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Point Pattern Representation Using Imprecise,
Incomplete, Nonmetric Information

Stephen H. Levine, John G. Kreifeldt and Ming-Chuen Chuang

Abstract— A novel method is described for representing two-
or three-dimensional patterns of n points utilizing imprecise, in-
complete, nonmetric information. This information consists solely
of a rank ordered list of interpoint distances determined from
pairwise comparisons. Ideally each comparison should determine
a longer and shorter distance, and a set of comparisons should
include all possible pairs. Actual representation information is
likely to be imprecise and incomplete. Methods are presented
for maximizing the information obtained from imprecise, in-
complete sets of comparisons through inferencing procedures.
The sufficiency of the resulting information for precise pattern
representation is demonstrated through its use in the reconstruc-
tion of the patterns using multidimensional scaling (MDS). Some
surprising results are presented on the possible advantages of
imprecision from the viewpoint of data requirements. A short
appendix links the inferencing procedures developed in this paper
to the mathematical concept of a semi-order.

1. INTRODUCTION

There is a natural expectation that precise representation
of a two or three dimensional pattern requires precise metric
measurement information. A pattern consisting of n points
might thus be described by the cartesian coordinates of those
points or, alternatively, by a sufficient set of distances and
angles between point locations. This paper will describe an
alternate approach utilizing imprecise, incomplete, nonmetric
information [1].

Algorithms have been developed, primarily within the field
of psychology, which use an input set of comparisons between
alternatives in order to construct a geometric configuration
representing these alternatives as points in a multidimensional
space. The distance between two alternatives in this spa-
tial representation reflects their similarity; similar alternatives
judged are close together. These algorithms are referred to as
multidimensional scaling, MDS [2], [3].

In particular, one MDS algorithm contained in ALSCAL
[4] permits constructions to be made from nonmetric pairwise
comparisons of the type A is more similar to B than A4 is to C.
(These are, in fact, just the relative comparisons that humans
seem to be able to make, thus the interest of psychologists.)
Specifically, these comparisons, rank ordered from the two
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least similar alternatives to the two most similar, provide the
input information for ALSCAL.

The existence of this algorithm suggests that information
sufficient to represent a pattern of points can be obtained
based only on pairwise comparisons of interpoint distances.
Information will be of the form “point A is closer to point B
than point A is to point C.” From this set of comparisons a
rank ordered list of interpoint distances can be developed. This
list represents an alternative pattern representation method,
utilizing nonmetric measurement.

Moreover, this representation can be accurate using rel-
atively imprecise information. Imprecise information results
when a comparison fails to determine the longer of two
interpoint distances. This occurs when the difference lies
below a threshold value or minimum resolution level (known
as a just noticeable difference (JND), when a human is making
the comparisons) of the comparator. The comparator is said
to exhibit indifference with regard to the two distances and
the result is declared to be a “tie.” However, many, if not
all, of these ties can be broken through inference procedures,
more so as the number of points increases. The greater the
percentage of ties that are resolved the closer we come to
achieving a complete rank ordered list and, in turn, an accurate
representation.

While representational accuracy potentially increases with
n, the number of points in the configuration, the number of
possible pairwise interpoint distance comparisons increases
as the fourth power of n. Fortunately, a complete set of
these possible comparisons need not be directly made; the
results of many can be inferred using algorithms that will be
described in this paper. This is true even when the comparator
threshold is relatively large. The role of inference methods
in allowing the use of imprecise, incomplete information is a
basic theme of the pattern representation method described in
this paper; computing power is utilized to reduce the amount
and preciseness of the information that must be acquired
through direct measurement. Given the present increases in
computing power and the decreases in computer size and cost,
this gives promise of being an increasingly appealing tradeoff.

The sufficiency of imprecise, incomplete, nonmetric infor-
mation in pattern representation can be demonstrated through
the accurate reconstruction of two and three dimensional point
configurations using MDS. Chuang [1], in a study that forms
the basis for this paper, has shown that as the number of points
increases this nonmetric information is sufficient to represent
the object with arbitrarily increased accuracy, independent of
any exact scale or rotation information.
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Three related characteristics of the comparison informa-
tion, important to this representional method, should be dis-
tinguished. These are precision, crispness, and correctness.
Precision, as noted, refers to the size of the threshold value.
“Precise” comparators have zero thresholds, and therefore
produce only two comparison outcomes, “larger” or “smaller.”
In contrast, imprecise comparators have nonzero thresholds
and can produce a third outcome—‘tie.” Crisp comparators
exhibit sharp, contiguous, nonoverlapping cutoffs between
the various outcomes. Humans, by contrast, exhibit noncrisp,
or fuzzy, behavior when making comparisons [5]. Correct
comparators may produce ties but do not make mistakes. They
therefore are consistent; the same comparison will always
produce the same outcome. We will briefly consider the
impact of inconsistencies on representation accuracy, an area
demanding considerably more attention.

A large literature exists on pattern representation. Many
representation schemes are based on the use of various series
expansions, such as Karhunen-Loeve [6], Fourier [7], and
Gabor [8] functions. The pattern specific information is then
stored in the numerical values of the coefficients in the
expansions. Alternative methods, widely used in computer
graphics as well, decompose “pictures” into basic shapes, such
as spherical surfaces [9]. The numerical parameters describing
these shapes, i.e., the radius of the sphere, require require
precise metric information.

Within the the broader context of pattern recognition. Wat-
son [10] has noted that the perceptual process in general
involves three stages; filtering, coding, and interpretation. A
statement such as “a pattern consisting of a configuration of
points” assumes that, unless the original pattern consisted
only of points, substantial filtering of information has oc-
curred. It further assumes that primitive analysis has already
identified relevant characteristics, i.e., important points [11].
Filtering is also implied by the statement “utilizing imprecise,
incomplete, nonmetric information” since the possibility of
metric information is disregarded. The representation tech-
nique to be described involves a coding of the information
that remains after this primitive analysis and filtering has been
done.

The remaining sections of this paper will cover the follow-
ing topics. Section II briefly describes the use of MDS in this
research, and provides some useful definitions pertaining to
data sets and rank ordered lists. Sections III and IV develop the
algorithms for achieving rank ordered lists with complete and
incomplete sets of data respectively. Section V describes the
basic results obtained in pattern representation as demonstrated
through reconstruction. These results relate the accuracy of
representation to the number of points describing the pattern
and to the preciseness of the comparators. Reconstructions
were based on information obtained from both precise and
imprecise comparators. A very brief discussion is included on
results obtained using noncrisp comparators. A more detailed
description can be found in [1]. Section V1is a brief discussion
of several related topics. An Appendix relates the algorithms
developed in this paper to semi-orders, a measurement con-
cept developed in the realm of the social and biological
sciences.

II. RANK ORDERED LISTS, DATA SETS, AND INFERENCE

In this section we provide some background on MDS
and data sets, particularly with regard to the role of rank
ordered lists and their development using inference procedures.
Inference procedures can achieve two basic benefits. First, they
can in many instances determine relative rank when, due to
lack of precision, direct measurement fails to do so. Second,
they can in many instances determine relative rank in lieu of
direct measurement. In both cases the determination of relative
rank leads to an increase in representational accuracy.

A. A Brief Description of Multidimensional Scaling (MDS)

In using ALSCAL we begin with a rank ordered list of
interpoint distances generated from a two (or three) dimen-
sional pattern of n points from which we wish to reconstruct
this pattern. (In applications in psychology there is no pre-
existing pattern, and the dimensionality of the data is unknown.
The user is constructing a spatial representaion of nonspatial
information.) ALSCAL begins by locating the n points at
random in a two (or three) dimensional space and then
determining a rank ordered list of interpoint distances based on
this random configuration. The two lists can then be compared.
They will exhibit differences and the measure of this difference
is referred to as stress.

The algorithm then proceeds through a sequence of steps
that reduces this stress by moving the points in the config-
uration it is developing. As the algorithm proceeds it will
generally be able to reduce the stress to an arbitrarily small
number. If the number of points is sufficiently large this
arbitrarily small stress can only be reached by converging on
the original pattern.

An incomplete list for the original pattern does not prevent
the algorithm from proceeding but missing information cannot
contribute to the stress and therefore can contribute to reduced
accuracy of the reconstruction. MDS is designed, ideally, to
use precise, complete information. In this paper the “enhance-
ment” of imprecise, incomplete data by various inference
techniques atlows MDS to work well on less than ideal
information, and therefore demonstrate the adequacy of this
imprecise, incomplete information for pattern representation.

While ALSCAL evaluates reconstruction accuracy based
on stress we are interested in a more meaningful measure.
Intuitively, such a measure should describe the deviation of the
points in the reconstruction, once it is appropriately scaled and
positioned, from their location in the original configuration,
normalized for the size of the pattern [1]. Location can be
given as cartesian coordinates. To illustrate, Fig. 1 shows a
reconstruction with 3% mean coordinate error. Far smaller
errors are readily achieved, even with imprecise, incomplete
information. Even 3% error would not be readily perceived by
a human if the two configurations were not overlayed.

B. Data Sets and Rank Orderings

The information obtained directly from the pairwise com-
parisons that are made is the measured data set. As noted,
additional information can be achieved through inference. This
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Fig. 1. Reconstruction of a configuration with 3% mean coordinate error.
Note that this error, while perceptable with the configurations overlapped,
would not be readily perceived if the configurations were separated.

indirectly obtained information is the inferred data set, and the
combination of the two is simply the data set.

If information is available for every possible pairwise com-
parison a complete data set exists; a “tie” constitutes informa-
tion as much as “longer than” or “shorter than.” By contrast,
an incomplete data set lacks any comparison information for
one or more pairs of interpoint distances. Clearly, a measured
data set can be complete or incomplete. If no ties exist the
information constitutes a precise data set. Note that a precise
data set need not be complete. If ties are present in the data
it is referred to as an imprecise data set, and this too may be
complete or incomplete.

Data sets provide the means for developing rank orderings
among the interpoint distances, from “longest” to “shortest.”
Clearly, a complete, precise data set is necessary and suffi-
cient for developing a complete rank ordering. Anything less
will give rise to a partial rank ordering. While a complete
rank ordering is not always required for an accurate pattern
representation, in general the more complete the better the
representation. However, obtaining a complete, precise data
set is not always possible or, in some cases, even desirable.
This will be demonstrated through MDS reconstructions.

We are now ready to discuss the specifics of inference
procedures under different conditions of information com-
pleteness and preciseness. Interpoint distances will be referred
to as line lengths since it is natural to visualize a pair of
points as connected by a line segment. A pattern containing
n points involves m = n(n — 1)/2 interpoint distances or
lines. A complete set of measurements requires m(m — 1)/2
comparisons.

III. COMPLETE MEASURED DATA SETS

The data set obtained from a precise, complete set of
comparator measurements will allow a complete rank ordering
of line lengths. In this section we consider the role of inference
in establishing a rank order with a complete but imprecise set
of measurements. In particular, to what degree can inference
help improve rank ordering?

A. Inference in a Complete Measured Data Set

When using a comparator with a threshold d > 0 to compare
lines I and J, of lengths z; and x; respectively, three outcomes
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Fig. 2. The four possible outcomes of three pairwise comparisons.

are possible. These are:

(i) ; > z;, I is measurably longer than J, that is z; >
z; + d;

xj > z;, J is measurably longer than I, that is z; >
z; + d;

z;||z;, I and J are not measurably different in length, that
is, z; —d < z; < z; +d.

The third outcome is not the same as saying that the two
line segments are of equal length, an event that occurs with
a probability of zero. (However, a line is by definition equal
to itself, i.e., z; = x;.) If the first or second outcome occurs
we shall consider the relative lengths to have been established
by direct measurement, or directly established. If the third
outcome occurs we will hope to resolve this “tie” indirectly
through inference.

The basic mechanism of inference in a complete set of
measurements is based on the pairwise comparisons of three
lines, I,J, and K. The four possible outcomes of these
measurements are illustrated by the modified digraphs shown
in Fig. 2. The branch symbols correspond to the two outcomes
noted above. The digraph of Fig. 2(b) is of particular interest.
It illustrates the intransitivity associated with indifference; a tie
between K and I and a tie between I and J does not always
mean a tie between J and K. Later, we will list the rules
of inference in detail; here we note that if J is measurably
longer than K whereas I is not measurably different than K,
then we can infer that J is longer than I, though possibly
not measurably so. Remembering that the threshold is d,
z; > xp +d and ¢ — d < z; < zp + d, from which we can
conclude that z; > z;. Similar reasoning allows us to conclude
that / is longer than K, and a complete rank ordering of the
three lines is established. In contrast, Fig. 2(a) does not allow
us to establish any relations through inference. Surprisingly,
neither does Fig. 2(c), in spite of having fewer ties than
Fig. 2(b). Fig. 2(d) has an already established complete rank
ordering.

A complete measured data set for m lines can be represented
as a complete digraph having m nodes using the branch

(i)
(iii)
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Fig. 3.

symbols intoduced in Fig. 2. This complete digraph consists
of m!/(m — 3)!3! triangular digraphs of the types shown in
Fig. 2, and each branch occurs in (m — 2) of these. From the
results above we note that a branch direction that has not been
established through direct measurement may yet be established
through inference if at least one of those (m — 2) triangular
digraphs is of the type shown in Fig. 2(b). Intuitively, it seems
that the larger the value of m the greater the possibility of this
inference. At the same time the fraction of branches whose
directions can not be established by direct measurement is
important, and is determined by the size of the threshold. We
will investigate this in detail.

B. Probability of Establishing Relative
Lengths by Direct Measurement

We assume a set of m lines whose lengths are uniformly and
randomly distributed between 0 and 1, and a minimum level
of resolution, the threshold, given by d. Clearly, if d = 0, only
Fig. 2(d) triangles occur and if d > 1 only Fig. 2(a) triangles
occur. We are therefore interested in the range 0 < d < 1.
(In effect, d is scaled to the range of z;.) Fig. 3 indicates
the probability densities of z; and of |z; — z;|. From Fig.
3(b) we can readily determine that with a threshold of d the
probability of establishing the relative values of z; and z; by
direct measurement, Pr(M), is

Pr(M) = Pr{|z; — z;| > d) = (1 — d)? (1
As expected, as d approaches 1, Pr(M) approaches 0.

C. Probability of Establishing Relative Values through
Inference

Next we consider the case where |z; —z ;| < d. Based on our
previous discussion we know that given a third line segment K
we will be able to establish the relative values of «; and «; if

(A) |z; — zx| < d and |z; — zx| > d, or
(B) |e; — zk| > d and |z; — zx| < d.

Either of these cases is equally likely so we will consider only

Case A and evaluate
Pr((Jzi —zk| < d and |z — zi| > d)/|z; — 4| < d).

We use the notation Pr(u/v) for the conditional probabilty
event u occurs given that event v occurs. If we replace the
conditional probability

Pr(|z; — zi] < d/|z; — z;] < d)
by the unconditional probability
Pr(|xi - xk\ < d)

(lz; — zx| is not independent of |z; — «;|, but the error
introduced is acceptably small), then

Pr((|z; — zx| < d and |z; — zk| > d)/|zi — z;] < d)
= Pr(jz; — zx| < d)Pr(|z; — zx| > d/(|zi — 22| < d and
|zi — 25| < d)). )

Since
Pr(|z; — zk| < d) = 1 — Pr(|z; — zi| > d), 3)

we obtain, using (1),

Pr(|z; — zx] < d) =1 — Pr(M) (4a)
=1-(1-d)? (4b)
For brevity, we define the conditional probability
Pr(A) =
Pr(|z; — o > d/(ja; — o <d and |z; — 2] < d))
&)

and investigate the four possible cases.

Case liz; >dand z; < 1 —d
In this case both z; and zj are uniformly dis-
tributed between z; — d and z; + d, and the
conditional probability density function of |z; —
7| is shown in Fig. 4(a). (For brevity we have
omitted repeating the conditional nature of these
probabilities indicated in (5).) Clearly,

Pr(A) = 0.25 (6)

Case 2:z; < dand z; < 1 —d
In this case both z; and z are uniformly dis-
tributed between 0 and x; + d, and the probability
density function of |z; — x| is shown in Fig.
4(b). We find that

Pr(A) = ((z;/(z; + d))? %)

Case 3:z; > dand 2; > 1—d
In this case both z; and z; are uniformly dis-
tributed between z; — d and 1, and the probability
density function of |z; — x| is shown in Fig.
4(c). Thus,

Pr(A) = (1 — ;)/(1 — z; + d))? ®)
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Fig. 4. The probability density function of |z; — x| for four cases relating
z; and d.

Case 4ix; < dand z; > 1—d
In this final case both z; and x; are uniformly
distributed between 0 and 1, and the probability
density function of |z; — x| is shown in Fig.
4(d). Therefore,

Pr(A) = (1 - d)2. )

Recalling that the probability of not establishing relative
lengths by direct measurement is 1 — Pr(M), and that Case B
was equally probable as Case A, we define Pr(C) to be

Pr(C) = (1 — Pr(M)) * (Pr(A) + Pr(B))

= 2% (1 — Pr(M)) % Pr(A) (10

where Pr(B) is the equivalent expression to (5) for Case B.
The event C corresponds to the lengths x; and z; not being
measurably different but forming along with line K a triangle
of the type shown in Fig. 2(b). The dependence of Pr(C) on z;
can be eliminated by determining the expected value of Pr(C)
with respect to x;. We will designate this expected value as
E{Pr(C)}.

The probability that z; and z; can be distinguished by
inference when they can not be distinguished by measurement,
given a complete set of measurements among m line segments,
is

Pr(Inot M) = 1 — [1 — E{Pr(C)}]™ 2. an

Pr(D), the probability that z; and z; can be distinguished
either directly or, if not directly, by inference, is

Pr(D) = Pr(M) + (1 — Pr(M))Pr(I/not M).

D. Determination of Pr(D) as a Function of d and m

Equation (12) was evaluated for various values of d and
m. E{Pr(C)} was approxximated by computing Pr(C) for
values of z; ranging from 0 to 1, and averaging. The results
of these evaluations are shown in Fig. 5, and compared to
Pr(M) as well. (Also, see Fig. 13.) Note the dramatic tradeoff

Pr(D)
2

—%— m =20

—o— Pr(M)

—= m =80
& m=10

Fig. 5. Pr(D) as a function of threshold d for several values of m. Pr(D)
is that probability that two lines segments can be rank ordered either directly
by measurement or indirectly by inference.

between the requirement for a small threshold and the number
of line segments being compared. For example, data from a
comparator with a threshold of d = 0.8 will contain 96%
“ties.” This data might seem of little use in rank ordering
lengths. However, for m = 80 its use leads to a near 100%
unambiguous rank ordering of the length of the lines.

Another view of this tradeoff is of one between the quality
and the quantity of data, where a large quantity of data
requires, in turn, speed of computation. Lower quality data,
as might come from less precise comparisons, is adequate if it
is available in sufficient quantity and the computational power
exists to carry out the inferencing required in an acceptable
amount of time.

The results for m = 40 and m = 80 show a striking
insensitivity to d over a substantial part of its range. The
m = 20 curve displays a lower value of Pr(D) for d = 0.05
than for d = 0.4, an initially rather surprising result. This is
also true, though not so dramatically, for m = 40 and m = 80,
and apparently results from the ability to infer a complete order
in Fig. 2(b) and the inability to do likewise in Fig. 2(c). Note
that a similar result appears in Fig. 13. This phenomena of
more precision not necessarily leading to more information
occurs elsewhere in our results.

IV. INCOMPLETE MEASURED DATA SETS

We have discovered that simple rules of inference can
prove a powerful tool in determining rank by length among
a set of lines when measurement information is restricted to
pairwise comparisons even when the comparator has a nonzero
threshold and therefore produces many ties. So far, however,
we have only considered the case of a complete measured
data set. We next explore the far broader use of inference in
determining rank order among a set of m lines given that less
than the complete set of m(m — 1)/2 comparisons is available.
We will first briefly explore the use of inference in the case
of a zero threshold comparator, and then consider the more
general case of a nonzero threshold. It will be necessary to
significantly expand the set of relationships. We remind the
reader that the importance of rank determination, and therefore
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Fig. 6. Digraph representation of measured and inferred results for pairwise
comparisons. (a) Measured results. (b) Measured plus inferred results.

of inference procedure, is increased representational accuracy.
Inference procedures make explicit all the information that is
implicit in a measured data set.

A. Inference with Precise, Incomplete Data

With a zero threshold a comparison of lines A and B can
lead only to z, > =z or z» > z,. The relationship >,
“measurably longer than,” is transitive, therefore the basic rule
of inference is that z, > x}, and zp > z. implies z, > z..
This rule is illustrated in Fig. 6.

Repeated use of this rule of inference allows all the infor-
mation implied by a set of measurements to be determined.
Fig. 7 illustrates how the four measurements

z1 > T2
Ty > Ty
3 2> T
T5 > T4

allow the remaining six pairwise comparisons to be inferred.
(With m = 5 there are 5 * 4/2 = 10 total comparisons
possible.) The result is equivalent to what would have been
obtained through the complete set of ten measurements. This
inference procedure is easily developed as an algorithm based
on the digraph concept of reachability [12], [13]. As an
operational alternative to a digraph, the information gained
by measurement can be stored in the measurement matrix M,
a variant of an adjacency matrix [12], [13], where m(3, ) = 1
if £; > «;, as determined by measurement, and m(i,j) = 0
otherwise. For m lines, M is an m x m matrix. We then
compute the inference matrix (), where

Q=BM+M>+ M3+ + M™ . (13

The (ij)th element of M* is the number of different
paths of length £ from node ¢ to node j. The possible path
lengths, without cycles, range from 1, corresponding to direct
measurement, to m — 1. The existence of even one path of
whatever length from node i to node j implies line I is
measurably longer than line J. B[] is the matrix boolean
operation; all nonzero matrix elements are set equal to one(1).
Therefore ¢(7,j) = 1 means that z; > x;, determined either
directly by measurement or indirectly through inference. Note
that ¢(i,j) = O corresponds to either z; < z;, z; = z;,
or to no knowledge of the relative lengths of I and J. More

Fig. 7. Digraph representation of complete ordering according to length of
five lines. (a) Measured results. (b) Measured results plus inferred results
based on direct application of Fig. 2. (c) Measured results plus all inferred
results based on continued application of Fig. 2.

complete notation would allow these outcomes to be separated
but is not necessary at this point. In closing this section we
also note that the rules of matrix multiplication plus the rules
of the boolean operation together provide rules for simplifying
parallel and serial connections of digraph branches. This will
be elaborated in the next section.

B. Relationships for Imprecise, Incomplete Data

We consider the more general case where the data is
obtained with a comparator having a nonzero threshold. Previ-
ously, a simple example of inference under this condition was
presented. We now develop more general rules of inference.
Consideration of a number of sample problems indicates that
there are five different relationships between two lines that
must be taken into account. The digraph branch associated
with each of these relationships is given a different algebraic
gain and the digraph model becomes a weighted digraph or
network model [12], [13]. These relationships and associated
gains are listed below, and the corresponding network branch
symbols are indicated in Fig. 8.

i) z; > x; ; I measurably longer than J; z; > z; + d;

gain = al.

il) z; > z;; I longer than J, the difference may or may
not be measurable; gain = a2.

iti) z;3 x;; I longer than J, the difference is not measur-

able; z; < z; < x; + d; gain = a3.

iv) z;||z;; 1 and J not not measurably different in length;
zj —d < z; < z; = d; gain = b.

v) x;)|zg; if T is longer than J the difference may or may
not be measurable, if I is shorter than J the difference
is not measurable; either z; > z; or z; — d < z; < Tj;
gain = c.
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Fig. 8. The five branch types;their branch gains and symbols. (al)
x; >> z; : I measureably longer than J. (a2) z; > x; : I longer

than J. (a3) z;] > z; : I longer than J; difference is not measurable. (b)
z;||lz; : I and J not measureably different in length. (c) z; > lz; : if I is
longer than J difference may or may not be measurable; if J is longer than
I difference is not measurable..

Relationships (i) and (iv) can arise either through mea-
surement or inference, whereas the other relationships arise
only through inference. Relations (i), (ii), (iii), and (v) are
directional or asymmetric; complementary relationships exist
and, unlike in the previous section, must be accounted for.
These are indicated by underscoring the gains; thus gl cor-
responds to I measurably shorter than J. Relationship (iv) is
symmetric and is its own complement. Only relationship (i)
and its complement are transitive.

C. Branch Inference Algebra

As in the case of the zero threshold analysis, we determine
rules for the simplification of series and parallel branches in
terms of their gains. The rules are somewhat more complex
since with four asymmetric and one symmetric gain we have
9 X 9 = 81 combinations to consider in each case. These are
summarized in Tables I and II. As an example, assume an a3
branch from I to J, meaning z; < z; < z; + d, in series with
an al branch from J to K, z; < oy —d. Thus z; < z; +d
and —zx < —(z; + d). Adding, we obtain z; — 2 < 0 or
z; < T, which corresponds to an a2 branch. As a second
example assume an a2 branch in parallel with a b branch, both
running from I to J. Then z; > z; and z; —d < z; < z; +d.
These combine to z; < z; < z; + d, an a3 branch. Note that
the case of zero threshold could be handled as a special case
where only branches of gain a1 (and gl) are allowed.

D. Matrix Methods for Inferencing

The goal is to achieve a generalization of (13) allowing
for nonzero thresholds. This can be done by constructing a
measurement matrix in which the branches are represented
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TABLE 1
SERIES BRANCH REDUCTION
BRANCH INFERENCE ALGEBRA

al a2 al al a2 a3 b c c
al al al al 0 0 a2 a? a2 0
a2 a2 a2 0 0 c c c 0
a3 a2 a2 c b c c 0
al al al al a2 O a2
a2 a2 a2 ¢ 0 c
ald a2z ¢ 0 c
b 0 0 0
c 0 0
c 0

?‘Jotes: 1) 0 indicates no inference can be made. 2) Table is symmetrical
since ab = ba, etc.

TABLE I

PARALLEL BRANCH REDUCTION BRANCH INFERENCE ALGEBRA

al a2 a3 al a2 a3 b c c
al al al - - - - - al -
a2 a2 a3 - - - a3 a2 a3
a3 a3 - - - a3 a3 a3
al al gl - - - al
a2 @2 a3 a3 a3 a2
a3 a3 a3 a3 a3
b b b b
c c b
c 4

&otes: 1) - indicates parallel combination cannot occur. 2) Table is
symmetrical since a + b = b + a, etc.

by their gains. Note that the complements must be included
so that all the algebraic rules of Tables I and II can be
implemented. While it is possible to parallel equation (13)
by first computing the matrix power series and then applying
the branch inference algebra rules, to avoid the resultant long
algebraic expressions it is more efficient to apply the reduction
tules at each step. An even more efficient algorithm, requiring
fewer matrix multiplications, follows.

(i) With M the measurement matrix determine the matrix

Rl)y=(I+M) (14)
where I is the m x m identity matrix.
(ii) Determine
R(2) = S[R(1)¥] (15)

where S[] is the branch algebra reduction operator, anal-
ogous to the Boolean operator of (13). It indicates the
implementation of all the rules of Tables I and II.

(iii) Continue determining
R(i) = S[R(i — 1)?) (16)
until either R(i) = R(i — 1) or 2! > m.
(iv) Then
Q@ = R(i). an

This algorithm requires one additional algebraic rule,
namely that 1 + (any algebraic expression) = 1. The gain
1 corresponds to a line segment being identical in length to
itself:
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()

Fig. 9. Example 1-—Measured and inferred results based on comparator with
nonzero threshold. (a) Measured results. (b) Measured plus inferred results.

E. Matrix Inferencing: Example 1

Fig. 9(a) is a network indicating a system of five lines in for
which six of the possible ten measurements were made. In only
two of these measurements did the difference in length exceed
the comparator threshold. This set of data can be represented
by the matrix

0 b b 0 O
b 0 al al b
M=|b al 0 0 0 (18)
0 al 0 0 b
0 b 0 b O

From this we use the algorithm and inference rules described
above to compute the sequence of matrices:

nm & o 0 0
b 1 al al b

RO)={b a1 1 0 0 19)
0 al 0 1 b
o b 0 b 1
rtr a3 a3 a2 07
a3 1 al al a3

R(1)=1{a3 al 1 al a2 (20)
a2 al al 1 a3
L0 a3 a2 a3 1 _J
rl1 a3 a3 al a27
a3 1 al al a3

R(2)=1a3 a1l 1 al a2 Q1
al al gl 1 a3
L&Z @ d_2 a3 1]

Q@ = R(2). (22)

The () matrix is represented by the digraph in Fig. 9(b), except
that the loops of gain 1 from each node to itself are suppressed.

In this case the result is a complete digraph and a complete
rank ordering of the lines. The jth line can be scored by adding
the number of a’s in the jth row and subtracting the number
of a’s in the jth column. These scores can then be arranged
to rank the line lengths. For this example we obtain

Line Score
3 +4
1 +2
2 0
5 -2
4 —4
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with higher scores corresponding to longer lines. From the
branch gain definitions note that only a2 and ¢ represent
incomplete information. A 0 gain would of course represent
incomplete information as well. In this example additional
information can be obtained only by direct comparison of line
1 and line 5. This will, however, not effect the rankings.

F. Matrix Inferencing: Example 2

Consider a second example, represented in Fig. 10(a) and
by the measurement matrix

0 b al 0 0 b
b 0 b 0 0 O
al b 0 0 al O
M= 0 0 0 0 b b 23)
0 0 al b 0 0
b 0 0 b 0 O
This results in
1 a3 al al al a3
a3 1 a3 a2 al b
a2 a3 1 a3 al a3
Q= lal a2 a3 1 03 a3 @)
al al gl a3 1 gl
a3 b a3 a3 al 1

and is represented by the digraph in Fig. 10(b). A ranking can
be computed,

Line Score
1 +5
+2
+2
-1
-3
-5

T WO N

and this time line 2 and line 6 remain tied. Note that they are
joined by an inferred b branch. Therefore, it would do no good
to directly compare them; a tie would result. However, the a2
joining line 2 and line 4 represents incomplete information.
If that measurement is made and line 2 is measurably longer
than line 4 the tie would be resolved; line 2 would be longer
than line 4, though not necessarily measurably so. If line 2 is
not measurably longer than line 4 the tie between lines 2 and 6
cannot be resolved given the size of the comparator threshold.

V. PATTERN REPRESENTATION: SOME
RECONSTRUCTION RESULTS

To determine the accuracy of pattern representation based
on nonmetric information we utilized MDS to reconstruct the
patterns. The reconstructions could then be compared to the
original patterns to determine error.

A. Reconstructions Based on Precise, Complete Information

We initially explored the reconstruction accuracy of the
nonmetric algorithms by reconstructing various 2-D and 3-D
patterns based on precise, crisp, correct, complete informa-
tion. Patterns ranging from 17 to 75 points were used. (75
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Fig. 10. Example 2—Measured and inferred results for comparator with
nonzero threshold. (a) Measured results. (b) Measured plus inferred results.
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Fig. 11.  The reconstruction accuracy of the nonmetric ALSCAL algorithms.
Results for two configurations are shown, a three-dimensional random figure,
labelled Space, and a planar, but otherwise random, configuration located in
three-dimensional space, labelled Plane. In each case, as the number of points
in the configuration increases the mismatch between the input and output
configurations rapidly vanishes to zero.

points gives rise to almost 4 million comparisons.) Since the
reconstruction is independent of scale, position and rotation,
accuracy was determined by orienting and scaling the re-
construction until it had the best overlay with the original
pattern.

Fig. 11 shows the average and the standard deviation of
the percentage mismatch between the original and the recon-
structed configurations for an increasing number of points in
two three-dimensional test configurations. One is a random
configuration labelled Space. The second is a planar config-
uration, labelled Plane. The MDS algorithm is not provided
the information that the configuration is in fact planar. If this
information were provided the reconstruction would naturally
be more accurate [1]. The larger coordinate errors in Plane
may result from coordinate errors normal to the plane of the
planar configuration producing relatively little stress.

20 Average Coordinate Errors (%)

e + % ! .
[ 05 1 L5 2 25 3
Mechanical Resolution (8.D.)

—— 17 points — 40 points —*— 75 points

Fig. 12. Results indicating that the accuracy of reconstruction is virtually
unaffected as the comparator becomes increasingly imprecise until large
resolution levels (thresholds) are reached.

The results displayed in Fig. 11 indicate that 100% recon-
struction accuracy can be approached with arbitrary closeness
as more points are included in the configuration. This improve-
ment results from the increasing constraint on the position of
each point that occurs as the number of distance comparisons
increases; eventually a point can be moved only a very small
distance without producing a change in the rank ordered
list.

B. Reconstructions Based on Imprecise, Complete Information

The previous examples were based on data obtained from
precise comparisons. However, data obtained from imprecise
comparisons, those with nonzero thresholds, contain “ties.”
In this research we are interested in how this threshold level
affects reconstruction accuracy. In order to compensate for
the “size” of the point configuration the threshold, or level of
resolution, was standardized as a percentage of the standard
deviation of the differences in interpoint distances to be
compared. Zero percentage therefore corresponded to precise
comparisons.

The frequency of ties depends not only on the resolution
level but on the distribution of lengths as well. Tchebyshev’s
inequality insures that regardless of the distribution, resolution
levels of 2 standard deviations must produce more than 75%
tied comparisons. Even with this high percentage of ties we
find that the MDS routine works well.

Fig. 12 indicates that rather large thresholds have virtually
no effect on the accuracy of reconstruction until resolution
levels approach 2 standard deviations. (Even then, increased
numbers of points can reduce this error.) This surprising result
is explained by the results of Section III, shown in Fig. 5.
Recall that these results involved the roles of measurement
and inference in determining the relative lengths of lines
for complete but imprecise data. Fig. 13 presents simulation
results complementing the theoretical results shown in Fig. 5.
The scoring system used by Chuang [1] to input the results of
the comparisons to the MDS algorithm implicitly carries out
the required inferencing procedures.
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Fig. 13. The probability of resolving a comparison in a complete data set

either by measurement or by inference. These results are based on simulations.
Note that for larger numbers of comparisons this probability remains near
unity until the comparator resolution level becomes relatively large. m = 100
corresponds to a configuration of approximately 15 points.

C. Reconstructions from Incomplete Measured Data

So far we have considered complete measured data sets. For
a pattern made up of n points this is approximately (1/8)n*
measurements. Fortunately, as we have seen, the significant
amount of redundancy present in this data allows the outcomes
of many of those comparisons not directly made to be inferred,
using the procedures outlined, and thus the data set and the
rank ordering made more complete. This process is referred to
as data enhancement. Specifically, data enhancement involves:

1) wherever possible using inference procedures to make
the data set more precise;

2) wherever possible using inference procedures to make
the data set more complete;

3) whenever possible making additional measurements and
repeating 1. and 2. until the data set is complete and
precise or can be resolved no further.

At the completion of this procedure the data set is used to
generate the rank ordered list required by MDS.

The effectiveness of the data enhancement algorithm was
defined as an efficiency measure between 0% and 100%. For
m interpoint distances the minimum possible number of direct
comparisons that could possibly establish a complete rank or-
dering is min = m — 1; the maximum number of comparisons
possible is max = m(m — 1)/2. Efficiency was determined
through simulations. A simulation was begun by making m— 1
direct comparisons, the selection criteria being only that all
the interpoint distances were represented, and then applying
all the rules of inference to be described later. If a complete
ranking was achieved this represented 100% efficiency. Gen-
erally, additional measurements, randomly chosen, were made
one at a time, with addititional inferences made after each
measurement, until either the complete rank ordering resulted
or it was determined that no further improvement in rank
ordering was possible. The required number of measurements
was then linearly interpolated as an efficiency between 0%,
if all m(m — 1)/2 measurements were required, and 100%,

Efficliency (%)
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Fig. 14. The efficiency of data enhancement as a function of resolution level

and the number of lines, m.

if only the original m — 1 were needed. The % efficiency £
is given by

E = [(max — X)/(max — min)] * 100 (25)

where X is the number of direct measurements made. Fig. 14
indicates these efficiencies as a function of m, the number of
lines, and the comparator resolution level.

Recall that m = 100 corresponds to only about 15 points.
Higher numbers of points will have somewhat higher effi-
ciencies. A comparison of Figs. 12 and 14 indicates that for
a fifteen point object and a resolution level of 0.5 standard
deviations we can expect a 75% efficiency and a pattern repre-
sentation sufficient for a reconstruction accuracy of about 98%.

D. Less than Perfect Reconstructions

To this point we have considered our goal to be a “perfect”
representation of the pattern. This would be demonstrated,
in practice, by the ability to reconstruct the pattern with
virtually no error. However, the price to be paid in terms
of information quality and quantity requirements may render
this goal undersirable. Instead, a representation consistent
with a specified reconstruction accuracy, say 97%, may be
sufficient. What effect does this have on the number of direct
comparisons that will actually be required, and what effect, if
any, does the comparator threshold have on this number?

Simulation results revealed a rather unexpected and intrigu-
ing finding. Setting the reconstruction accuracy as 96.5 —
97.5%, the cycles of measurement and inference described
previously were carried out. Fig. 15 summarizes the results.
For n = 40 (m = 780), efficiencies of as high as 90%
are obtained; roughly only 10% or 30,000 out of a possible
300,000 measurements need be made. In particular note the
very surprising result that the highest efficiency is consistently
achieved not with a perfectly precise comparator but one with
a resolution limit of about 0.5 to 1.0 standard deviations.
(Remember that standard deviations refers to variations in
interpoint distances.) Thus, from the point of view of mea-
surement efficiency, a “desirable” level of imprecision exists
and is proportional to the size of the differences it is observing.
This finding will be considered in the Discussion.
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Fig. 15. Results indicating that meeting a goal of approximately 97%
reconstruction accuracy with the fewest measurements requires an imprecise
comparator with a resolution level of 0.5 to 1.0 standard deviations.

E. Reconstructions with Noncrisp Comparators

Finally, we considered pattern representation using noncrisp
comparator data. In a crisp comparator if a difference exceeds
the threshold, no matter by how small an amount, this result
is correctly determined. No errors occur. Real data reflect
errors due to noise, drift and other problems, and are therefore
not crisp. We have made limited investigations of the effect
of this noncrispness on pattern representation, again through
reconstruction accuracy [1], [14], and found that it introduces
a residual reconstruction error, one that is apparently not
eliminated or even further reduced by an increase in the
number of points. The relationship between the degree of
noncrispness and the size of the residual error remains to
be investigated. Our simulations produced a residual error
of approximately 3%, that is the reconstructions were 97%
accurate.

VI. CONCLUSION

This paper has described how patterns, specifically point
configurations, may be represented as rank ordered lists of
interpoint distances. Reconstructions of patterns from these
lists using multidimensional scaling (MDS) demonstrated that
adequate information is stored in these lists. However, recon-
struction is often not the purpose of pattern representation.
Instead, pattern classification or recognition may be the goal.

How might this be done? Typically, the rank ordered
lists for a number of templates would be stored. These lists
have the advantage of being independent of exact size or
orientation. The stresses between the list describing the object
to be classified and the templates could then be determined
and classification based on the result. The major problem is
establishing a correspondence of the points that define the
observed pattern and the alternative template to which it will
be compared.

The efficient representation of patterns is clearly an im-
portant component of viable machine vision systems. (See
[15] and the articles that follow for recent work in this
area.) The approach described here, with its use of nonmetric,

imprecise, incomplete information suggests the possibility of a
very different “technology” than that generally being pursued.
Rather than being based on precise, generally expensive optical
devices, it points toward the use of imprecise, inexpensive
optical devices backed up by significant computing capability.

Speculation on this potential role of nonmetric measurement
in machine vision systems arises from the recognition that the
brain is unlikely to store information in any precise numerical
form. In fact, most people are rather poor at estimating
absolute numerical measures, such as the size of even a
familiar object in common units. They are, however, far better
at judging the relative measures of two objects, such as which
stick is longer.

Interestingly, this ability to discriminate is not absolute;
instead, the resolution threshold is itself relative to the size of
the objects being discriminated. This discrimination phenom-
ena, is known as “Weber’s Ratio.” The adjusting of resolution
levels plays a central role in the analysis of images using
the multiscale method, a technique being applied in medical
imaging [16]. The advantage here is that larger resolution
levels facilitate recognition of larger scale structures by sim-
plifying them. There is evidence that human vision operates
in this multiscale manner [17]. Generally, the existence of
adjustable levels of resolution is reminiscent of the results
obtained in Section V, Part D. Recall that the most efficient use
of nonmetric measurement information for less than perfect
representations dictated a level of imprecision proportional to
the object sizes.

The present scheme envisions only three outcomes of a
comparison. It might be profitable to consider additional
categories, as an example comparisons with outputs “much
shorter,” “somewhat shorter,” tie, ‘“somewhat longer,” and
“much longer.” Both the “somewhat” and “much” categories
represent “measurable” differences, but neither is included in
the other. These can be viewed as either fuzzy or crisp concepts
[5]. This increase in comparison classifications might lead
to more powerful inferencing algorithms and a reduced need
for direct comparison measurements. As an example, if A is
“much longer” than B and C is “somewhat longer” than B,
we can conclude that A is longer than C, but not necessarily
measurably longer. The applicability of these methods awaits
further research.

Finally, while the work presented here was concerned with
representational efficiency, that is, developing a useful rank
ordered list from relatively few measurements, little was said
about the sequence of measurements to make. For nonmetric
data this remains a largely uninvestigated problem, though a
start has been made for metric data [18].

APPENDIX

Relationship to Semi-Orders

Interest by psychologists in the phenomena of indifference,
as measured by a threshold value or JND, led to the develop-
ment of a mathematical relationship known as a semi-order.
Scott and Suppes [19] provided a useful definition of this
relationship (see also [13], [20]-[22]). The rules developed in
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this paper incorporate this definition. Restated in terms of line
segment lengths a relationship is a semi-order if for any four
line segments z1, 2, %3, T4 the following axioms are satisfied.
Axiom 1. not (z; > 1)

Axiom 2. (x1 > =z and z3 > z4) implies (z1 > z4 or
T3 > )

Axiom 3. (21 > z2 and z2 > z3) implies (z; > z4 or
Ty > 1'3)

Axiom 1 is self evident. To examine axiom 2 we consider
three cases. Case 1 is z3 > x5, in which case axiom 2 is
satisfied. Case 2 is 2 > 3. But then z1 > 23 > 73 > 24
implies z; > x4 and axiom 2 is satisfied. Finally, Case 3
is xa||xs. Then &1 > s and zp|jzs implies z; > z3, and
z1 > z3 and 3 > x4 implies 21 > z4. Again, axiom 2 is
satisfied. Note that in terms of the branch algebra presented
Case 3 can be summarized as

(al)b(al) = (a2)(al) = al.

Axiom 3 requires considering four cases. The first two cases
involve line 4 and line 2 being measurably different, the second
two cases involve the lines being not measurably different.
Case 1 is 3 > z4. Then 21 > x5 > x4 implies z; > z4.
Case 2 is x4 > z9; thus, 4 > =2 > z3 implies x4 > x3. In
each case axiom 3 is satisfied. Case 3 is xg| > z4. It follows
that 1 > z3| > x4 implies z; > z4. Finally, Case 4 is
x4 > o leading to z4| > z2 > z3 implying 74 > z3.
Again, axiom 3 is met in both cases.
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