﬁ> =a <F1, Fz> +b+c<Fz, F3> =sin(gy)  (A4)
<Fﬁ> =a<1?1,1?3>+b<1?2,F3>+c=sin(¢3>.

In (A4), the inner products{ P;, P; ), with i,j =1, 2, 3, are
known beforehand. To estimate {¢1, 2, 3}, we formulate the

vector P; as P = (P; —sing; n) / cosg;. As we take the inner

products among Pj, P}, and P;, we have

<Pl’, Pé> = <<P] , P2> —sing; sin g02> /(cosg cos @)

= cos(0p1 — 0p2)
<P§, P§> <= <P2, P3> —sing, sin <p3> /(cos@s cos @3)

= cos(fp2 — Op3)

<P§, P{> (: <P3, P1> —sings sin <p1) /(cosgs cos @)

= cos(0p3 — Op1).

(AS5)

Hence, with {(6,1—0,2), (0,2—0,3), (0,1-0,3)}, the geomet-

ric direction of 7 with respect to { P, P, P;} can be deduced.
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After the determination of 7, the choice of {u, t5} is rather
arbitrary. In our approach, we simply align u with one of

{P{, P5, P;} and the reference time # is defined to be the time
when the corresponding intensity profile has the maximum
value.

APPENDIX II
IMAGE FORMATION MODEL

We assume that the surfaces in the 3-D scene of a parking
lot are mainly Lambertian and the trichromatic RGB features
at a pixel can be formulated as follows:

I.= g/l()\.)r()\.)ﬂ.()\.)d)\. (A6)
2

where g is a geometric factor that depends on the included
angle between the incident radiant flux and the normal vector
of the corresponding surface, /(1) denotes the illuminant
spectrum, 7(A) represents the spectral reflectance function, and
fe(A) represents the filter sensitivity function of the ¢ channel
with ce{R, G, B}. To discretize (A6) for computational
analysis, several research works adopted finite-dimensional
linear models to approximate both spectral reflectance function
and illuminant spectrum [29], [32], [33]. In our approach, we
adopted a 3-D linear model and (A6) can be reformulated as
follows:

3 3
I=g[, (21 lgili()\)) (Zl o;rj(A) fe(A)dnr
p= =

3 3
=g> Bi e L LI () fe()da (AT)

=1 =

=gB Mo = g a,

where 8 = (B1, B2, B3)T is the vector of illuminant coefficients,
a = (a1, a2, a3)T is the vector of reflectance coefficients, M¢
is a 3 x 3 matrix with its entries defined as follows:

MG, j) = /Ali()»)rj(?»)fc(?»)d)» (A8)

and o, = M.a. With (AS8), the trichromatic color vector Irgp
can be represented as follows:

IR ole{
Inge = |Ig| =g |al | -B=2gAB (A9)
[B a%

where A = [ R 0 Op ]T is a 3 x 3 matrix.

In an outdoor parking lot, the lighting condition is varying
over time. This makes both g and B change accordingly.
To simplify the detection process, we focus mainly on the
chromatic information. Since the absolute magnitude of o,
and B does not affect the chromatic information, we arbitrarily
rescale A and B by two constants a and b so that (A9) can be
reformulated as follows:

1,1
Irgp = gAB = gab(" A)(; B) = (gab)Ri = |[Ircs | Ri.
(A10)
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APPENDIX III

TABLE OF VARIABLE NOTATIONS

Notation Meaning

1 | H., I, S, | Labeling layer, observation layer,
and scene layer

2 | M and N | Image dimensions

3 | (m, n) Pixel coordinates

4 |1C,QG, Car label and ground label

518, US Shadowed label and unshadowed
label

6 | N Number of parking spaces

7 | h°m, n) | Object label at (m, n)

8 | ht(m, n) Light label at (m, n)

9 1 Lwh Car length, car width, and car
height

10| X;, ¥; Projected position of car center on
the ground plane in the ith parking
space

11| Ci(m, n) Expected car labeling map at (m,
n) given the ith parking space
being occupied

12| Gi(m, n) Expected ground labeling map at
(m, n) given the ith parking space
being occupied

13| Si(m, n) Expected shadow labeling map at
(m, n) given the ith parking space
being occupied

14| US;(m, n) | Expected non-shadow labeling
map at (m, n) given the ith parking
space is occupied

15| wy Angular frequency of solar move-
ment

16| u A unit reference vector on the
solar plane

17| n Normal vector of the solar plane

18| Ep Classification energy

19| Ex Adjacency energy

20| N, Neighborhood around (m, n)

21| Irgs RGB color features of a pixel

22| Wep Normalized Irgp

23| R A 3 x 3 matrix depending on sur-
face reflectance

241 i A vector depending on illumina-
tion

25| go.L An intensity sample from the ob-

ject type O under the illumination
type L

26

The intensity ratio between the
objects O, and O; under the il-
lumination type L

ao,,0,,L

27

A zero mean Gaussian noise that
expresses the uncertainty in mod-
eling the intensity ratio

1n0,,0,.L

28

Sample mean and variance of the
intensity training samples

— A2
80.Ls Ug(),L
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