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Incremental Mountain Clustering Method
to Find Building Blocks for Constructing

Structures of Proteins
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Abstract—In this paper we propose an algorithm named Incre-
mental Structural Mountain Clustering Method (ISMCM) with a
view to finding a library of building blocks for reconstruction of
3-D structures of proteins/peptides. The building blocks are short
structural motifs that are identified based on an estimate of local
“density” of 3-D fragments computed using a measure of struc-
tural similarity. The structural similarity is computed after the
best-molecular-fit alignment of pairs of fragments. The algorithm
is tested on two well known benchmark data sets. Following the
protocols used by other researchers, for the first data set we re-
construct a set of 71 test peptides (up to first 60 residues) whereas
for the second data set we reconstruct all 143 test peptides. The
ISMCM algorithm is found to successfully reconstruct the test pep-
tides in terms of both global-fit root-mean-square (RMS) error and
local-fit RMS error. The low values of local-fit RMS errors suggest
that these building blocks extracted by ISMCM are good quan-
tizers, which can represent nearby fragments quite accurately. To
further assess the quality of building blocks we use two alterna-
tive graphical ways. We also use Shannon’s entropy to show the
structural similarity of the clusters found by our algorithm. This
is important as building blocks that represent clusters with struc-
turally similar fragments will be very effective in reconstruction.
The entropic analysis reveals a very interesting fact that the sec-
ondary structure of the central residue of the fragments in a cluster
is most strongly conserved (minimum entropy) over the cluster,
which might be an indicator that central residue of the structural
motif plays a dominant role in local folding.

Index Terms—Building blocks, incremental structural mountain
clustering, protein structure, structural mountain clustering.

I. INTRODUCTION

T HE knowledge of the 3-D structure of a protein helps
biologists in many ways including studying the functions

of proteins, drug designing, and designing of novel proteins
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[1]–[3]. However, experimental methods based on X-ray crys-
tallography or nuclear magnetic resonance imaging for finding
the 3-D structure of a protein are very time consuming and
expensive. Hence many attempts have been made to find faster
alternative approaches. In this direction significant efforts have
been put by researchers to find the relations between protein
sequences and their 3-D structures. The various approaches
to solve this problem include comparative modeling [4], [5],
fold recognition [6], [7], ab initio prediction [8]–[10], and 3-D
building blocks approach [11]–[21].

Machine learning techniques have been extensively used to
predict local secondary structure as well as tertiary structure of
proteins [22]–[31]. These methods fall in the category of com-
parative modeling. Of the various machine learning tools, neural
networks (NNs) have been quite successful for protein structure
prediction [24]–[26]. Multilayer perceptron (MLP) network and
radial basis function (RBF) network have been used extensively
to protein fold determination [24], [25]. Pal and Chakraborty
[24] have used RBF neural networks with different feature sets
to predict protein folds. RBF networks are also used by Chung
et al. [25] and Huang et al. [7] for the same problem. Support
vector machines (SVMs) have also been used as a tool of choice
by many researchers for protein fold prediction [25]–[29]. Re-
cently, Ghanti and Pal [31] used many novel features in conjunc-
tion with a neural feature selection technique and used several
machine learning tools for protein fold prediction. In [31], the
fold prediction accuracy is further improved using classifier fu-
sion techniques. A basic problem with such approaches is that
unless the target protein is homologous or has some structural
similarity, such a method may not be useful.

A family of methods uses building blocks or short structural
fragments, which appear frequently in different proteins and
exhibit some sequence to structure relation. These methods are
not dependent on homology of the proteins [11]–[21]. Such a
method uses a set of proteins with known 3-D structures and
constructs a library of building blocks or structural motifs.
These structural motifs are then used to construct/reconstruct
structures of new proteins. If a short structural fragment ap-
pears repeatedly in different proteins and if it is represented
by the same or similar sequence of residues, then we may
assume that such a fragment is a stand-alone unit, which folds
independently [21]. Thus, such fragments are good candi-
dates to be building blocks which can help reconstruction of
3-D structure of unknown proteins. A two-stage clustering
algorithm is proposed by Unger et al. [11]. In this method a
fragment having the highest number of neighboring fragments
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within a cutoff distance is considered a building block. The
RMS deviation between two fragments, after aligning them to
the best possible extent, is taken as the distance between two
fragments. A similar approach was also used by Micheletti et
al. but they considered the largest number of nearby points
within a similarity cutoff called “proximity score” [13] to find
cluster centers. A modified k-means algorithm, called simulated
annealing k-means was used in [12] to extract clusters/building
blocks with the minimal total variance score. The tripeptides
analyzed by Anishetty et al. were shown to be feasible and
could be used to predict plausible structures for oligopeptides
[32]. On the other hand, a structure alphabet consisting of 16
protein blocks is used by de Brevern et al. for prediction of
protein structures [33], [34]. These building blocks represent
approximately some structural motifs like central -helices,
central -strands, -strand-N-caps and so on. This is an inter-
esting approach where the length of each protein block is only
five residues and is described by eight dihedral angles. Thus it
is easy to represent the 3-D structure of a protein by a string of
alphabets. Here a self-organizing map type neural network is
used for clustering.

The use of an appropriate length for the building blocks is an
important factor defining the effectiveness of such an algorithm.
If we use a too short fragment length then the sequence to struc-
ture specificity will be lost, whereas with too long fragments, it
would be difficult to find good building blocks.

Here we first discuss a modified form of the mountain clus-
tering/subtractive clustering method [35], [36] to find building
blocks. Results of some preliminary investigation using the
Structural Mountain Clustering (SMCM) are reported in [37].
In [37], we analyze the computational complexity of the SMCM
and find that the SMCM is computationally expensive when
the training data set size is large. To reduce the computational
burden, we propose here an incremental version of the struc-
tural mountain clustering method. An incremental version of
the two stage clustering algorithm of Unger et al. [11] is also
proposed. In our simulations we have used two benchmark
data sets. Our results demonstrate that incremental versions of
both algorithms are quite effective, i.e., we do not lose much in
terms of quality of quantization but we can drastically reduce
the computing overhead. Moreover, the proposed incremental
Mountain clustering algorithm can find better building blocks
than the method in [11].

II. MATERIALS AND METHODS

A. Datasets

Two datasets are used in this paper, we call them as Dataset
A and Dataset B. Dataset A consists of the same set of 82 pro-
teins as used in Unger et al. [11]. Dataset A is referred to as
the “refined Brookhaven” database in [11]. Here, Dataset A has
two versions, Dataset and . The Dataset
is exactly the same database as used in [11]. The data in the
Protein Data Bank (PDB) are updated continuously as more
new experimental observations become available. The Dataset

contains the same set of proteins as that in Dataset

TABLE I
UPDATED LIST OF PEPTIDES IN DATASET �

WITH NEW PDB NUMBER IN PARENTHESES

but with updated information. In Table I we list only the pep-
tides in Dataset that are updated in Dataset —i.e.,
the list of updated proteins. The new PDB numbers are indi-
cated in parentheses. As in [37], here also we have used both
Dataset and to evaluate the performance of our
algorithms. Unger et al. [11] used four proteins (1BP2, 1PCY,
4HHBb, 5PTI) as the training data and the proteins of length
larger than 60 as the test data; we also use the same protocols.

Dataset B is derived from the dataset used by Kolodny et al.
[12]. In [12], the training set had 200 peptides. This set has some
peptides with sequence discontinuity, which we have excluded
and considered 153 peptides for our investigation. Note that,
since our method is an incremental one it will use only a few
of these 153 peptides as the training data. In [12] the test dataset
is the same as Park et al. [20] which had 149 peptides with
six duplicate entries. Thus, we have used all of the 143 distinct
peptides. In order to create the library of short fragments, only
the coordinates are used.

B. The Building Block Approaches

Given a set of proteins with known 3-D structures and their
associated sequences, we divide the proteins into fragments of a
fixed length (say six). Note that these fragments are represented
by their 3-D representations. These structural fragments are then
clustered by some clustering/data compression algorithm to di-
vide these fragments into structurally similar subsets. The cen-
troid (or a representative member) of each cluster is then used as
the building block or prototype. These building blocks or quan-
tizers can be used to represent the original fragments with some
(tolerable) error and hence in turn can be used to reconstruct the
3-D structure of a whole protein. The use of any clustering al-
gorithm requires defining similarity/dissimilarity between 3-D
structures and that is what we do next.

C. Measuring Dissimilarities Between Fragments

A measure of dissimilarity between two fragments/structures
should be position and rotation invariant—two helical frag-
ments should have a very low value of dissimilarity irrespective
of the positions and orientations of the fragments. A frequently
used [11], [37] measure of dissimilarity between two fragments
is computed in two steps. First, the two fragments are aligned
to the best possible extent using the BMF (best molecular fit)
algorithm [38], [39] and then the RMS deviation between the
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two aligned structures is computed. Thus, given two structures
X and Y, the RMS deviation is calculated as

RMS (1)

where are 3-D coordinates of the atom of the th
residue of X and Y, respectively after best molecular fit of X
on Y and is the number of residues in the structure/fragment.
For the ease of comparison with published results, as done in
[11], to compute the RMS deviation, we divide by .

D. Reconstruction of Proteins

For reconstruction using building blocks, we use the fol-
lowing procedure as in [11]. Suppose the fragments are of
length . Each fragment is represented by a building block,
which is closest to it in terms of the best-fit RMS error. Then,
since two consecutive original fragments overlap by
residues, we align every two consecutive best-fit building
blocks considering only the overlapped residues. More
specifically, onto the last residues of the th building
block we align the first residues of the st building
block. In this way, the 3-D position of the th residue of the

st fragment is determined. We continue this till the entire
protein is reconstructed.

E. Evaluation of Performance

The quality of the library of the building blocks depends on
its ability to reconstruct proteins. As done in [12], this can be
assessed at two levels.

1) Local-fit RMS (LRMS) error: It computes the average of
all coordinate RMS deviations between every fragment and
its associated BMF building block. This is actually the
quantization error when each fragment is represented by
its closest building block.

2) Global-fit RMS (GRMS) error: This index relates to the
reconstruction error of a whole protein. It measures the
RMS deviation of the reconstructed entire 3-D structure
of proteins from the corresponding native structure of the
targets.

In addition, we also use different ways for visual comparison
of performance of algorithms used in this paper. Suppose we
have two algorithms A1 and A2 both producing the same (or
almost same) number of building blocks. We compute the his-
tograms of local-fit RMS (LRMS) error of all fragments in the
test data for A1 and A2 as H1 and H2, respectively. If the area
under the curve (hence also frequencies) for H1 on the left side
(lower LRMS error) is higher than that for H2, then A1 is a better
performing algorithm because it can represent more fragments
with lesser errors. Similarly, we can compare average LRMS
error per fragment for every protein. For this we compute the
average LRMS error per fragment for every protein by A1. Then
sort these values, say, in descending order and plot. The average
per fragment LRMS error for every protein produced by A2 is
plotted using the same order of proteins as used for A1. If the
curve for A1, in general is below the curve for A2, then we can
infer about consistency of algorithm A1 that it outperforms A2.

To assess the quality of the clusters, and hence of the associated
building blocks, we also analyze the entropy at each position of
fragments in the top five most populated clusters. This will be
explained later.

III. CLUSTERING ALGORITHMS

For the sake completeness, we first describe the two stage
clustering method of Unger et al. [11] and then discuss our
method along with related algorithms.

A. Two Stage Clustering Algorithm (TSCA)

In the first stage of TSCA [11], a fragment is selected ran-
domly, which acts as a cluster center. Then all fragments which
are within 1 Å distance after the BMF alignment are included
in that cluster. Every member of this cluster in turn considers
itself a cluster center and adds all fragments which are within 1
Å. This process continues till no more fragments can be added
to the cluster. Note that distance between a pair of members of
this cluster could be much higher than 1 Å. After this, TSCA
randomly selects another unused fragment as the cluster center
for the next cluster and the cluster is grown as before. This
cluster generation process is continued as long as there is any
unused fragment. This part of the algorithm is deterministic as
cluster assignment does not depend on the order of using the
fragments. In the next stage of TSCA, these big clusters are split
into smaller subclusters such that every member in a cluster is
within a distance of 1 Å from a designated centroid, the building
block. To find the center of a small cluster (subcluster), for each
member in the big cluster, the number of fragments within 1 Å
is counted. The fragment with the maximum number of neigh-
bors within 1 Å is taken as the center of a new subcluster. The
fragments within 1 Å are considered members of that cluster.
The process is repeated until all fragments are assigned to some
subcluster satisfying the constraint of 1 Å.

B. The Mountain Clustering Method (MCM)

The mountain clustering method proposed by Yager in [35]
is briefly described here. Let
be a set of n data points in p-dimension, and be the th
component of ; . We consider
a hypercube of where the interval

, is defined by the range of the th set of
coordinates in the data, so . Now, we divide each interval

into equidistant points. This quantization results in
grid points, say . in . The grid

points are potential cluster centers for the given data set.
Let be the distance between and the grid point
. We now compute the mountain potential [35] at each grid

point as

(2)

In (2) is a positive constant. Equation (2) reveals that the
mountain potential computes an approximate measure of den-
sity in the neighborhood of a grid point. Therefore, grid points
with high values of the mountain potential are good candidates
for cluster centers.
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Now the grid point with the maximum mountain potential
is selected as the first cluster center. Let be the maximum
value of the mountain potential, and be the grid node whose
mountain potential is . So is picked up as the first cluster
center.

To find other cluster centers, the mountain function values are
“discounted” to reduce the effect of already detected centers.
For this, Yager [35] suggested the following update rule:

(3)

In (3) is the modified mountain function,
is the previous mountain function, is the most recently
detected center, and is a positive constant. The next cluster
center is obtained by finding the grid point corresponding
to the maximum discounted potential, . We continue the
process until the discounted potential becomes too small to look
for useful clusters. For example, we may repeat up to c times,
when falls below a threshold, . And thus
we shall have c cluster centers: .

The algorithm involves three parameters whose
choice can significantly influence the performance. Moreover
the quality of the centers also depends on the fineness of the
grid, and better resolution leads to more cost. The computa-
tional overhead increases rapidly with dimension . To reduce
the computational overhead of MCM Chiu [36] suggested a
modification of MCM, known as the Subtractive Clustering
Method (SCM).

C. The Subtractive Clustering Method (SCM)

In MCM we use a set of artificially generated grid points as
potential centers. Instead of that in [36] authors used each data
point as a potential cluster center. So the potential function is
redefined as

(4)

and discounting the potential on subsequent steps becomes

(5)

Here is the th (most recently detected) cluster
center, and and are positive constants. Except the choice of
potential cluster centers, the SCM algorithm remains the same
as that of mountain clustering method. Here the number of
prospective cluster centers is equal to the number of data points.
SCM is terminated when .
Note that, the computational complexity of SCM does not
grow like MCM with number of features and is not dependent
on the fineness of the grid. However, SCM expects that the
desired cluster centers (points corresponding to the maximum
local density) will coincide with (or be close to) some of the
data points, which may or may not be true. In this particular
application, we need to choose some fragments as building
blocks and hence the SCM framework is more appropriate.

D. Structural Mountain Clustering Methods (SMCM)

The subtractive mountain clustering algorithm in [35], [36]
uses Euclidean distance and hence as such is not applicable for
structural data such as protein fragments because the Euclidean
distance between two fragments X and Y, where Y is a trans-
lated or rotated version of X, could be high. But for our pur-
pose they are the same. The SMCM [37] is a modified form
of MCM to deal with structural data. There have been sev-
eral extensions of the mountain clustering method [40], [41]
including one variant that can deal with similarity relations in
general [41]. Let be set of frag-
ments. SMCM considers each fragment (e.g., hexamer) a po-
tential cluster center. The contribution of a fragment to the
potential at another fragment depends not on the Eu-
clidean distance, but on the structural similarity between and

. Hence, RMS deviation between and after best molec-
ular fit alignment is taken as the distance between the two frag-
ments [38], [39] to compute the potential in (4). Like MCM we
obtain the fragment, , with the highest potential as the first
cluster center. Once we identify a cluster center all fragments
within 1 Å of RMS deviation after best molecular fit are consid-
ered members of the cluster and removed from the data.

The entire process is then repeated to find the next cluster
center and associated cluster. Unlike MCM and SCM, in SMCM
we do not discount the potential but remove the points in a
cluster and then recompute the potential to ensure that every
cluster center is at the center of a dense region. A schematic de-
scription of the algorithm is now provided [37]:

Algorithm SMCM:

Input: Dataset

Choose:

Compute RMS , for all

RMS is the root mean square distance between and
after BMF alignment of the two fragments.

Repeat
1. Compute the potential at each fragment using (4).
2. Find the fragment with the highest potential and pick it

as a building block.
3. Remove all fragments, which are within an RMS

distance of 1 Å from the building block to form the
cluster associated with the building block.

Until all fragments are assigned to some cluster.

To find the cluster centers SMCM considers the geometry of
the data not just the count of points within a cutoff distance and
thus it is likely to produce better building blocks than those by
TSCA. We illustrate this with an example in 2-D consisting of
15 points divided into two clusters and an isolated point (named
A) as shown in Fig. 1(a). In Fig. 1(a), the distribution of the
points is such that 5 points of the left cluster and 4 points of
the right cluster are within a distance of 1 Å from the cen-
tral point A. Since TSCA identifies the point with the largest
number of neighbors within the given threshold (here, 1 Å) as
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Fig. 1. (a) A set of 15 data points to illustrate different cluster centers by TCSA and SMCM. (b) Clusters generated by TSCA for 15 data points. (c) Clusters
generated by SMCM for 15 data points. (d) A set of 10 data points to illustrate the different results depending on the cluster center which TSCA chooses first.
(e) Clusters generated by TSCA for the 10 data points when the point A is chosen as the first cluster center. (f) Clusters generated by TSCA for the 10 data points
when the point B is chosen as the first cluster center.

the cluster center, it chooses the point A as the cluster center
or first building block. But this is a poor choice as A is not at
the center of any cluster. Thus, TSCA building blocks will lead
to more quantization/reconstruction error. Here, TSCA finally
generates 3 clusters as displayed in Fig. 1(b). On the other hand,
since SMCM takes into account the geometry of the distribution
of the points, it generates two clusters as shown in Fig. 1(c). The
building blocks are enclosed by rectangles. It is easy to see that
SMCM produces much better building blocks than TSCA.

Another problem of TSCA is that it may generate different
clustering results on the same dataset. Consider the 2-D dataset
in Fig. 1(d) where point A and point B both have the same
number of neighbors within the specified threshold. In this case,
TSCA will generate two different results with different clusters.
If it chooses point A as the first cluster center, it produces the
clusters displayed in Fig. 1(e); whereas it produces a different
result (Fig. 1(f)) if it chooses point B as the first cluster center.

E. Incremental Structural Mountain Clustering Methods
(ISMCM)

Since the computational overhead for SMCM is quite high,
it is very time-consuming to find clusters from a big dataset. To
circumvent this problem, an incremental approach is proposed
here. At first, we choose the longest protein in the training set
and use it as the only protein for clustering to find the building
blocks in the first step and evaluate the performance by checking
the unassigned count of fragments (that cannot be assigned to
any building block within 1 Å) for each protein in the whole
training set. The protein with the largest count of unassigned
fragments in this step is picked up and added to the selected set

of proteins for clustering in the next step. Then, the two chosen
proteins are used for clustering. As done before, we now find
the third protein with the highest unassigned count and add it
to the list of proteins to be clustered. The same process is re-
peated until the unassigned ratio (abbreviated as U_ratio, the
percentage of fragments that are unassigned) on the whole set
of training fragments is less than a threshold. Thus, we use only
part of the original training dataset to cover the most occurring
patterns and use them to find the building blocks accordingly.

Algorithm ISMCM:

Input: Dataset {The complete list of proteins for
training}
Choose: Threshold on unassigned ratio to stop the iteration
Initialization: Selected set: , Remaining set:
Repeat

1. Move the protein with largest unassigned count from
into . Note that and satisfy the conditions:

and (for the first iteration,
the longest protein is chosen and moved into the
selected set )

2. Find the building blocks from using SMCM
described in Section III-D.

3. Compute the unassigned count of fragments for each
protein in . These are the counts of fragments that
cannot be represented by any building blocks derived
from within an RMS error of 1 Å. Also, compute
the unassigned ratio of the whole set of fragments.

Until unassigned ratio is less than the threshold.
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TABLE II
SMCM RESULTS WITH FRAGMENT LENGTH EQUAL TO 6 USING

(A) ORIGINAL DATASET AND (B) UPDATED DATASET

The incremental version of TSCA (called here ITSCA) can
be written exactly in the same manner.

IV. RESULTS

First we shall discuss the results with SMCM and TSCA on
Dataset A only. In [37] we have reported some results on Dataset
A. Here first we shall discuss an extended version of the results.
This is required for the sake of comparison and completeness.
Then we shall present the results by the incremental version of
the two algorithms on both datasets.

For SMCM we have experimented with different choices of
for Dataset and using fragment length six. The

Table II(a) displays the results obtained using the same dataset
as used in [11]. Table II(a) reveals that is the best choice
because it results in a global-fit RMS error of 7.19, which is
less than 7.3 as reported in [11]. We also experimented with
the newly updated dataset, Dataset that is collected in
December 2006. These results are depicted in Table II(b). For
the new version of the data, the best GRMS error is 7.32 and is
obtained for and .

We have also implemented the TSCA method and applied on
the same data. Our implementation resulted in 55 main clus-
ters and 102 subclusters (Unger et al. reported 103). On the
other hand, SMCM extracted 104 building blocks. With a view
to making a fair comparison of the two algorithms, we have
discarded the trailing 2 building blocks from the SMCM list.
Following the same protocols as used in [11], [37] we recon-
struct the first 60 residues of 71 proteins whose lengths are larger
than 60. We observe that with 102 building blocks, for SMCM,
the LRMS error increases to 0.753 and global-fit RMS error in-
creases to 7.23 (for ), which is still better than 7.3 [11].
Note that, with our implementation of TSCA, we have obtained
an LRMS error of 0.77 and a GRMS error of 8.27. Comparing
with the results reported in [11] we find that these error values
are higher than the corresponding values in [11].

For the incremental version of the two algorithms, we have
also varied the fragment length from 5 to 7. The choice of is
also varied from 3.5 to 6. For each fragment length, we report re-
sults with the best choice of . Table III summarizes the results
using the ISMCM algorithm for Dataset . In Table III,

TABLE III
ISMCM RESULTS ON DATASET �

TABLE IV
ISMCM RESULTS ON THE UPDATED DATASET �

U ratio denotes the percentage of total fragments that cannot
be assigned to any building block within a distance of 1 Å. In
this case too, we find that fragment length 6 with yields
the best result of global-fit RMS error 7.19. Table III shows
that with one protein in the training set, the test error is quite
high. As we increase the number of proteins in the training set,
the number of building blocks increases and the training and
test errors decrease. Table III also reveals that increasing the
number of proteins from 1 to 2 in the training set changes the
number of building blocks and test error more drastically than
those by increasing the number of training proteins from 3 to
4. This asymptotic behavior, which will be illustrated further
with Dataset B, indicates the utility and consistency of the in-
cremental version of SMCM.

Table IV depicts the performance of the ISMCM on Dataset
. We find from Table IV that when sequence length

and , we have the best reconstruction errors on the test
set using 107 clusters: LRMS error and GRMS error

. On the other hand, in Table V, when we apply incre-
mental version of the TSCA to the same dataset with sequence
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TABLE V
ITSCA RESULTS ON THE UPDATED DATASET �

length 6 and use the 4 training proteins to construct the building
blocks, we obtain 101 clusters with no unassigned fragments
unassigned ratio % . The local-fit RMS error is 0.76 and

global-fit RMS error is 8.14 on the test data. Since SMCM uses
six more building blocks than TSCA, to make a fair compar-
ison of ITSCA and ISMCM, we remove the trailing 6 building
blocks from the 107 building blocks. Thus, for both methods
we now use the same number of building blocks to represent
all target fragments and reconstruct the first 60 residues of the
71 proteins whose lengths are larger than 60. For ISMCM, with
101 building blocks, the LRMS error very marginally increases
to 0.73 and GRMS error increases to 7.55 from 7.32 (a 3% in-
crease). But it is still better than 8.14 realized by ITSCA.

A. The Results on the Updated Dataset Using
Incremental TSCA (ITSCA)

If we apply the ITSCA to the updated Dataset , we
get the best result with fragment and using all 4
proteins. However, the test global-fit RMS error is 7.59, which
is still higher than the global-fit RMS error of 7.32 produced by
the ISMCM with fragment length 6. The results are summarized
in Table V.

B. The Results on the Dataset B

For this data too, we have experimented with fragment
lengths 5, 6 and 7 as summarized in Tables VI and VII for the
ISMCM and ITSCA respectively. For these two tables we find
that ISMCM with fragment length 7 produces the best results
of GRMS error of 14.56 which is better than the best GRMS
error of 16.27 achieved by ITSCA with fragment length seven.
However, the ISMCM usually finds more building blocks than
the ITSCA. For example, Table VII shows that with fragment
length 7 and six training proteins, the total number of building
blocks found by ITSCA is 805 and this results in a GRMS
reconstruction error of 16.27 whereas for ISMCM the number
of building blocks is 858 yielding the best reconstruction error
of 14.56. Just to compare the performance when ISMCM uses
710 building blocks (fragment length 7, number of proteins
equal to 4) the GRMS error is 15.34 which is again smaller than
16.27. Thus the improvement in performance by the ISMCM

TABLE VI
ISMCM RESULTS ON DATASET B

TABLE VII
ITSCA RESULTS ON DATASET B

is primarily not by the fact that it finds and uses more building
blocks but because of quality of the building blocks that are
placed at the center of dense areas of data points (here 3-D
structures of length 5, 6, or 7).

Comparison of the GRMS errors in Tables VI and VII reveals
that the ISMCM errors are usually less than those by the ITSCA.
To compare the performance of both methods on the Dataset B,
we proceed in the same way as we did for Dataset A. We remove
the trailing clusters with smaller number of members to make
both methods use the same number of building blocks. Thus,
when we use only 805 clusters for ISMCM, the LRMS error
very marginally increases to 0.734 and GRMS error increases
to 14.83 which is still better than 16.27 realized by ITSCA.
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Fig. 2. (a) Comparisons of histograms of local-fit RMS error for ISMCM and ITSCA on Dataset B. (b) Comparisons of average local-fit RMS error per protein
for ISMCM and ITSCA on Dataset B. (c) The variation of library size and that of reconstruction errors as functions of the number of training proteins. (d) Entropy
plot for top 5 most populated clusters of ISMCM.

As mentioned earlier, we also assess the quality of the
building blocks using two alternative graphical ways. In
Fig. 2(a) and (b), we compare the histograms of LRMS errors
and average LRMS error per protein, respectively. Here we find
that ISMCM outperforms ITSCA with respect to these evalu-
ation criteria. Similar behavior is also found while comparing
SMCM and TSCA on Dataset and .

To investigate the effect of using more proteins for training,
in Table VIII we report the results when we increase the number
of proteins in the training set to 12 with fragment length 6.
Table VIII depicts that the first six proteins generated 349
building blocks whereas another additional six proteins added
only 76 building blocks. When the numbers of proteins used
for training are equal to 3, 6, 9, and 12, then the numbers of
building blocks are 253, 349, 399, and 425, respectively. As
we increase the number of training proteins from 3 to 12 via
6 and 9, the increments in the number of building blocks are
96, 50, and 26, respectively. This indicates that as we increase
the number of training proteins, the change in the number of
building blocks becomes less and less. This is a very desirable
property of any incremental algorithm. This behavior is clearly
reflected in Fig. 2(c), which displays the variation of number of
building blocks and global-fit RMS errors on the test data as a
function of number of proteins in the training set. Thus use of
more proteins in the training data increases the computational
cost substantially, but the gain may not be significant. The
computational cost increases with the number of proteins that
are used for training and the marginal benefit decreases. The
details are depicted in the Table VIII.

TABLE VIII
ISMCM RESULTS ON DATASET B USING 12 TRAINING

PROTEINS WITH FRAGMENT LENGTH 6

C. How Well Do the Building Blocks Fit the Target Fragments?

Entropic Assessment: If each cluster represents homoge-
neous (similar) structures/fragments then every position of
the fragments in a cluster should have some preference or
bias to specific local secondary structures such as H’- helix,
‘E’-strand, and ‘C’-others which can be obtained by Dictionary
of Protein Secondary Structure (DSSP) [42]. So we consider
the local secondary structure of each residue for all fragments
in a cluster and then compute the Shannon’s entropy [43] at
each position of the fragment. In Fig. 2(d), we summarize the
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TABLE IX
THE ENTROPY FOR THE TOP 5 MOST POPULATED CLUSTERS

Fig. 3. Representation of a target fragment using a building block, a good fit
case. (a) The original building block. (b) The target fragment. (c) The rotated and
shifted building block. (d) The building block and target fragment superimposed
after alignment.

entropy distribution for the top five most populated clusters.
The corresponding building blocks are listed in the Table IX. In
order to get a better assessment of the position specific bias for a
particular secondary structure we also compute the entropy over
the entire set of fragments (i.e., taking all clusters together).
Fig. 2(d) reveals a few interesting things. First, considering all
clusters, there is no bias for any secondary structure for any
position. Every position has almost the same entropy and it is
almost equal to the maximum entropy. For the top five clusters,
at each of the seven positions, the entropy is much lower than
the corresponding entropy using all clusters. This suggests
that every position has some bias for some particular structure.
More interestingly the entropy is very low at the central residue
implying that the secondary structure of the central residue for
most fragments in a cluster is the same. This might suggest
that the central residue has a stronger impact in deciding on the
cluster and hence on the local folding of the fragment.

Visual Assessment: To examine visually how well the
building blocks represent the target fragments, we consider two
examples with fragment length seven: one with a very good
fit (Fig. 3) and the other with a relatively poor fit (Fig. 4), but
still within 1 Å threshold. Fig. 3(a) shows a building block
(SAQQQAQ) whereas Fig. 3(b) represents a target fragment
(TLSELHC). Apparently the two structures look quite dif-
ferent. But Fig. 3(c), the rotated version of the building block

Fig. 4. Representation of a target fragment using a building block, a poor fit
case. (a) The original building block. (b) The target fragment. (c) The rotated and
shifted building block. (d) The building block and target fragment superimposed
after alignment.

Fig. 5. (a) SMCM building block (SAQQQAQ) at residue 89–95 of 1KAPp.
(b) TSCA building block (GAAQVIM) at residue 149–155 of 1DMR.

SAQQQAQ obtained after best molecular fit with the target,
looks almost identical to Fig. 3(b). The superimposition of
SAQQQAQ and TLSELHC shown in Fig. 3(d) clearly demon-
strates an excellent fit between the two. The four panels in Fig. 4
show the representation of the target fragment EGVEIAC with
the building block GIKIYVS. Although, in terms of the local-fit
RMS error it is a poorer fit, yet the building block matches
appropriately to the target [Fig. 4(d)].

We note that the two building blocks (fragment length seven)
used in the illustration are associated with the two most pop-
ulated clusters extracted by SMCM. We can also compare it
with the building blocks of top two clusters generated by TSCA.
The fragment SAQQQAQ represents a typical helical building
block. This helical building block found by SMCM is located at
residue 89–95 of 1KAPp; whereas the most populated building
block found by TSCA is GAAQVIM and it is located at residue
149–155 of 1DMR. The fact that GAAQVIM is also of helical
structure and is included in the cluster of SAQQQAQ, might
be taken as an indicator that the TSCA cluster associated with
GAAQVIM and the SMCM cluster associated with SAQQQAQ
represent the same biological structural motif. To investigate
this further we analyzed the two clusters. The SMCM cluster
has 5683 members while those in the TSCA cluster is 5595 and
these two clusters share 5349 common fragments. This sug-
gests that the two clusters represent the same biological en-
tity. Fig. 5(a) and (b) show these two building blocks. When
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we compute the root-mean-square deviation between these two
building blocks, it is less than 1 Å, which further suggests that
they represent the same structural cluster. Similarly, we find that
the most typical extended strand GIKIYVS found by SMCM is
exactly the same fragment GIKIYVS found by TSCA which
is located at residue 464 of 1SMD. Thus the building blocks
found by SMCM are likely to represent structures of biological
significance.

V. CONCLUSION

We have first discussed the SMCM and TSCA and have
demonstrated that since TSCA does not take into account the
geometry of the data, it may extract poorer building blocks than
the SMCM. The effectiveness of SMCM is demonstrated on the
same dataset used by Unger et al. and on the updated version
of the same data set. SMCM is found to outperform TSCA.

Both SMCM and TSCA are computationally very expensive
when the size of training dataset is large. Hence we have pro-
posed an incremental version of the SMCM. The same con-
cept is also used to obtain an incremental version of the TSCA.
We have made extensive experimentation with these two algo-
rithms using two versions of the dataset used by Unger et al.
as well as another dataset used by other researchers. The incre-
mental SMCM is quite effective and is found to exhibit prop-
erties that are expected from an incremental algorithm. More
specifically, as the number of proteins increases in the training
set, the increase in the number of building blocks decreases and
consequently the rate of decrease in the global reconstruction
error both on the training and test data falls down. Moreover,
the incremental SMCM is found to be more effective than the
incremental TSCA. Although, the SMCM usually finds more
building blocks than those found by the TSCA, we have demon-
strated that the improved performance for SMCM comes from
the quality of the building blocks, which are placed at the center
of dense areas in the training data. The quality of the clus-
ters (and hence of the associated building blocks) extracted by
our algorithm is also assessed using entropy analysis. The en-
tropy analysis has revealed a very interesting fact that the cen-
tral residue possibly plays the most dominant role in the local
folding of the fragments.

None of the algorithms discussed here can take into account
fragments of variable length. To extend the algorithms for frag-
ments of variable length, we need measures of similarity be-
tween fragments of different lengths. For example, if we have
two fragments both are helix, but of different length, the struc-
tural similarity between the two should be very high; on a [0-1]
scale, it should be 1. We plan to investigate this in near future.
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