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Point Pattern Representation Using Imprecise, 
Incomplete, Nonmetric Information 

Stephen H. Levine, John G. Kreifeldt and Ming-Chuen Chuang 

Abstract- A novel method is described for representing two- 
or three-dimensional patterns of n points utilizing imprecise, in- 
complete, nonmetric information. This information consists solely 
of a rank ordered list of interpoint distances determined from 
pairwise comparisons. Ideally each comparison should determine 
a longer and shorter distance, and a set of comparisons should 
include all possible pairs. Actual representation information is 
likely to be imprecise and incomplete. Methods are presented 
for maximizing the information obtained from imprecise, in- 
complete sets of comparisons through inferencing procedures. 
The sufficiency of the resulting information for precise pattern 
representation is demonstrated through its use in the reconstruc- 
tion of the patterns using multidimensional scaling (MDS). Some 
surprising results are presented on the possible advantages of 
imprecision from the viewpoint of data requirements. A short 
appendix links the inferencing procedures developed in this paper 
to the mathematical concept of a semi-order. 

I. INTRODUCTION 
There is a natural expectation that precise representation 

of a two or three dimensional pattern requires precise metric 
measurement information. A pattem consisting of n points 
might thus be described by the Cartesian coordinates of those 
points or, alternatively, by a sufficient set of distances and 
angles between point locations. This paper will describe an 
alternate approach utilizing imprecise, incomplete, nonmetric 
information [ 1 1. 

Algorithms have been developed, primarily within the field 
of psychology, which use an input set of comparisons between 
alternatives in order to construct a geometric configuration 
representing these alternatives as points in a multidimensional 
space. The distance between two alternatives in this spa- 
tial representation reflects their similarity; similar alternatives 
judged are close together. These algorithms are referred to as 
multidimensional scaling, MDS [ 2 ] ,  [3]. 

In particular, one MDS algorithm contained in ALSCAL 
[4] permits constructions to be made from nonmetric painvise 
comparisons of the type A is more similar to B than A is to C. 
(These are, in fact, just the relative comparisons that humans 
seem to be able to make, thus the interest of psychologists.) 
Specifically, these comparisons, rank ordered from the two 
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least similar alternatives to the two most similar, provide the 
input information for ALSCAL. 

The existence of this algorithm suggests that information 
sufficient to represent a pattem of points can be obtained 
based only on painvise comparisons of interpoint distances. 
Information will be of the form “point A is closer to point B 
than point A is to point C.” From this set of comparisons a 
rank ordered list of interpoint distances can be developed. This 
list represents an alternative pattern representation method, 
utilizing nonmetric measurement. 

Moreover, this representation can be accurate using rel- 
atively imprecise information. Imprecise information results 
when a comparison fails to determine the longer of two 
interpoint distances. This occurs when the difference lies 
below a threshold value or minimum resolution level (known 
as a just noticeable difference (JND), when a human is making 
the comparisons) of the comparator. The comparator is said 
to exhibit indifference with regard to the two distances and 
the result is declared to be a “tie.” However, many, if not 
all, of these ties can be broken through inference procedures, 
more so as the number of points increases. The greater the 
percentage of ties that are resolved the closer we come to 
achieving a complete rank ordered list and, in turn, an accurate 
representation. 

While representational accuracy potentially increases with 
n, the number of points in the configuration, the number of 
possible painvise interpoint distance comparisons increases 
as the fourth power of n. Fortunately, a complete set of 
these possible comparisons need not be directly made; the 
results of many can be inferred using algorithms that will be 
described in this paper. This is true even when the comparator 
threshold is relatively large. The role of inference methods 
in allowing the use of imprecise, incomplete information is a 
basic theme of the pattern representation method described in 
this paper; computing power is utilized to reduce the amount 
and preciseness of the information that must be acquired 
through direct measurement. Given the present increases in 
computing power and the decreases in computer size and cost, 
this gives promise of being an increasingly appealing tradeoff. 

The sufficiency of imprecise, incomplete, nonmetric infor- 
mation in pattern representation can be demonstrated through 
the accurate reconstruction of two and three dimensional point 
configurations using MDS. Chuang [l], in a study that forms 
the basis for this paper, has shown that as the number of points 
increases this nonmetric information is sufficient to represent 
the object with arbitrarily increased accuracy, independent of 
any exact scale or rotation information. 
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Three related characteristics of the comparison informa- 
tion, important to this representional method, should be dis- 
tinguished. These are precision, crispness, and correctness. 
Precision, as noted, refers to the size of the threshold value. 
“Precise” comparators have zero thresholds, and therefore 
produce only two comparison outcomes, “larger” or “smaller.” 
In contrast, imprecise comparators have nonzero thresholds 
and can produce a third outcome-“tie.” Crisp comparators 
exhibit sharp, contiguous, nonoverlapping cutoffs between 
the various outcomes. Humans, by contrast, exhibit noncrisp, 
or fuzzy, behavior when making comparisons [ 5 ] .  Correct 
comparators may produce ties but do not make mistakes. They 
therefore are consistent; the same comparison will always 
produce the same outcome. We will briefly consider the 
impact of inconsistencies on representation accuracy, an area 
demanding considerably more attention. 

A large literature exists on pattern representation. Many 
representation schemes are based on the use of various series 
expansions, such as Karhunen-Loeve [6], Fourier [7], and 
Gabor [8] functions. The pattern specific information is then 
stored in the numerical values of the coefficients in the 
expansions. Alternative methods, widely used in computer 
graphics as well, decompose “pictures” into basic shapes, such 
as spherical surfaces [9]. The numerical parameters describing 
these shapes, i.e., the radius of the sphere, require require 
precise metric information. 

Within the the broader context of pattern recognition. Wat- 
son [lo] has noted that the perceptual process in general 
involves three stages; filtering, coding, and interpretation. A 
statement such as “a pattern consisting of a configuration of 
points” assumes that, unless the original pattern consisted 
only of points, substantial filtering of information has oc- 
curred. It further assumes that primitive analysis has already 
identified relevant characteristics, Le., important points [ 1 I]. 
Filtering is also implied by the statement “utilizing imprecise, 
incomplete, nonmetric information” since the possibility of 
metric information is disregarded. The representation tech- 
nique to be described involves a coding of the information 
that remains after this primitive analysis and filtering has been 
done. 

The remaining sections of this paper will cover the follow- 
ing topics. Section I1 briefly describes the use of MDS in this 
research, and provides some useful definitions pertaining to 
data sets and rank ordered lists. Sections I11 and IV develop the 
algorithms for achieving rank ordered lists with complete and 
incomplete sets of data respectively. Section V describes the 
basic results obtained in pattern representation as demonstrated 
through reconstruction. These results relate the accuracy of 
representation to the number of points describing the pattern 
and to the preciseness of the comparators. Reconstructions 
were based on information obtained from both precise and 
imprecise comparators. A very brief discussion is included on 
results obtained using noncrisp comparators. A more detailed 
description can be found in [ 11. Section VI is a brief discussion 
of several related topics. An Appendix relates the algorithms 
developed in this paper to semi-orders, a measurement con- 
cept developed in the realm of the social and biological 
sciences. 

11. RANK ORDERED LISTS, DATA SETS, AND INFERENCE 

In this section we provide some background on MDS 
and data sets, particularly with regard to the role of rank 
ordered lists and their development using inference procedures. 
Inference procedures can achieve two basic benefits. First, they 
can in many instances determine relative rank when, due to 
lack of precision, direct measurement fails to do so. Second, 
they can in many instances determine relative rank in lieu of 
direct measurement. In both cases the determination of relative 
rank leads to an increase in representational accuracy. 

A. A Brief Description of Multidimensional Scaling (MDS) 

In using ALSCAL we begin with a rank ordered list of 
interpoint distances generated from a two (or three) dimen- 
sional pattern of n points from which we wish to reconstruct 
this pattern. (In applications in psychology there is no pre- 
existing pattern, and the dimensionality of the data is unknown. 
The user is constructing a spatial representaion of nonspatial 
information.) ALSCAL begins by locating the n points at 
random in a two (or three) dimensional space and then 
determining a rank ordered list of interpoint distances based on 
this random configuration. The two lists can then be compared. 
They will exhibit differences and the measure of this difference 
is referred to as stress. 

The algorithm then proceeds through a sequence of steps 
that reduces this stress by moving the points in the config- 
uration it is developing. As the algorithm proceeds it will 
generally be able to reduce the stress to an arbitrarily small 
number. If the number of points is sufficiently large this 
arbitrarily small stress can only be reached by converging on 
the original pattern. 

An incomplete list for the original pattern does not prevent 
the algorithm from proceeding but missing information cannot 
contribute to the stress and therefore can contribute to reduced 
accuracy of the reconstruction. MDS is designed, ideally, to 
use precise, complete information. In this paper the “enhance- 
ment” of imprecise, incomplete data by various inference 
techniques allows MDS to work well on less than ideal 
information, and therefore demonstrate the adequacy of this 
imprecise, incomplete information for pattern representation. 

While ALSCAL evaluates reconstruction accuracy based 
on stress we are interested in a more meaningful measure. 
Intuitively, such a measure should describe the deviation of the 
points in the reconstruction, once it is appropriately scaled and 
positioned, from their location in the original configuration, 
normalized for the size of the pattern [I]. Location can be 
given as Cartesian coordinates. To illustrate, Fig. 1 shows a 
reconstruction with 3% mean coordinate error. Far smaller 
errors are readily achieved, even with imprecise, incomplete 
information. Even 3% error would not be readily perceived by 
a human if the two configurations were not overlayed. 

B. Data Sets and Rank Orderings 

The information obtained directly from the painvise com- 
parisons that are made is the measured data set. As noted, 
additional information can be achieved through inference. This 
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Fig. 1. Reconstruction of a configuration with 3% mean coordinate error. 
Note that this error, while perceptable with the configurations overlapped, 
would not be readily perceived if the configurations were separated. 

K 

K 

indirectly obtained information is the inferred data set, and the 
combination of the two is simply the data set. 

If information is available for every possible painvise com- 
parison a complete data set exists; a “tie” constitutes informa- 
tion as much as “longer than” or “shorter than.” By contrast, 
an incomplete data set lacks any comparison information for 
one or more pairs of interpoint distances. Clearly, a measured 
data set can be complete or incomplete. If no ties exist the 
information constitutes a precise data set. Note that a precise 
data set need not be complete. If ties are present in the data 
it is referred to as an imprecise data set, and this too may be 
complete or incomplete. 

Data sets provide the means for developing rank orderings 
among the interpoint distances, from “longest” to “shortest.” 
Clearly, a complete, precise data set is necessary and suffi- 
cient for developing a complete rank ordering. Anything less 
will give rise to a partial rank ordering. While a complete 
rank ordering is not always required for an accurate pattern 
representation, in general the more complete the better the 
representation. However, obtaining a complete, precise data 
set is not always possible or, in some cases, even desirable. 
This will be demonstrated through MDS reconstructions. 

We are now ready to discuss the specifics of inference 
procedures under different conditions of information com- 
pleteness and preciseness. Interpoint distances will be referred 
to as line lengths since it is natural to visualize a pair of 
points as connected by a line segment. A pattern containing 
n points involves m = n(n - 1)/2 interpoint distances or 
lines. A complete set of measurements requires m(m - 1)/2 
comparisons. 

111. COMPLETE MEASURED DATA SETS 
The data set obtained from a precise, complete set of 

comparator measurements will allow a complete rank ordering 
of line lengths. In this section we consider the role of inference 
in establishing a rank order with a complete but imprecise set 
of measurements. In particular, to what degree can inference 
help improve rank ordering? 

A. Inference in a Complete Measured Data Set 

When using a comparator with a threshold d > 0 to compare 
lines I and J, of lengths xi and xj respectively, three outcomes 

Branch Symbols: 1- x i  >> xi 

xi I I xj 1- W 
Fig. 2. The four possible outcomes of three pairwise comparisons. 

are possible. These are: 
(i) xi >> xi, I is measurably longer than J ,  that is x; > 

(ii) xj >> x;, J is measurably longer than I ,  that is xj > 

[iii) xil(xj, I and J are not measurably different in length, that 

The third outcome is not the same as saying that the two 
line segments are of equal length, an event that occurs with 
a probability of zero. (However, a line is by definition equal 
to itself, i.e., xi = xi.) If the first or second outcome occurs 
we shall consider the relative lengths to have been established 
by direct measurement, or directly established. If the third 
outcome occurs we will hope to resolve this “tie” indirectly 
through inference. 

The basic mechanism of inference in a complete set of 
measurements is based on the painvise comparisons of three 
lines, I ,  J, and K .  The four possible outcomes of these 
measurements are illustrated by the modified digraphs shown 
in Fig. 2. The branch symbols correspond to the two outcomes 
noted above. The digraph of Fig. 2(b) is of particular interest. 
It illustrates the intransitivity associated with indifference; a tie 
between K and I and a tie between I and J does not always 
mean a tie between J and K .  Later, we will list the rules 
of inference in detail; here we note that if J is measurably 
longer than K whereas I is not measurably different than K ,  
then we can infer that J is longer than I ,  though possibly 
not measurably so. Remembering that the threshold is d, 
xj > Xk + d and xk - d < xi < 51; + d, from which we can 
conclude that xj > xi. Similar reasoning allows us to conclude 
that I is longer than K ,  and a complete rank ordering of the 
three lines is established. In contrast, Fig. 2(a) does not allow 
us to establish any relations through inference. Surprisingly, 
neither does Fig. 2(c), in spite of having fewer ties than 
Fig. 2(b). Fig. 2(d) has an already established complete rank 
ordering. 

A complete measured data set for m lines can be represented 
as a complete digraph having m nodes using the branch 

xj + d ;  

xi + d ;  

is, xj - d < x; < xj + d. 
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(b) 

Fig. 3. Probability density functions for z, and Iz, - x31. 

symbols intoduced in Fig. 2. This complete digraph consists 
of m!/(m - 3)!3! triangular digraphs of the types shown in 
Fig. 2, and each branch occurs in (m - 2) of these. From the 
results above we note that a branch direction that has not been 
established through direct measurement may yet be established 
through inference if at least one of those (m - 2) triangular 
digraphs is of the type shown in Fig. 2(b). Intuitively, it seems 
that the larger the value of m the greater the possibility of this 
inference. At the same time the fraction of branches whose 
directions can not be established by direct measurement is 
important, and is determined by the size of the threshold. We 
will investigate this in detail. 

B. Probability of Establishing Relative 
Lengths by Direct Measurement 

We assume a set of m lines whose lengths are uniformly and 
randomly distributed between 0 and 1, and a minimum level 
of resolution, the threshold, given by d. Clearly, if d = 0, only 
Fig. 2(d) triangles occur and if d > 1 only Fig. 2(a) triangles 
occur. We are therefore interested in the range 0 < d < 1. 
(In effect, d is scaled to the range of xi.) Fig. 3 indicates 
the probability densities of x; and of (xi - zjl. From Fig. 
3(b) we can readily determine that with a threshold of d the 
probability of establishing the relative values of xi and x j  by 
direct measurement, Pr(M), is 

Pr(M) = Pr(lx; - x j (  > d )  = (1 - d ) 2  (1) 

As expected, as d approaches 1, Pr(M) approaches 0. 

C. Probability of Establishing Relative Values through 
Inference 

Next we consider the case where )xi  - x j  1 < d. Based on our 
previous discussion we know that given a third line segment K 
we will be able to establish the relative values of z; and x j  if 

~ 
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Either of these cases is equally likely so we will consider only 
Case A and evaluate 

Pr(((x; - xkl < d and Ixj - zkl > d ) / l z ;  - zjl < d) .  

We use the notation Pr(u/w) for the conditional probabilty 
event u occurs given that event w occurs. If we replace the 
conditional probability 

Pr(lx; - x k l  < d / J x i  - x j l  < d )  

by the unconditional probability 

Pr((Xi - xkl < d )  

(1%; - xk (  is not independent of Ixi - x j l ,  but the error 
introduced is acceptably small), then 

Pr((lx; - Z k l  < d and Ixj - a  > d) / l x ;  - xj l  < d )  
= Pr((x; - xk( < d)Pr((xj - zk( > d/ ( lx ;  - xkl < d and 

1”; - “ j l  < d) ) .  (2) 

Since 

Pr(lxi - x k l  < d )  = 1 - Pr((x; - zkl > d) ,  (3) 

we obtain, using (I), 

Pr(lx; - xkl < d )  = 1 - Pr(M) (4a) 
(4b) = 1 - (1 - d)2 

For brevity, we define the conditional probability 

Pr(A) = 

Pr(lxj - Z k l  > d / ( J x i  - x k l  < d and Ix; - x j l  < d ) )  
( 5 )  

and investigate the four possible cases. 

Case 1:x; > d and xi < 1 - d 
In this case both x j  and X k  are uniformly dis- 
tributed between x; - d and xi + d, and the 
conditional probability density function of Ixj - 
xkl is shown in Fig. 4(a). (For brevity we have 
omitted repeating the conditional nature of these 
probabilities indicated in ( 5 ) )  Clearly, 

Pr(A) = 0.25 (6)  

Case 2 : ~ ;  < d and x; < 1 - d 
In this case both xj and xk are uniformly dis- 
tributed between 0 and xi + d, and the probability 
density function of Ixj - xkl is shown in Fig. 
4(b). We find that 

Pr(A) = ((x;/(xi + d ) ) 2  (7) 

Case 3:x;  > d and xi > 1 - d 
In this case both xj and xk are uniformly dis- 
tributed between x; - d and 1, and the probability 
density function of Ixj - X k l  is shown in Fig. 
4(c). Thus, 

Pr(A) = ((1 - z;)/(l - x; + d ) ) 2  (8) 
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( a )  Case 1 (b) Case 2 
d < X i < l - d  x i  < d and x i  < 1 - d 

(c) Case 3 ( d )  Case 4 
xi > d and x i  z 1-d 1 - d < xi < d 

Fig. 4. The probability density function of 
I, and d. 

- zk l  for four cases relating 

Case 4:xi < d and x i  > 1 - d 
In this final case both xj and x k  are uniformly 
distributed between 0 and 1, and the probability 
density function of Ixj - xkl is shown in Fig. 
4(d). Therefore, 

Pr(A) = (1 - d)'. (9) 

Recalling that the probability of not establishing relative 
lengths by direct measurement is 1 - Pr(M), and that Case B 
was equally probable as Case A, we define Pr(C) to be 

Pr(C) = (1 - Pr(M)) * (Pr(A) + Pr(B)) 
= 2 * (1 - Pr(M)) * Pr(A) (10) 

where Pr(B) is the equivalent expression to (5) for Case B. 
The event C corresponds to the lengths xi and x j  not being 
measurably different but forming along with line K a triangle 
of the type shown in Fig. 2(b). The dependence of Pr(C) on zi 
can be eliminated by determining the expected value of Pr(C) 
with respect to xi. We will designate this expected value as 

The probability that x; and x j  can be distinguished by 
inference when they can not be distinguished by measurement, 
given a complete set of measurements among m line segments, 
is 

(1 1) 

E {Pr(C> 1. 

Pr(I/not M) = 1 - [l - E{Pr(C)}]"-2. 

Pr(D), the probability that xi and x j  can be distinguished 
either directly or, if not directly, by inference, is 

Pr(D) = Pr(M) + (1 - Pr(M))Pr(I/not M). 

D. Determination of Pr(D) as a Function of d and m 

Equation (12) was evaluated for various values of d and 
m. E{Pr(C)} was approxximated by computing Pr(C) for 
values of xi ranging from 0 to 1, and averaging. The results 
of these evaluations are shown in Fig. 5, and compared to 
Pr(M) as well. (Also, see Fig. 13.) Note the dramatic tradeoff 
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0 0 2  0 4  0 6  0 8  I 1 2  

d 

m = 80 + m = 4 0  + m = 2 0  - 
+ m = l O  * m = 3  -3 Pr(M) 

Fig. 5 .  Pr(D) as a function of threshold d for several values of m. Pr(D) 
is that probability that two lines segments can be rank ordered either directly 
by measurement or indirectly by inference. 

between the requirement for a small threshold and the number 
of line segments being compared. For example, data from a 
comparator with a threshold of d = 0.8 will contain 96% 
"ties." This data might seem of little use in rank ordering 
lengths. However, for m = 80 its use leads to a near 100% 
unambiguous rank ordering of the length of the lines. 

Another view of this tradeoff is of one between the quality 
and the quantity of data, where a large quantity of data 
requires, in turn, speed of computation. Lower quality data, 
as might come from less precise comparisons, is adequate if it 
is available in sufficient quantity and the computational power 
exists to carry out the inferencing required in an acceptable 
amount of time. 

The results for m = 40 and m = 80 show a striking 
insensitivity to d over a substantial part of its range. The 
m = 20 curve displays a lower value of Pr(D) for d = 0.05 
than for d = 0.4, an initially rather surprising result. This is 
also true, though not so dramatically, for m = 40 and m = 80, 
and apparently results from the ability to infer a complete order 
in Fig. 2(b) and the inability to do likewise in Fig. 2(c). Note 
that a similar result appears in Fig. 13. This phenomena of 
more precision not necessarily leading to more information 
occurs elsewhere in our results. 

IV. INCOMPLETE MEASURED DATA SETS 

We have discovered that simple rules of inference can 
prove a powerful tool in determining rank by length among 
a set of lines when measurement information is restricted to 
painvise comparisons even when the comparator has a nonzero 
threshold and therefore produces many ties. So far, however, 
we have only considered the case of a complete measured 
data set. We next explore the far broader use of inference in 
determining rank order among a set of m lines given that less 
than the complete set of m(m - 1)/2 comparisons is available. 
We will first briefly explore the use of inference in the case 
of a zero threshold comparator, and then consider the more 
general case of a nonzero threshold. It will be necessary to 
significantly expand the set of relationships. We remind the 
reader that the importance of rank determination, and therefore 
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comparisons. (a) Measured results. (b) Measured plus inferred results. 
Fig. 6.  Digraph representation of measured and inferred results for pairwise 

of inference procedure, is increased representational accuracy. 
Inference procedures make explicit all the information that is 
implicit in a measured data set. 

A. Inference with Precise, Incomplete Data 

With a zero threshold a comparison of lines A and B can 
lead only to x, >> zb or X b  >> x,. The relationship >>, 
"measurably longer than," is transitive, therefore the basic rule 
of inference is that x, >> xb and xb >> x, implies x, >> x,. 
This rule is illustrated in Fig. 6. 

Repeated use of this rule of inference allows all the infor- 
mation implied by a set of measurements to be determined. 
Fig. 7 illustrates how the four measurements 

x1 >> 2 2  

5 2  >> 2 5  

2 3  >> 2 1  

2 5  >> 2 4  

allow the remaining six pairwise comparisons to be inferred. 
(With m = 5 there are 5 * 4/2 = 10 total comparisons 
possible.) The result is equivalent to what would have been 
obtained through the complete set of ten measurements. This 
inference procedure is easily developed as an algorithm based 
on the digraph concept of reachability [12], [13]. As an 
operational alternative to a digraph, the information gained 
by measurement can be stored in the measurement matrix M ,  
a variant of an adjacency matrix [ 121, [ 131, where m(i, j )  = 1 
if xi >> xj, as determined by measurement, and m(i , j )  = 0 
otherwise. For m lines, M is an m x m matrix. We then 
compute the inference matrix Q ,  where 

Q = B [ M + M 2 + M 3 + . . . + M " - l ] .  (13) 

The ( i j ) th  element of M k  is the number of different 
paths of length k from node i to node j. The possible path 
lengths, without cycles, range from 1, corresponding to direct 
measurement, to m - 1. The existence of even one path of 
whatever length from node i to node j implies line I is 
measurably longer than line J .  B[]  is the matrix boolean 
operation; all nonzero matrix elements are set equal to one( 1). 
Therefore q ( i , j )  = 1 means that xi >> xj, determined either 
directly by measurement or indirectly through inference. Note 
that q ( z , j )  = 0 corresponds to either xi << xj, xi = xi, 
or to no knowledge of the relative lengths of I and J .  More 

1 2 3 4 5 

1 2 3 4 5 

(c) 

Fig. 7. Digraph representation of complete ordering according to length of 
five lines. (a) Measured results. (b) Measured results plus inferred results 
based on direct application of Fig. 2. (c) Measured results plus all inferred 
results based on continued application of Fig. 2. 

complete notation would allow these outcomes to be separated 
but is not necessary at this point. In closing this section we 
also note that the rules of matrix multiplication plus the rules 
of the boolean operation together provide rules for simplifying 
parallel and serial connections of digraph branches. This will 
be elaborated in the next section. 

B. Relationships for  Imprecise, Incomplete Data 

We consider the more general case where the data is 
obtained with a comparator having a nonzero threshold. Previ- 
ously, a simple example of inference under this condition was 
presented. We now develop more general rules of inference. 
Consideration of a number of sample problems indicates that 
there are five different relationships between two lines that 
must be taken into account. The digraph branch associated 
with each of these relationships is given a different algebraic 
gain and the digraph model becomes a weighted digraph or 
network model [ 121, [ 131. These relationships and associated 
gains are listed below, and the corresponding network branch 
symbols are indicated in Fig. 8. 

i) x, >> x3 ; I measurably longer than J ;  x, > x3 + d; 
gain = a l .  

ii) 2, > x3; I longer than J ,  the difference may or may 
not be measurable; gain = a2. 

iii) x,=I x3; I longer than J ,  the difference is not measur- 
able; x3 < x, < x3 + d; gain = a3. 

iv) x,ll.rJ; I and J not not measurably different in length: 
x3 - d < x, < x3 = d; gain = b. 

v) x,)lzj; if 1 is longer than J the difference may or may 
not be measurable, if I is shorter than J the difference 
is not measurable; either x, > x3 or x3 - d < x, < x3; 
gain = c. 
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C 

1 - 7  

(5) 

Fig. 8. The five branch types;their branch gains and symbols. (a l )  
z, >> zJ : I measureably longer than J .  (a2) z, > z) : I longer 
than J .  (a3) z,] > zJ : I longer than J ;  difference is not measurable. (b) 
z,llzJ : I and J not measureably different in length. (c) z, > lzJ : if I is 
longer than J difference may or may not be measurable; if J is longer than 
I difference is not measurable.. 

Relationships (i) and (iv) can arise either through mea- 
surement or inference, whereas the other relationships arise 
only through inference. Relations (i), (ii), (iii), and (v) are 
directional or asymmetric; complementary relationships exist 
and, unlike in the previous section, must be accounted for. 
These are indicated by underscoring the gains; thus cor- 
responds to I measurably shorter than J .  Relationship (iv) is 
symmetric and is its own complement. Only relationship (i) 
and its complement are transitive. 

C. Branch Inference Algebra 

TABLE I 
SERIES BRANCH REDUCTION 

BRANCH INFERENCE ALGEBRA 

a2 a2 a 2 0  0 c c c 0 
a3 a 2 & c  b e  c 0 
a1 
& a2 a2 c 0 c 
a3 - -  a 2 c  0 c 
b 0 0 0  

0 0  

a1 a1 a1 a2  0 & - - - -  - 

- 

C 

- c 0 
Notes: 1) 0 indicates no inference can be made. 2) Table is symmetrical 
since ab = ba, etc. 

TABLE I1 
PARALLEL BRANCH REDUCTION BRANCH INFERENCE ALGEBRA 

a 1  a2 a3 d & & b  c c 
a1 a 1  a1 - - a1 - 
a2 a2  a3 - - a3 a2 a3 
a3 a3 - - a3 a3 a3 

- a1 - a1 - -  a1 a 1  - - 
a2 a3 a3 a3 a2 - a2 

a3 a3 a3 a3 - a3 _ _ - -  
b b b b  
c c b  
C - C 

Notes: 1) - indicates parallel combination cannot occur. 2) Table is 
symmetrical since a + b = b + a ,  etc. 

_ _ _ - -  

- 

by their gains. Note that the complements must be included 
so that all the algebraic rules of Tables I and I1 can be 
implemented. While it is possible to parallel equation (13) 
by first computing the matrix power series and then applying 
the branch inference algebra rules, to avoid the resultant long 
algebraic expressions it is more efficient to apply the reduction 
rules at each step. An even more efficient algorithm, requiring 
fewer matrix multiplications, follows. 
(i) With M the measurement matrix determine the matrix 

As in the case of the zero threshold analysis, we determine R(1) = ( I  + M )  (14) 
rules for the simplification of series and parallel branches in 
terms of their gains. The rules are somewhat more complex 
since with four asymmetric and one symmetric gain we have (ii) Determine 
9 x 9 = 81 combinations to consider in each case. These are 
summarized in Tables I and 11. As an example, assume an a3 
branch from I to J ,  meaning x3 < x, < x3 + d, in series with 
an al branch from J to K ,  x3 < Xk - d. Thus Za < x3 + d 
and -a < -(x3 + d) .  Adding, we obtain x, - xk < 0 or 
x, < Xk, which corresponds to an & branch. As a second (iii) Continue determining 
example assume an a2 branch in parallel with a b branch, both 

These combine to x3 < x2 < x3 + d, an a3  branch. Note that 
the case of zero threshold could be handled as a special case (iv) Then 
where only branches of gain a1 (and ulJ are allowed. 

D. Matrix Methods for Inferencing 

The goal is to achieve a generalization of (13) allowing 
for nonzero thresholds. This can be done by constructing a 
measurement matrix in which the branches are represented 

where I is the matrix. 

R(2) = S[R(1)2] (15) 

where S [ ]  is the branch algebra reduction operator, anal- 
ogous to the Boolean operator of (13). It indicates the 
implementation of all the rules of Tables I and 11. 

running from I to J .  Then xa > x3 and x3 - d < x, < x3 + d. R(z) = S[R(z - l)’] (16) 

until either R(i) = R(i - 1) or 22 2 m. 

Q = R(i).  (17) 

This algorithm requires one additional algebraic rule, 
namely that 1 + (any algebraic expression) = 1. The gain 
1 corresponds to a line segment being identical in length to 
itself. 
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& =  

1 2 3 4 5 

(a) 
---a -- . 

-1  a3 a1 a1 a1 a3- 
- a3 1 a3 a2 a1 b 
a2 a3 1 a3 a1 & 
- a l & &  1 a 3 a 3  
_ _  a1 a l u l a 3  1 gJ 

-a3 - b a3 a3 a1 1 - 

- - 

(b) 

Fig. 9. Example 1-Measured and inferred results based on comparator with 
nonzero threshold. (a) Measured results. (b) Measured plus inferred results. 

E. Matrix Inferencing: Example 1 

Fig. 9(a) is a network indicating a system of five lines in for 
which six of the possible ten measurements were made. In only 
two of these measurements did the difference in length exceed 
the comparator threshold. This set of data can be represented 
by the matrix 

O b  b O O  
b O d a l  

(18) 

From this we use the algorithm and inference rules described 
above to compute the sequence of matrices: 

1 a3 a2 0 

Q = R(2). 

The Q matrix is represented by the digraph in Fig. 9(b), except 
that the loops of gain 1 from each node to itself are suppressed. 

In this case the result is a complete digraph and a complete 
rank ordering of the lines. The j t h  line can be scored by adding 
the number of a's in the j t h  row and subtracting the number 
of a's in the j t h  column. These scores can then be arranged 
to rank the line lengths. For this example we obtain 

Line Score 
3 +4 
1 +2 
2 0  
5 -2 
4 -4 

with higher scores corresponding to longer lines. From the 
branch gain definitions note that only a2 and c represent 
incomplete information. A 0 gain would of course represent 
incomplete information as well. In this example additional 
information can be obtained only by direct comparison of line 
1 and line 5. This will, however, not effect the rankings. 

F. Matrix Inferencing: Example 2 

by the measurement matrix 
Consider a second example, represented in Fig. 10(a) and 

0 b a l O O  b 
[ b  0 b 0 0 0 1  

J 0 O d b  0 0 
b O O b O O  

This results in 

and is represented by the digraph in Fig. 10(b). A ranking can 
be computed, 

Line Score 
1 +5 
2 $2 
6 +2 
J -1 
4 -3 
5 -5 

and this time line 2 and line 6 remain tied. Note that they are 
joined by an inferred b branch. Therefore, it would do no good 
to directly compare them; a tie would result. However, the a2 
joining line 2 and line 4 represents incomplete information. 
If that measurement is made and line 2 is measurably longer 
than line 4 the tie would be resolved; line 2 would be longer 
than line 4, though not necessarily measurably so. If line 2 is 
not measurably longer than line 4 the tie between lines 2 and 6 
cannot be resolved given the size of the comparator threshold. 

V. PAITERN REPRESENTATION: SOME 
RECONSTRUCTION RESULTS 

To determine the accuracy of pattern representation based 
on nonmetric information we utilized MDS to reconstruct the 
patterns. The reconstructions could then be compared to the 
original patterns to determine error. 

A. Reconstructions Based on Precise, Complete Information 

We initially explored the reconstruction accuracy of the 
nonmetric algorithms by reconstructing various 2-D and 3-D 
patterns based on precise, crisp, correct, complete informa- 
tion. Patterns ranging from 17 to 75 points were used. (75 
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6 

(b) 

Example 2-Measured and inferred results for comparator with 
nonzero threshold. (a) Measured results. (b) Measured plus inferred results. 
Fig. 10. 

Coordinate Errors (7 )  

; 

I 

0 Y a 
16 e2 30 40 5 5  75 

Number of Points 

- Average(Plane) + S.D. (Plane) +& AveragelSpace) S.D. (Space1 

Fig. 11. The reconstruction accuracy of the nonmetric ALSCAL algorithms. 
Results for two configurations are shown, a three-dimensional random figure, 
labelled Space, and a planar, but otherwise random, configuration located in 
three-dimensional space, labelled Plane. In each case, as the number of points 
in the configuration increases the mismatch between the input and output 
configurations rapidly vanishes to zero. 

points gives rise to almost 4 million comparisons.) Since the 
reconstruction is independent of scale, position and rotation, 
accuracy was determined by orienting and scaling the re- 
construction until it had the best overlay with the original 
pattern. 

Fig. 11 shows the average and the standard deviation of 
the percentage mismatch between the original and the recon- 
structed configurations for an increasing number of points in 
two three-dimensional test configurations. One is a random 
configuration labelled Space. The second is a planar config- 
uration, labelled Plane. The MDS algorithm is not provided 
the information that the configuration is in fact planar. If this 
information were provided the reconstruction would naturally 
be more accurate [l] .  The larger coordinate errors in Plane 
may result from coordinate errors normal to the plane of the 
planar configuration producing relatively little stress. 

Average Coordinate Errors (%) 

15 i ~ 

I 

10 k 

0.5 1.5 2.5 
Mechanical Resolution (S.D.) 

17 polnts - 40 polnts -*- 75 polnts - 
Fig. 12. Results indicating that the accuracy of reconstruction is virtually 
unaffected as the comparator becomes increasingly imprecise until large 
resolution levels (thresholds) are reached. 

The results displayed in Fig. 11 indicate that 100% recon- 
struction accuracy can be approached with arbitrary closeness 
as more points are included in the configuration. This improve- 
ment results from the increasing constraint on the position of 
each point that occurs as the number of distance comparisons 
increases; eventually a point can be moved only a very small 
distance without producing a change in the rank ordered 
list. 

B. Reconstructions Based on Imprecise, Complete Information 

The previous examples were based on data obtained from 
precise comparisons. However, data obtained from imprecise 
comparisons, those with nonzero thresholds, contain “ties.” 
In this research we are interested in how this threshold level 
affects reconstruction accuracy. In order to compensate for 
the “size” of the point configuration the threshold, or level of 
resolution, was standardized as a percentage of the standard 
deviation of the differences in interpoint distances to be 
compared. Zero percentage therefore corresponded to precise 
comparisons. 

The frequency of ties depends not only on the resolution 
level but on the distribution of lengths as well. Tchebyshev’s 
inequality insures that regardless of the distribution, resolution 
levels of 2 standard deviations must produce more than 75% 
tied comparisons. Even with this high percentage of ties we 
find that the MDS routine works well. 

Fig. 12 indicates that rather large thresholds have virtually 
no effect on the accuracy of reconstruction until resolution 
levels approach 2 standard deviations. (Even then, increased 
numbers of points can reduce this error.) This surprising result 
is explained by the results of Section 111, shown in Fig. 5. 
Recall that these results involved the roles of measurement 
and inference in determining the relative lengths of lines 
for complete but imprecise data. Fig. 13 presents simulation 
results complementing the theoretical results shown in Fig. 5.  
The scoring system used by Chuang [ 11 to input the results of 
the comparisons to the MDS algorithm implicitly carries out 
the required inferencing procedures. 
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Probability of Resolution 
I .8 

0.2 c 
I 

0 
0 0 .5  1 1.5 2 2 5  

R e s o l u t i o n  Level (S.D.) 

m = 1 0 0  + m = 3 0  + m = l O  + m = 6  - 
Fig. 13. The probability of resolving a comparison in a complete data set 
either by measurement or by inference. These results are based on simulations. 
Note that for larger numbers of comparisons this probability remains near 
unity until the comparator resolution level becomes relatively large. m = 100 
corresponds to a configuration of approximately 15 points. 

C. Reconstructions from Incomplete Measured Data 

So far we have considered complete measured data sets. For 
a pattern made up of n points this is approximately ( 1/8)n4 
measurements. Fortunately, as we have seen, the significant 
amount of redundancy present in this data allows the outcomes 
of many of those comparisons not directly made to be inferred, 
using the procedures outlined, and thus the data set and the 
rank ordering made more complete. This process is referred to 
as data enhancement. Specifically, data enhancement involves: 

1) wherever possible using inference procedures to make 
the data set more precise; 

2 )  wherever possible using inference procedures to make 
the data set more complete; 

3) whenever possible malung additional measurements and 
repeating 1. and 2. until the data set is complete and 
precise or can be resolved no further. 

At the completion of this procedure the data set is used to 
generate the rank ordered list required by MDS. 

The effectiveness of the data enhancement algorithm was 
defined as an efficiency measure between 0% and 100%. For 
m interpoint distances the minimum possible number of direct 
comparisons that could possibly establish a complete rank or- 
dering is min = m - 1; the maximum number of comparisons 
possible is max = m(m - 1)/2.  Efficiency was determined 
through simulations. A simulation was begun by making m - 1 
direct comparisons, the selection criteria being only that all 
the interpoint distances were represented, and then applying 
all the rules of inference to be described later. If a complete 
ranking was achieved this represented 100% efficiency. Gen- 
erally, additional measurements, randomly chosen, were made 
one at a time, with addititional inferences made after each 
measurement, until either the complete rank ordering resulted 
or it was determined that no further improvement in rank 
ordering was possible. The required number of measurements 
was then linearly interpolated as an efficiency between 0%, 
if all m(m - l ) / 2  measurements were required, and loo%, 

0 0.5 I 1.5 2 2.5 
Resolution (S.D.) 

m - 6  6- m 10 + m.15 - 
ft m-30 +- m LO -+ m - 100 

Fig. 14. The efficiency of data enhancement as a function of resolution level 
and the number of lines, m. 

if only the original m - 1 were needed. The % efficiency E 
is given by 

E = [(max - X ) / ( m a x  - min)] * 100 (25) 

where X is the number of direct measurements made. Fig. 14 
indicates these efficiencies as a function of m, the number of 
lines, and the comparator resolution level. 

Recall that m = 100 corresponds to only about 15 points. 
Higher numbers of points will have somewhat higher effi- 
ciencies. A comparison of Figs. 12 and 14 indicates that for 
a fifteen point object and a resolution level of 0.5 standard 
deviations we can expect a 75% efficiency and a pattern repre- 
sentation sufficient for a reconstruction accuracy of about 98%. 

D. Less than Perfect Reconstructions 

To this point we have considered our goal to be a “perfect” 
representation of the pattern. This would be demonstrated, 
in practice, by the ability to reconstruct the pattern with 
virtually no error. However, the price to be paid in terms 
of information quality and quantity requirements may render 
this goal undersirable. Instead, a representation consistent 
with a specified reconstruction accuracy, say 97%, may be 
sufficient. What effect does this have on the number of direct 
comparisons that will actually be required, and what effect, if 
any, does the comparator threshold have on this number? 

Simulation results revealed a rather unexpected and intrigu- 
ing finding. Setting the reconstruction accuracy as 96.5 - 
97.5%, the cycles of measurement and inference described 
previously were carried out. Fig. 15 summarizes the results. 
For n = 40 (m = 780), efficiencies of as high as 90% 
are obtained; roughly only 10% or 30,000 out of a possible 
300,000 measurements need be made. In particular note the 
very surprising result that the highest efficiency is consistently 
achieved not with a perfectly precise comparator but one with 
a resolution limit of about 0.5 to 1.0 standard deviations. 
(Remember that standard deviations refers to variations in 
interpoint distances.) Thus, from the point of view of mea- 
surement efficiency, a “desirable” level of imprecision exists 
and is proportional to the size of the differences it is observing. 
This finding will be considered in the Discussion. 
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Fig. 15. Results indicating that meeting a goal of approximately 97% 
reconstruction accuracy with the fewest measurements requires an imprecise 
comparator with a resolution level of 0.5 to 1.0 standard deviations. 

E. Reconstructions with Noncrisp Comparators 

Finally, we considered pattern representation using noncrisp 
comparator data. In a crisp comparator if a difference exceeds 
the threshold, no matter by how small an amount, this result 
is correctly determined. No errors occur. Real data reflect 
errors due to noise, drift and other problems, and are therefore 
not crisp. We have made limited investigations of the effect 
of this noncrispness on pattern representation, again through 
reconstruction accuracy [ 11, [ 141, and found that it introduces 
a residual reconstruction error, one that is apparently not 
eliminated or even further reduced by an increase in the 
number of points. The relationship between the degree of 
noncrispness and the size of the residual error remains to 
be investigated. Our simulations produced a residual error 
of approximately 3%, that is the reconstructions were 97% 
accurate. 

VI. CONCLUSION 

This paper has described how patterns, specifically point 
configurations, may be represented as rank ordered lists of 
interpoint distances. Reconstructions of patterns from these 
lists using multidimensional scaling (MDS) demonstrated that 
adequate information is stored in these lists. However, recon- 
struction is often not the purpose of pattern representation. 
Instead, pattern classification or recognition may be the goal. 

How might this be done? Typically, the rank ordered 
lists for a number of templates would be stored. These lists 
have the advantage of being independent of exact size or 
orientation. The stresses between the list describing the object 
to be classified and the templates could then be determined 
and classification based on the result. The major problem is 
establishing a correspondence of the points that define the 
observed pattern and the alternative template to which it will 
be compared. 

The efficient representation of patterns is clearly an im- 
portant component of viable machine vision systems. (See 
[15] and the articles that follow for recent work in this 
area.) The approach described here, with its use of nonmetric, 

imprecise, incomplete information suggests the possibility of a 
very different “technology” than that generally being pursued. 
Rather than being based on precise, generally expensive optical 
devices, it points toward the use of imprecise, inexpensive 
optical devices backed up by significant computing capability. 

Speculation on this potential role of nonmetric measurement 
in machine vision systems arises from the recognition that the 
brain is unlikely to store information in any precise numerical 
form. In fact, most people are rather poor at estimating 
absolute numerical measures, such as the size of even a 
familiar object in common units. They are, however, far better 
at judging the relative measures of two objects, such as which 
stick is longer. 

Interestingly, this ability to discriminate is not absolute; 
instead, the resolution threshold is itself relative to the size of 
the objects being discriminated. This discrimination phenom- 
ena, is known as “Weber’s Ratio.” The adjusting of resolution 
levels plays a central role in the analysis of images using 
the multiscale method, a technique being applied in medical 
imaging [16]. The advantage here is that larger resolution 
levels facilitate recognition of larger scale structures by sim- 
plifying them. There is evidence that human vision operates 
in this multiscale manner [17]. Generally, the existence of 
adjustable levels of resolution is reminiscent of the results 
obtained in Section V, Part D. Recall that the most efficient use 
of nonmetric measurement information for less than perfect 
representations dictated a level of imprecision proportional to 
the object sizes. 

The present scheme envisions only three outcomes of a 
comparison. It might be profitable to consider additional 
categories, as an example comparisons with outputs “much 
shorter,” “somewhat shorter,” tie, “somewhat longer,” and 
“much longer.” Both the “somewhat” and “much” categories 
represent “measurable” differences, but neither is included in 
the other. These can be viewed as either fuzzy or crisp concepts 
[5]. This increase in comparison classifications might lead 
to more powerful inferencing algorithms and a reduced need 
for direct comparison measurements. As an example, if A is 
“much longer” than B and C is “somewhat longer” than B,  
we can conclude that A is longer than C, but not necessarily 
measurably longer. The applicability of these methods awaits 
further research. 

Finally, while the work presented here was concerned with 
representational efficiency, that is, developing a useful rank 
ordered list from relatively few measurements, little was said 
about the sequence of measurements to make. For nonmetric 
data this remains a largely uninvestigated problem, though a 
start has been made for metric data [l8]. 

APPENDIX 

Relationship to Semi-orders 

Interest by psychologists in the phenomena of indifference, 
as measured by a threshold value or JND, led to the develop- 
ment of a mathematical relationship known as a semi-order. 
Scott and Suppes [19] provided a useful definition of this 
relationship (see also [13], [20]-[22]). The rules developed in 
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this paper incorporate this definition. Restated in terms of line 
segment lengths a relationship is a semi-order if for any four 
line segments 5 1 ,  XZ, 2 3 ,  2 4  the following axioms are satisfied. 
Axiom 1. not (xl >> q) 
Axiom 2. ( 2 1  >> 2 2  and 2 3  >> 5 4 )  implies (q >> x4 or 

Axiom 3. (21 >> x2 and zz >> 2 3 )  implies ( 2 1  >> 2 4  or 

Axiom 1 is self evident. To examine axiom 2 we consider 
three cases. Case 1 is 2 3  >> 2 2 ,  in which case axiom 2 is 
satisfied. Case 2 is 2 2  >> 2 3 .  But then 2 1  >> xz >> x3 >> x4 
implies 5 1  >> 2 4  and axiom 2 is satisfied. Finally, Case 3 
is 2211x3. Then $1 >> xz and 221123 implies icl > 2 3 ,  and 
x1 > 5 3  and 2 3  >> z4 implies 2 1  >> x4. Again, axiom 2 is 
satisfied. Note that in terms of the branch algebra presented 
Case 3 can be summarized as 

2 3  >> 2 2 )  

5 4  >> 2 3 )  

(al)b(al) = (a2)(al) = al .  

Axiom 3 requires considering four cases. The first two cases 
involve line 4 and line 2 being measurably different, the second 
two cases involve the lines being not measurably different. 
Case 1 is xz >> 2 4 .  Then 2 1  >> z2 >> 2 4  implies x1 >> x4. 
Case 2 is 2 4  >> 2 2 ;  thus, 2 4  >> xz >> 2 3  implies xq >> 2 3 .  In 
each case axiom 3 is satisfied. Case 3 is zz)  > x4. It follows 
that 5 1  >> 221  > 2 4  implies 5 1  >> 2 4 .  Finally, Case 4 is 
241 > 2 2  leading to 241 > xz >> z3 implying x4 >> z3. 
Again, axiom 3 is met in both cases. 
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