
Energy-Balanced Dispatch of Mobile Sensors
in a Hybrid Wireless Sensor Network

You-Chiun Wang, Member, IEEE, Wen-Chih Peng, Member, IEEE, and

Yu-Chee Tseng, Senior Member, IEEE

Abstract—We consider a hybrid wireless sensor network with static and mobile nodes. Static sensors monitor the environment and

report events occurring in the sensing field. Mobile sensors are then dispatched to visit these event locations to conduct more

advanced analysis. A big challenge is how to schedule these mobile sensors’ traveling paths in an energy-balanced way so that their

overall lifetime is maximized. We formulate this problem as a multiround sensor dispatch problem and show it to be NP-complete.

Then, we propose a centralized and a distributed heuristics to schedule mobile sensors’ traveling paths. Our heuristics allow arbitrary

numbers of mobile sensors and event locations in each round and have an energy-balanced concept in mind. The centralized heuristic

tries to minimize mobile sensors’ moving energy while keeping their energy consumption balanced. The distributed heuristic utilizes a

grid structure for event locations to bid for mobile sensors. Through simulations, we show the effectiveness of our schemes. This paper

contributes in defining a more general multiround sensor dispatch problem and proposing energy-efficient solutions to it.

Index Terms—Energy saving, load balance, mobile sensor, robot, wireless sensor network.

Ç

1 INTRODUCTION

HYBRID sensor networks with static and mobile nodes
open a new frontier of research in wireless sensor

networks (WSNs). Static sensors support environmental
sensing and network communication. Mobile sensors are
more resource-rich in sensing and computing capabilities
and can move to particular locations to conduct more
complicated missions such as repairing the network or
providing in-depth analysis [1], [2]. Introducing mobility to a
WSN not only reduces its deployment and maintenance costs
but also enhances its capability. Applications of hybrid
WSNs have been studied in [3], [4], [5].

In this paper, we focus on the problem of dispatching
mobile sensors to the locations of events appearing in the
sensing field. Static sensors serve as the backbone to identify
where suspicious events may appear and report such events
to mobile sensors so as to conduct more in-depth analysis.
Assuming that events may appear anytime and anywhere, it
is inefficient to dispatch one mobile sensor right after an event
appears. We thus propose dividing time into multiple rounds
and schedule mobile sensors’ traveling paths in a round by
round manner. The objective is to emphasize both path
efficiency and balance of mobile sensors’ energy consump-
tion because moving energy is critical for mobile sensors [6],
[7]. Then, we measure the system lifetime, which is defined as
the number of rounds until some event locations cannot be
reached by any mobile sensor due to lack of energy.

Balancing energy consumption is important in the case of
multiple mobile sensors. For example, when some mobile

sensors exhaust their energy too early, the remaining
mobile sensors may need to travel longer distances to serve
some event locations, thus further shortening the system
lifetime. On the contrary, if there are more mobile sensors,
each mobile sensor may need to visit only local event
locations. Such an example is [8], which targets at greedily
minimizing the overall energy consumption of mobile
sensors in each round without considering energy balance
among mobile sensors. Take an example in Fig. 1. Initially,
mobile sensors s1 and s2 are located at l1 and l2,
respectively, each with energy of 600 units. The energy
cost to move between any two locations is given in Fig. 1a.
Suppose that in each odd round, events appear at l3 and l4,
and in each even round, events appear at l1 and l2. Fig. 1b
shows that with the above greedy strategy, s1 and s2 move
between ðl3; l1Þ and ðl4; l2Þ, respectively. The system lifetime
is nine rounds. Fig. 1c shows that by balancing their energy
consumption, s1 and s2 move between ðl4; l1Þ and ðl3; l2Þ,
respectively, and can survive 10 rounds, although in each
round they consume more energy.

In this paper, we prove that even if all event locations in the
future rounds are known in advance, the sensor dispatch
problem is NP-complete. We then propose a centralized and a
distributed heuristics to extend the system lifetime. The idea
is to minimize the moving energy of mobile sensors while
balancing their energy consumption in each round. Our
centralized heuristic allows arbitrary numbers of event
locations and mobile sensors in each round. When mobile
sensors are more than event locations, we translate the
dispatch problem to a maximum matching problem in a
weighted complete bipartite graph [9], where the vertex set
contains mobile sensors and event locations and the edge set
contains each edge from every mobile sensor to every event
location. In addition, when matching two vertices, we adopt a
bound concept to avoid choosing edges with too large weights,
so the energy-balanced goal can be achieved. On the other
hand, when mobile sensors are fewer than event locations, we

1836 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

. The authors are with the Department of Computer Science, National Chiao-
Tung University, 1001 University Road, Hsinchu, Taiwan 300, R.O.C.
E-mail: {wangyc, wcpeng, yctseng}@cs.nctu.edu.tw.

Manuscript received 12 Mar. 2009; revised 30 Oct. 2009; accepted 4 Feb.
2010; published online 23 Mar. 2010.
Recommended for acceptance by S. Das.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-03-0112.
Digital Object Identifier no. 10.1109/TPDS.2010.56.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

group event locations into clusters where the number of
clusters is equal to that of the mobile sensors. Then, we adopt
the above matching approach combined with the traveling-
salesman approximation algorithm (TSP) [10]. Designed with a
similar philosophy, we also propose a distributed heuristic
using a grid structure. Specifically, each grid with event
locations adopts grid-quorum [11] to obtain the information
of mobile sensors. Then, the grids bid for mobile sensors with
each other by using the bound concept in the centralized
heuristic. After determining the winning grids, each mobile
sensor visits these grids by the proposed two-level TSP scheme.
In particular, the mobile sensor first calculates the shortest
path to visit the winning grids and then moves to the event
locations inside each of these grids.

Although sharing the same bound concept, the centralized
and distributed heuristics have two differences in essence.
First, the centralized heuristic clusters event locations, from a
global view, when there are fewer mobile sensors, while the
distributed heuristic always clusters event locations into
fixed grids. Second, the centralized heuristic requires a
central node (e.g., the sink) to calculate the dispatch
schedules, which incurs network flooding to gather/dis-
seminate global information. In contrast, the distributed
heuristic adopts grid-quorum to reduce the message com-
plexity but lets event locations compete for mobile sensors
using partial information. Our simulation results reflect that
when there are more mobile sensors, the grid structure helps
extend the system lifetime. On the other hand, when there are
fewer mobile sensors, the centralized heuristic has a longer
system lifetime due to its efficient clustering and global
knowledge. Nevertheless, both heuristics result in a longer
system lifetime compared to the greedy scheme. Also,
simulation results show that the distributed heuristic is more
message efficient.

The rest of the paper is organized as follows: Section 2
reviews related work. Section 3 defines the sensor dispatch
problem and shows it to be NP-complete. Sections 4 and 5
propose our centralized and distributed heuristics. Simula-
tion results are presented in Section 6. Conclusions and
future research topics are drawn in Section 7.

2 RELATED WORK

Mobility management has received considerable attention
in mobile ad hoc networks (MANETs). Most studies focus on
the communication issue [12], [13] or topology control [14],
[15] due to frequent node mobility. They consider that
nodes move in an arbitrary manner or follow some mobility
models [16]. Unlike MANETs, node mobility in hybrid
WSNs is controllable and can even be coordinated. A
multirobot system (MRS), one topic in the field of robots, uses
multiple cooperative robots to accomplish a task in an
uncertain environment [17], [18]. Multiagent reinforcement
learning [19], [20], [21] is proposed to train robots to learn
mappings from their statuses to their actions. However,
these studies have different objectives from our work.
Multirobot task allocation [22] determines which robot should
execute which task to cooperatively achieve the overall
goal, where a task is viewed as an independent subgoal that
is necessary for achieving the overall goal. However, [22]
does not aim at the energy issue of robots.

Mobile sensors have been intensively researched to
improve a WSN’s topology. Moving sensors to approximate
the event distribution, while maintaining complete coverage
of the sensing field, is studied in [23]. The work in [24] moves
nodes to keep a WSN biconnected. With a grid structure, the
work in [25] moves sensors from high-density grids to low-
density ones to generate a uniform topology. The works [26],
[27] use virtual forces to drive sensors’ moving directions,
while the work in [28] discusses moving sensors to fill
uncovered holes. The studies [29], [30] also address the sensor
dispatch problem, but they do not consider energy balance
and only optimize energy consumption in one round.

Some studies deploy mobile sensors to track moving
targets. The purser-evader game is studied in [31], where a
pursuer needs to intercept an evader by the assistance of
static sensors. The work in [32] discusses the problem of
maneuvering mobile sensors for the optimal data acquisition
from moving targets. Target tracking with the assistance of
mobile sensors is discussed in [33] with concerns of energy
consumption, network connectivity, and sensing coverage.
They assume that the future trajectory of the moving target
may be predicted, whereas our work allows events to
arbitrarily appear.

Several variations of the sensor dispatch problem have
been studied in the literature. In [34], static sensors detecting
events will ask mobile sensors to move to their locations to
conduct more in-depth analysis. The mobile sensor that has a
shorter moving distance and more energy, and whose
leaving will generate a smaller uncovered hole, is invited.
The work in [35] dispatches mobile sensors to improve the
sensing coverage of a hybrid WSN. Static sensors estimate the
uncovered holes close to them and use the hole sizes to
compete for mobile sensors. The concept of energy balance in
dispatching mobile sensors is exploited in [36]. Once a mobile
sensor si identifies a destination lj, si tries to form a sequence

WANG ET AL.: ENERGY-BALANCED DISPATCH OF MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 1837

Fig. 1. Comparison of dispatch solutions: (a) the network configuration,

(b) the greedy approach, and (c) the energy-balanced approach.

of si ! sk1
! sk2

! � � � ! skm ! lj, such that cascaded move-
ments si ! sk1

, sk1
! sk2

; . . . , and skm ! lj will happen. How
event locations can find mobile sensors in a message-efficient
manner is discussed in [37]. Compared with prior studies,
this paper considers a more general dispatch problem, where
events may appear in arbitrary locations, event locations in
the future rounds are unpredictable, and the relationship
between the number of event locations and the number of
mobile sensors is arbitrary. We will develop centralized and
distributed algorithms with energy-balanced property to
prolong the system lifetime.

3 PROBLEM STATEMENT

We consider a hybrid WSN with both static and mobile
sensors. Sensors are aware of their own locations, which can
be achieved by global positioning system (GPS) or other
localization techniques [38]. Static sensors are dense enough
to form a connected network that fully covers the sensing
field. They can cooperate to identify events that may appear
in arbitrary locations in the sensing field (refer to [34] for
possible solutions). We make no assumption on the event
distribution, and the occurrence of any two events is
independent. Mobile sensors are more resource-rich and
can be dispatched to event locations to conduct more in-
depth analysis. Both the moving speed of a mobile sensor
and its energy consumption to move a unit distance are
assumed to be constants. Also, we assume that the sensing
field is obstacle-free, so mobile sensors can directly move to
their destinations using the shortest distances.

The time is divided into rounds. Each round is led by a
collecting phase followed by a dispatching phase. Static sensors
report those events that have been detected but not yet
processed in the collecting phase. Mobile sensors then visit
these event locations in the dispatching phase. In each round,
an event only needs to be visited by one mobile sensor. Our
discussion focuses on the dispatch problem in one round.
Therefore, given a set ofm event locations L ¼ fl1; l2; . . . ; lmg
and a set of n mobile sensors S ¼ fs1; s2; . . . ; sng in a round,
our objective is to assign each si a dispatch schedule DSi,
i ¼ 1::n, which contains a sequence of event locations. The
union of locations in all dispatch schedules should be equal to
L. In case thatDSi is too long for si to complete in the current
round, the remaining unvisited locations are deleted from
DSi and will be put into the next round for scheduling (thus,
these deleted locations may be visited by other mobile
sensors). The jth location of DSi is denoted by DSi½j� and

the current energy of si is expressed by ei. Consequently, the
energy required to complete si’s dispatch schedule is
formulated as

fðDSiÞ ¼ emove �

dðsi;DSi½1�Þ

þ
XjDSij�1

j¼1

dðDSi½j�; DSi½jþ 1�Þ
!
;

where emove is the energy cost for a mobile sensor to move one
unit distance, jDSij is the number of event locations in DSi,
and dð�; �Þ is the distance between two locations. Clearly, any
dispatch schedule of a mobile sensor should satisfy
ei � fðDSiÞ. Also, we are given the initial energy einit

i of each
si, i ¼ 1::n, in round 0. Assuming that mobile sensors are not
rechargeable, the objective is to schedule their traveling
paths such that the system lifetime is maximized. Table 1
summarizes the notations used in this paper.

Next, we show that the above sensor dispatch problem is
NP-complete even if the event locations are known in
advance in each round. We first formulate the sensor
dispatch problem as a decision problem.

Definition 1. Given a set of mobile sensors S and a sequence of k
event location sets L1;L2; . . . ;Lk, the sensor dispatch decision
problem is to determine whether there is a feasible schedule for
S to visit L1;L2; . . . ;Lk in that order.

Theorem 1. The sensor dispatch decision problem is NP-
complete.

Proof. We first show that this problem belongs to NP. Given a
problem instance and a solution containing the dispatch
schedules in k rounds, it can be verified whether the
solution is valid in polynomial time. So, this part is proved.

We then reduce the partition problem [39], which is
known to be NP-complete, to our problem. Given a finite
set X in which each element xi 2 X is associated with a
number �ðxiÞ, the partition problem is to determine
whether we can partition X into two subsets such that
the sums of their associated numbers are equal.

Let X ¼ fx1; x2; . . . ; xkg be an instance of the partition
problem. We construct an instance of the sensor dispatch
decision problem as shown in Fig. 2. Initially, mobile
sensors sa and sb are located at la and lb, respectively, each
with initial energy of

Pk
i¼1 �ðxiÞ. For each xi, i ¼ 1::k, we

1838 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

TABLE 1
Summary of Notations

Fig. 2. Reduction of the partition problem to the sensor dispatch decision

problem.

construct a location li such that the energy required to
move from both la and lb to li is �ðxiÞ. Now, consider a 2k-
round problem such that in the ð2i� 1Þth round, an event
appears at li, and in the ð2iÞth round, two events appear at
la and lb, i ¼ 1::k. We show that X has a solution if and
only if the dispatch problem has a solution.

Suppose that we have a solution to the sensor
dispatch decision problem. The solution must dispatch
one mobile sensor to one event location in each odd
round and then dispatch the same mobile sensor back to
its original location in the subsequent even round. That
is, either sa or sb will move to li and move back in the
ð2i� 1Þth and the ð2iÞth rounds, respectively. The total
energy consumption of sa and sb is thus 2 �

Pk
i¼1 �ðxiÞ.

Since the initial energy of sa and sb is
Pk

i¼1 �ðxiÞ, both sa
and sb exhaust their energy after 2k rounds. This implies
that sa and sb have moved the same distance. Therefore,
the sets of locations visited by sa and sb all constitute a
solution to the partition problem. This proves the if part.

Conversely, suppose that subsets Xa and X b are a
solution to the partition problem. Then, in the ð2i� 1Þth
round, i ¼ 1::k, we can dispatch sa (respectively, sb) to
visit li if Xa (respectively, X b) has an element associated
with a number �ðxiÞ, and move it back in the ð2iÞth
round. Clearly, both sa and sb move the same distance
and exhaust their energy (i.e.,

Pk
i¼1 �ðxiÞ) in the ð2kÞth

round. This constitutes a solution to the sensor dispatch
decision problem, thus, proving the only if part. tu

4 A CENTRALIZED DISPATCH ALGORITHM

In this section, we propose a centralized algorithm to
dispatch mobile sensors. The idea is to minimize their
moving energy while keeping their energy consumption
balanced after each round. Without loss of generality, we
delete those mobile sensors that do not have sufficient
energy to reach any location in L from S. Considering the
values of jSj and jLj, there are two cases to be discussed.
When jSj � jLj, we translate the dispatch problem to a
maximum matching problem in a weighted complete
bipartite graph. On the other hand, when jSj < jLj, we
partition L into jSj clusters so that each mobile sensor only
needs to visit one cluster of event locations. Then, the
maximum matching approach is applied again.

4.1 Case of jSj � jLj
We first construct a weighted complete bipartite graph
G ¼ ðS [L;S � LÞ. Each mobile sensor and event location is
converted into a vertex. Edges only connect vertices
between S and L. For each si 2 S and each lj 2 L, its
weight is defined as wðsi; ljÞ ¼ emove � dðsi; ljÞ. Then, the
sensor dispatch problem is formulated as the problem of
finding a matching M in G such that

1. The number of matches is maximum.
2. The sum of the weights associated with all matches

is as small as possible.
3. The standard deviation of the weights associated

with all matches is as small as possible.

Note that objective 1 is a necessary condition in our algorithm.
However, minimum values for both objectives 2 and 3 may
not always be achieved, but keeping them small is our goal.

Below, we propose a heuristic to find M:

1. For each location lj 2 L, we associate with it a
preference list Pj, which contains all mobile sensors
ranked by their weights in correspondence with li in
an ascending order. In case of tie, sensors’ IDs are
used to break the tie.

2. Construct a queue Q containing all locations in L.1

3. To achieve objective 3, we create a bound Bj for each
location lj 2 L to restrict the mobile sensors that lj
can match with. Initially, we set Bj ¼ wðsi; ljÞ such
that si is the �th element in lj’s preference list Pj,
where � is a system parameter.

4. Dequeue an event location, say, lj from Q.
5. To achieve objective 2, we select the first candidate

mobile sensor, say, si from Pj, and try to match si
with lj. If si is also unmatched, we add the match
ðsi; ljÞ into M and remove si from Pj. Otherwise, si
must have matched with another location, say, lo.
Then, lj and lo will compete by their bounds Bj and
Bo. Location lj wins the competition if one of these
conditions is true:

a. Bj > Bo: Since lj has raised to a higher bound,
we match si with lj.

b. Bj ¼ Bo and wðsi; ljÞ < wðsi; loÞ: Since moving si
to lj is more energy efficient, we match si with lj.

c. Bj ¼ Bo, si is the only candidate of lj, and lo has
more than one candidate: In this case, if si is not
matched with lj, lj has to increase its bound Bj.
However, lo may not increase its bound Bo if si is
not matched with lo. Thus, we match si with lj.

If lj wins the competition, we replace the pair ðsi; loÞ
inM by ðsi; ljÞ, remove si from Pj, enqueue lo intoQ,
and go to step 7. Otherwise, we remove si from Pj
(since lj will not consider si any more) and go to step 6.

6. If lj still has candidates in Pj (under bound Bj), go to
step 5 directly. Otherwise, we increase lj’s bound to
Bj ¼ wðsk; ljÞ such that sk is the �th element in the
current Pj and then go to step 5. (Note that since Pj is
sorted in an ascending order and the first mobile
sensor si is always removed from Pj after step 5, we
will obtain a new larger bound Bj ¼ wðsk; ljÞ >
wðsi; ljÞ.)

7. If Q is empty, the algorithm terminates; otherwise,
go to step 4.

Since jSj � jLj, each event location will eventually find a
mobile sensor to match with. Thus, the above algorithm must
terminate and return a maximum matching. Here, the bound
of an event location implicitly indicates that if the current
candidate mobile sensor cannot match with the event
location, the event location may possibly match with another
mobile sensor of a distance equal to that bound. Since we
want to balance the energy consumption among mobile
sensors by preventing some mobile sensors from moving too
long distances, we should avoid raising the bounds of event
locations. The system parameter � determines the number of
candidate mobile sensors and the bound. We suggest setting
� > 1 and will discuss the effect of � in Section 6.6.

WANG ET AL.: ENERGY-BALANCED DISPATCH OF MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 1839

1. It can be verified that any order of the locations in Q can lead to the
same result in our scheme. So, we do not specify the order in this step.

Fig. 3 gives an example, where � ¼ 2. The energy cost to
move each mobile sensor to each event location is given in
Fig. 3a. Let Q ¼ fl1; l2; l3g. Fig. 3b shows the running
iterations. In iteration 1, l1 has two candidates s1 and s2 in
its P1 and sets bound B1 ¼ wðs2; l1Þ ¼ 99. Since s1 is l1’s first
candidate and s1 is also unmatched, we match s1 with l1.
Similarly, s2 is matched with l2. In iteration 2, l3 finds that its
first candidate s1 has already matched with l1, it thus
competes with l1 by their bounds. SinceB3 ¼ 111 > B1 ¼ 99,
we thus replace the pair ðs1; l1Þ by ðs1; l3Þ inM. In iteration 3,
l1 checks its remaining candidates and competes with l2 for
s2. However, because B1 ¼ 99 < B2 ¼ 127, l1 loses the
competition. Therefore, in iteration 4, l1 expands its bound
as B1 ¼ wðs4; l1Þ ¼ 231 and matches with its first candidate
s3. The final result isM¼ fðs3; l1Þ; ðs2; l2Þ; ðs1; l3Þg.

We then analyze the time complexity of the above
algorithm. Recall that jLj ¼ m and jSj ¼ n. Calculating the
preference lists of all event locations takes Oðmn lgnÞ time.
The worst case to match an event location with a mobile
sensor is OðnÞ because the event location has to go through
its whole preference list. Thus, computing the maximum
matching M takes OðmnÞ time. Therefore, the total time
complexity is Oðmn lgnþmnÞ ¼ Oðmn lgnÞ.

4.2 Case of jSj < jLj
When mobile sensors are fewer than event locations, we
divide L into nð¼ jSjÞ clusters L̂1; L̂2; . . . ; L̂n and dispatch
one mobile sensor to visit one cluster of event locations. The
algorithm is outlined as follows: Let ~L ¼ fL̂1; L̂2; . . . ; L̂ng.
We construct a weighted complete bipartite graph G0 ¼
ðS [~L;S � ~LÞ such that the vertex set contains S (all mobile
sensors) and ~L (all clusters), and the edge set contains all

ðsi; L̂jÞ such that si 2 S and L̂j 2 ~L. The weight of ðsi; L̂j) is
defined as wðsi; L̂jÞ ¼ emove � ðdðsi; L̂jÞ þ �ðL̂jÞÞ, where
dðsi; L̂jÞ is the distance from si to the nearest event location
in L̂j and �ðL̂jÞ is the moving distance for si to visit all event
locations in L̂j (below, we call �ðL̂jÞ the cluster cost). Then,
we adopt the algorithm in Section 4.1 to find a maximum
matchingM on G0. For each ðsi; L̂jÞ 2 M, we dispatch si to
the nearest event location in L̂j and then apply any TSP
solution for si to visit other event locations in L̂j.

There are two remaining issues in the above algorithm:
1) how to estimate cluster costs and 2) how to cluster event
locations. For issue 1, since the TSP problem is NP-complete
and it is not yet known which mobile sensor will visit which
cluster (different mobile sensors may land at different initial
locations of a cluster), we need to estimate a value for each
�ðL̂jÞ. Since some TSP heuristics [10] are based on
constructing a minimum spanning tree from the nodes to
be visited, we propose letting �ðL̂jÞ be the sum of all edge
weights2 in the minimum spanning tree of L̂j. Fig. 4a shows
an example, where �ðAÞ ¼ 50, �ðBÞ ¼ 12, �ðCÞ ¼ 15, and
�ðDÞ ¼ 68. For issue 2, we introduce three schemes below.

K-means clustering scheme [40]. This scheme groups
event locations based on their relative distances in the
sensing field such that those locations close to each other
are grouped together. Initially, L is randomly partitioned
into jSj nonempty clusters. Then, an iterative process is
conducted. In each iteration, the central point of each cluster
is computed. Explicitly, given a cluster of locations
fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxp; ypÞg, its central point is calculated
as ð1p

Pp
i¼1 xi;

1
p

Pp
i¼1 yiÞ. Then, L is repartitioned such that

1840 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

2. The weight of an edge ðli; ljÞ is the distance between li and lj.

Fig. 3. An example of finding M: (a) the energy consumption to move each mobile sensor to each event location and (b) the running iterations.

locations closest to the same central point are put into the
same cluster. The process is repeated until no cluster is
changed. Fig. 4a shows an example by assuming jSj ¼ 4.

The time complexity of the K-means clustering scheme is
OðjSj � jLj � �Þ ¼ Oðmn�Þ, where � is the number of iterations
to perform K-means for clustering. According to [40], �
usually ranges from tens to hundreds.

MaxMin clustering scheme. The K-means clustering
scheme could be inefficient when the distribution of event
locations is irregular or sparse. For example, l1 and l10 in
Fig. 4a are far away from other locations, and thus,
considered sparse. Therefore, we propose a MaxMin cluster-
ing scheme that is based on the result of K-means and then
iteratively split and merge some clusters to obtain better
clustering. Intuitively, clusters with sparse locations should
be split. In each iteration, we first construct the minimum
spanning tree of each cluster. Let wintra

max be the maximum of
the maximum edge weight in each cluster among all
clusters and winter

min be the minimum of the distances between
all cluster pairs, where the distance between two clusters is
the distance between the two closest locations in the two
clusters. We split the cluster which contains the edge with
weight wintra

max by removing that edge. Then, among all jSj þ 1

clusters, we merge two clusters with distance winter
min . The

above operation is repeated until wintra
max � winter

min . This scheme
can avoid clusters containing very long edges, thereby
reducing the energy costs for mobile sensors to visit
clusters. Figs. 4a and 4b give an example. In Fig. 4a, wintra

max ¼
50 (in cluster D) and winter

min ¼ 15 (between clusters A and B).
We thus split cluster D into two clusters D1 and D2, and
then merge clusters A and B, as shown in Fig. 4b. Now, we
have wintra

max ¼ 40 and winter
min ¼ 20, enforcing us to further split

A0 and then to merge C and D1. After this operation, we
have wintra

max ¼ 20 and winter
min ¼ 40. Thus, the scheme termi-

nates and the final result is shown in Fig. 4b.
The time complexity of the MaxMin clustering scheme is

analyzed as follows: Since there are jLj ¼ m event locations,
we need mðm�1Þ

2 edges to connect each pair of locations (in a
complete graph). The worst case occurs when one half of
these mðm�1Þ

2 edges belong to intracluster edges (after
executing K-means) and the other half of them belong to
intercluster edges. We then build a maximum binary heap
�max and a minimum binary heap �min to maintain all
intracluster and intercluster edges, respectively. Building a
heap requires Oðmðm�1Þ

4 Þ ¼ Oðm2Þ time. Recall that in each
iteration of MaxMin, we find the edges with weights wintra

max

WANG ET AL.: ENERGY-BALANCED DISPATCH OF MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 1841

Fig. 4. Examples of clustering results: (a) the K-means clustering scheme, (b) the MaxMin clustering scheme, and (c) the balanced clustering

scheme.

and winter
min and then exchange them (i.e., let the edge with

weight wintra
max become an intercluster edge and the edge with

weight winter
min become an intracluster edge) if wintra

max � winter
min .

Thus, one iteration involves four operations in the two
heaps: deletion of the maximum in �max, deletion of the
minimum in �min, insertion of wintra

max into �min, and insertion
of winter

min into �max. Each of these four operations takes
Oðlgm2Þ ¼ Oð2 lgmÞ time. Thus, the total time to complete
one iteration in MaxMin is 4 �Oð2 lgmÞ ¼ Oð8 lgmÞ. Now,
we calculate how many iterations are executed in MaxMin.
The worst case occurs when �max contains the edges with
the smallest mðm�1Þ

4 weights and �min contains the edges
with the largest mðm�1Þ

4 weights. In this case, MaxMin is
executed until �max and �min exchange all of their edges. So,
there are totally mðm�1Þ

4 iterations in the worst case. Thus, the
total time complexity of MaxMin is

ðtime to execute K-meansÞ þ ðtime to build �max and �minÞ

þ time to execute
mðm� 1Þ

4
iterations

� �

¼ Oðmn�Þ þ 2Oðm2Þ þmðm� 1Þ
4

�Oð8 lgmÞ

¼ Oðmn�þm2 lgmÞ:

Balanced clustering scheme. The MaxMin clustering
scheme can minimize the total cost of clusters, but it may
lead to unbalanced clusters. Thus, we should try to reduce
both the total cost of clusters and the standard deviation of
clusters’ costs. To do so, we first cluster event locations by K-
means. Then, we iteratively split and merge some clusters. In
each iteration, we split the cluster with the maximum cost
into two new clusters, say, ĉi and ĉj, such that j�ðĉiÞ � �ðĉjÞj is
minimized. Then, among all jSj þ 1 clusters, we merge the
two clusters into one new cluster, say, ĉk, such that �ðĉkÞ is
minimized. This operation is repeated until the total cluster
cost is no longer reduced. Figs. 4a and 4c show an example. In
Fig. 4a, D has the maximum cost of �ðDÞ ¼ 68, so we split it.
There are two ways to split D. One is to split D into D1 ¼
fl8; l9g and D2 ¼ fl10g. The other way is to split D into D3 ¼
fl8g a n d D4 ¼ fl9; l10g. S i n c e j�ðD1Þ � �ðD2Þj ¼ 18 <
j�ðD3Þ � �ðD4Þj ¼ 50, we split D into D1 and D2, as shown
in Fig. 4c. Then, we mergeC andD1 such that the new cluster
C0 has the minimum cost of 53. In the next iteration, since C0

has the maximum cost, we split it into C01 ¼ fl6; l7g and
C02 ¼ fl8; l9g. However, among the five clusters A;B;C01; C

0
2,

and D2, we have to merge C01 and C02 because the cost of the
merged cluster is the smallest. Since the total cluster cost is
still 115, the balanced clustering scheme terminates. The final
result is shown in Fig. 4c.

The time complexity of the balanced clustering scheme is
analyzed as follows: Clustering event locations (by K-
means) takes Oðmn�Þ time. Calculating the cost of each
cluster by constructing its minimum spanning tree can be
done by the Prime’s algorithm [41]. The worst case occurs
when one cluster contains ðm� nþ 1Þ locations and each of
other ðn� 1Þ clusters only contains one location. In this
case, constructing the minimum spanning tree in the largest
cluster takes Oððm� nþ 1Þ2Þ time. Then, we build a
maximum heap �C

max to maintain these n clusters, which
takes OðnÞ time. An iteration of the balanced clustering
scheme involves the following four operations:

1. Delete the maximum in �C
max to find the cluster with

the maximum cost, which takes OðlgnÞ time.
2. Split that cluster into two balanced clusters. The

worst case occurs when we have to search all tree
edges in the cluster with ðm� nþ 1Þ locations. This
takes Oðm� nÞ time.

3. Merge two clusters such that the cost of the new
cluster derived by merging these two clusters is
minimized. Since there are ðnþ 1Þ clusters, this
operation takes OðCnþ1

2 Þ ¼ Oðn2Þ time.
4. Insert the two new clusters into �C

max, which takes
2OðlgnÞ time.

Thus, an iteration takes OðlgnÞ þOðm� nÞ þOðn2Þ þ
2OðlgnÞ ¼ Oðn2Þ time. Since the balanced clustering scheme
stops when the total cluster cost is no longer reduced, the
number of iterations should be no more than that of MaxMin.
Therefore, the time complexity of the balanced clustering
scheme is Oðmn�Þ þ Oððm� n þ 1Þ2Þ þ mðm�1Þ

4 Oðn2Þ ¼
Oðmn�þm2n2Þ.

We then analyze the total time complexity when jSj < jLj.
Recall that it spends Oððm� nþ 1Þ2Þ time to calculate the
costs of all clusters. Since j ~Lj ¼ n and jSj ¼ n, it takes
Oðn2 lgnÞ time to execute the algorithm in Section 4.1.
Therefore, if the K-means clustering scheme is adopted,
the total time complexity is Oðmn�Þ þOððm� nþ 1Þ2Þ þ
Oðn2 lgnÞ ¼ Oðmn�þ ðm� nþ 1Þ2 þ n2 lgnÞ. If the MaxMin
clustering scheme is adopted, the total time complexity is

Oðmn�þm2 lgmÞ þOððm� nþ 1Þ2Þ þOðn2 lgnÞ
¼ Oðmn�þm2 lgmÞ:

Finally, since the balanced clustering scheme has already
calculated the cost of each cluster, the total time complexity
is Oðmn�þm2n2Þ þOðn2 lgnÞ ¼ Oðmn�þm2n2Þ.

5 A DISTRIBUTED DISPATCH ALGORITHM

In this section, we propose a distributed heuristic based on a
grid structure. There are three challenges. First, how can we
efficiently exchange the messages between event locations
and mobile sensors so that they can know each other? Second,
how can one event location compete for a mobile sensor when
the event location is not aware of other event locations? Third,
since it is difficult to cluster event locations, how can we
handle the case when jSj < jLj? To address the above
challenges, we propose a distributed algorithm outlined as
follows: We partition the sensing field into grids and elect one
static sensor as the grid head in each grid. Mobile sensors
report their locations and remaining energy to their grid
heads. On detecting events, static sensors notify their grid
heads of the events. A grid with events is called an event grid.
We assume that all sensors are roughly time-synchronized
(how to do so is beyond the scope of this work). The time is
divided into multiple rounds and each round is further
divided into three phases (refer to Fig. 5). In the dissemination
phase, each grid head collects the locations of events and
mobile sensors in that grid. Then, the existence of mobile
sensors is advertised (respectively, queried) by grids with
mobile sensors (respectively, event grids). In the competition
phase, event grids bid for mobile sensors by sending invitation
messages. Then, mobile sensors determine their target grids

1842 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

and compute their dispatch schedules. Finally, in the dispatch
phase, mobile sensors travel according to their dispatch
schedules and visit all event locations in these grids. Lengths
of these phases depend on situations. Note that strict time
synchronization of these phases is not necessary.

To balance the energy consumption among mobile
sensors, event grids adopt the bound concept in Section 4.1
to bid for mobile sensors. Specifically, each event grid
maintains a preference list that ranks all mobile sensors by
their energy costs. For competition purpose, it also maintains
a bound. Then, event grids send invitation (INV) messages
containing their bounds to bid for mobile sensors. On the
other hand, each mobile sensor si maintains a dispatch
schedule DSi to record its target grids. Each si limits the size
of its DSi to dmne, where m is the number of event grids and n
is the number of mobile sensors (how to obtain m and n will
be discussed later). On receiving an INV, si does not
immediately reply its decision but will continuously collect
more INVs for a small duration �t (it can be a few of average
packet round-trip time). Then, si determines the winners
(based on event grids’ bounds), inserts them into itsDSi, and
replies a confirmation (CFM) message to each of them. For
each nonwinning grid, si replies a reject (RJT) message
containing the remaining number of free entries in its DSi.
An event grid removes those mobile sensors with no
remaining capacity from its preference list and tries to invite
other mobile sensors until a CFM is received or all mobile
sensors run out of their capacities in this round. Note that a
mobile sensor may scan its preference list more than once
(explained later).

There are four remaining issues in the above discussion:

1. How event grids collect locations of mobile sensors
in a message-efficient way?

2. How event grids bid for mobile sensors?
3. How mobile sensors accept bids and determine their

dispatch schedules?
4. How mobile sensors visit event locations in an

energy-efficient way?

Fig. 5 relates these issues to our three phases.
To address issue 1, we adopt the grid-quorum scheme in

[11]. Each grid with mobile sensors periodically sends an
advertisement (ADV) message containing the locations and
remaining energy of the mobile sensors inside its grid to
other grids in the same column. On the other hand, each
event grid sends a request (REQ) message to other grids in
the same row. This behavior ensures that each ADV and
each REQ will intersect. Fig. 6 gives an example. Grid ð0; 1Þ
with two mobile sensors sends an ADV along its column,
while event grid ð2; 3Þ sends an REQ along its row to search
for mobile sensors. When an REQ meets an ADV, a reply

(RPY) message containing the mobile sensors in the ADV is
sent back to the REQ-initiating grid. Also, an RPY containing
the event locations in the REQ is sent back to the ADV-
initiating grid. In this way, both ADV-initiating and REQ-
initiating grids can obtain each other’s information. Note
that when some grids are empty, the intersection property of
the grid-quorum scheme may not exist. In this case, some
recovery mechanism may be applied [11].

We then analyze the message complexity of the above
scheme. Assume that the sensing field is partitioned into
M̂ � N̂ grids. For each event grid, it takes ðM̂ � 1Þ REQs to
make other grids in the same row to obtain its information.
Similarly, for each grid containing mobile sensors, it takes
ðN̂ � 1Þ ADVs to make other grids in the same column to
obtain its information. Suppose that there are m event grids
and n mobile sensors. The worst case occurs when n grids
contain mobile sensors. Since a grid that hears both ADV
and REQ has to send RYPs to the ADV-initiating and REQ-
initiating grids, the message complexity of this scheme is
Oð2ðmðM̂ � 1Þ þ nðN̂ � 1ÞÞÞ ¼ OðmM̂ þ nN̂Þ.

To deal with issue 2, event grids bid for mobile sensors
as follows:

1. Each event grid gj calculates the energy cost for each
mobile sensor si to visit its grid. The cost is
formulated by wðsi; gjÞ ¼ emove � ðdðsi; �jÞ þ �ðLjÞÞ,
where �j is the center of all events in gj and Lj is
the set of event locations in gj. Then, gj sorts all
available mobile sensors into a preference list Pj
according to their costs in an ascending order. Note
that if the remaining energy of a mobile sensor cannot
afford to visit gj, it is removed from Pj. If Pj is empty,
gj does not participate in this round but may
participate in future rounds.

2. Each event grid gj maintains an iteration counter �j
and a bound Bj. Initially, �j ¼ 1 and Bj ¼ wðsi; gjÞ,
where si is the �th mobile sensor in Pj. Also, each
mobile sensor in Pj is marked as unsolicited. It is
changed to solicited if gj has ever sent an INV to the
mobile sensor in the current iteration. A mobile sensor
si inPj is called a candidate for gj if it is unsolicited and
wðsi; gjÞ � Bj.

3. Each event grid gj selects the first candidate mobile
sensor, say, si from Pj, and sends si an INVðgj;
�j; wðsi; gjÞ; Bj; cj; nÞ, where cj is the remaining

WANG ET AL.: ENERGY-BALANCED DISPATCH OF MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 1843

Fig. 5. Phases of a round in the distributed dispatch algorithm.

Fig. 6. An example of the grid-quorum scheme.

number of candidates in Pj under bound Bj and n is
the number of mobile sensors that gj learns in the
dissemination phase. Then, gj waits for si’s response.
If gj receives a CFM from si, this algorithm
terminates. Otherwise, gj should receive an RJT
containing si’s remaining capacity. If gj finds that
si’s remaining capacity is zero, it removes si from its
Pj; otherwise, gj marks si as solicited and one of
three cases will happen:

a. If gj still has candidates under bound Bj, it
repeats step 3 again.

b. If gj has no candidate under bound Bj and there
still exist unsolicited mobile sensors in Pj, gj
increases its bound to Bj ¼ wðsk; gjÞ such that sk
is the �th unsolicited mobile sensor in the
current Pj and repeats step 3 again.

c. Otherwise, gj has reached the end of its Pj. If Pj
is empty, the algorithm terminates; otherwise, gj
clears all entries in Pj as unsolicited, increases
its iteration counter �j by 1, resets its bound as
Bj ¼ wðsi; gjÞ such that si is the �th unsolicited
mobile sensor in Pj, and repeats step 3 again.

The above case c occurs when gj fails to invite any
mobile sensor after examining all elements in its Pj.
In this case, gj enters the next iteration and
reexamines its Pj to check those mobile sensors still
with remaining capacities. As will be seen later, the
counter �j may help gj win a mobile sensor.

To deal with issue 3, each mobile sensor si maintains a
dispatch schedule DSi to record event girds that it has to
visit. The capacity of DSi is set to dmne (m can be learned
from the dissemination phase and n can be obtained from
INVs). It may happen that the received values of n from
INVs are inconsistent (the differences should be minor). If
so, the largest value is taken. INVs are processed in a batch
mode after every �t interval. Multiple INVs may be
accepted. For all INVs with the same iteration counter,
only one event grid is accepted and the others are rejected.
The following rules are enforced: If si has no remaining
capability, an RJT indicating that it has no capability is sent.
Otherwise, all requesting event grids with the same
iteration counter will compete for one position. Specifically,
for two INVðgj; �j; wðsi; gjÞ; Bj; cj; nÞ and INVðgk; �k ¼ �j;
wðsi; gkÞ; Bk; ck; nÞ, gj wins if one of the following conditions
is true: 1) Bj > Bk, 2) Bj ¼ Bk and wðsi; gjÞ < wðsi; gkÞ, and
3) Bj ¼ Bk, cj ¼ 1, and ck > 1. (These conditions are the
same as those in the centralized algorithm.) Then, si sends
out CFMs and RJTs, updates its DSi, and deducts its
remaining capability accordingly.

To deal with issue 4, we propose a two-level TSP scheme.
Given the dispatch schedule DSi, si first applies any TSP
solution on DSi by regarding each event grid in DSi as one
node (for example, this node can be the center of all event
locations in the corresponding event grid). This TSP
solution forms the first-level solution. For the second level,
for each event grid in DSi, si can apply any TSP solution
again to visit all event locations inside that grid. Many TSP
heuristics already exist, so we omit the details.

We then analyze the message complexity of our dis-
tributed algorithm. For the competition phase, we consider

the worst case as follows: Suppose that there are m event
grids fg1; g2; . . . ; gmg and n mobile sensors fs1; s2; . . . ; sng,
where m > n. Then, DSi of each si has a capacity of m

n (for
simplicity, we assume that m is divisible by n). In the first
iteration, m event grids compete for one mobile sensor, say,
s1, and then only one event grid, say, g1, wins. In this case,m
event grids send m INVs and s1 replies 1 CFM and ðm� 1Þ
RJTs. Thus, the total number of messages is 2m. In the
second iteration, ðm� 1Þ event grids fg2; g3; . . . ; gmg com-
pete for one mobile sensor, say, s2, and then only one event
grid, say, g2, wins. Thus, the total number of messages is
2ðm� 1Þ (because ðm� 1Þ event grids send ðm� 1Þ INVs
and s2 replies 1 CFM and ðm� 2Þ RJTs). Similarly, in the ith
iteration, ðm� iþ 1Þ event grids compete for one mobile
sensor, say, si, by sending ðm� iþ 1Þ INVs, and then si
replies 1 CFM and ðm� iÞ RJTs. So, the total number of
messages is 2ðm� iþ 1Þ. Since there are at most m
iterations, the overall number of messages in the competi-
tion phase is 2mþ 2ðm� 1Þ þ � � � þ 2 ¼ 2 �

Pm
i¼1 i ¼ mðm þ

1Þ. In the dispatch phase, mobile sensors move to event
locations to conduct event analysis. However, there is no
need to exchange messages for determining the dispatch
schedules of mobile sensors. Therefore, the total message
complexity of our distributed algorithm is OðmM̂ þ nN̂Þ þ
Oðmðmþ 1Þ � hÞ ¼ OðmM̂ þ nN̂ þm2hÞ, where the sensing
field is partitioned into M̂ � N̂ grids and h is the network
diameter (i.e., the average hop count between sources and
destinations).

Remark 1. The length of the dissemination phase depends
on the applications. Specifically, when events occur
frequently, a shorter dissemination phase should be
used. Otherwise, a longer dissemination phase can
be adopted. One possible way to determine the length
of the dissemination phase is to measure the frequency of
events from historical statistics. For the competition
phase, the worst case occurs when one event grid has to
query all mobile sensors, each with dmne times, where m is
the number of event grids and n is the number of mobile
sensors. Let RTT be the round-trip time for an event grid
to query and get a response from a mobile sensor. The
length of the competition phase can be set as
dmne � n � RTT ð� m �RTT Þ. Finally, for the dispatch phase,
its length depends on the longest traveling path for a
mobile sensor to visit all event grids in its dispatch
schedule. We can initially allocate a longer dispatch
phase and then calculate the average time for mobile
sensors to finish their dispatch schedules in a few
rounds. This average time can help adjust the length of
the dispatch phase in the following rounds.

Remark 2. There are three different designs between the
distributed algorithm and the centralized one. First, since
both event grids and mobile sensors have no global
knowledge, messages such as ADVs and REQs needed to
be exchanged in the dissemination phase between event
grids and mobile sensors. We adopt grid-quorum to
facilitate such message exchanges. Second, unlike the
centralized algorithm, an event grid does not know the
existence of other event grids, so it has to send INVs to
compete for mobile sensors. With INVs, we can realize
the competition in a distributed manner. Third, since it is
difficult to cluster event grids in a distributed manner,

1844 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

we adopt the iteration counter �i to handle the case
when event grids are more than mobile sensors. In this
way, multiple event grids can choose the same mobile
sensor to visit them.

6 EXPERIMENTAL RESULTS

To evaluate the performances of our proposed algorithms,
we have developed a simulator in Java. In our simulator,
the sensing field is set as a 450 m� 300 m rectangle on
which there are 400 static sensors randomly3 deployed. The
communication distance of each sensor is set to 80 m, and
static sensors can form a connected network. In each
simulation, we randomly select a number of static sensors
as event locations (i.e., L) and randomly deploy a number of
mobile sensors (i.e., S). The energy consumption of mobile
sensors is the one caused by their movement. Since we
focus on evaluating the energy efficiency of dispatch
algorithms, we ignore the effect of communication impair-
ments. In other words, we assume that communications are
reliable and each mobile sensor can obtain the exact value of
n (i.e., the total number of mobile sensors) from INVs. We
set � ¼ 4 in our proposed algorithms. (We will discuss
the effect of � on the system performance in Section 6.6.)
The grid size is 15 m� 15 m in the distributed algorithm, so
the sensing field is partitioned into 30� 20 grids. For each
simulation, at least 100 experiments (with different random
seeds) are repeated, and we take their average.

6.1 System Lifetime

We first investigate the system lifetime under different
dispatch algorithms. The number of mobile sensors is 40.
According to [42], the moving energy consumption of a
mobile sensor is 0.21 J (joule) per inch (i.e., 8.27 J per meter).
We assume that each mobile sensor is equipped with two
batteries, each of energy capacity 1,350 mAh (milliampere-
hour), for its moving energy, so we have einit

i ¼ 29;160 J for
i ¼ 1::n. During each round, we randomly select 20, 80, and
140 static sensors as event locations. Mobile sensors then
move to event locations based on the dispatch algorithms
and stay at their last visiting locations to wait for their next
dispatch schedules. We compare the centralized and
distributed algorithms against the greedy algorithm dis-
cussed in Section 1. When mobile sensors are fewer than
event locations, the three clustering schemes in Section 4.2
are adopted to group event locations in the centralized
algorithm. For the greedy algorithm, we dispatch mobile
sensors to visit a subset L0 	 L of event locations, where
jL0j � jSj, and then make L ¼ L � L0. We iteratively repeat
the above procedure, until L is empty.

Table 2 shows the system lifetime under different
dispatch algorithms. The greedy algorithm has the shortest
system lifetime due to two reasons. First, the greedy
algorithm does not balance the energy consumption among
mobile sensors, which may lead some mobile sensors early
to exhaust their energy. Second, the greedy algorithm does
not cluster event locations when jLj > jSj, leading mobile
sensors to move a longer distance. For the centralized
algorithm, different clustering schemes affect the system
lifetime when jLj > jSj. In particular, both the MaxMin and
balanced clustering schemes help the centralized algorithm

result in a longer system lifetime because they adjust the
clustering result of K-means to reduce the total cluster cost.
When jLj ¼ 140, the balanced clustering scheme has a
longer system lifetime than the MaxMin clustering scheme
because the balanced clustering scheme not only reduces
the total cluster cost but also tries to balance the costs
among clusters. When jLj � 80, the distributed algorithm
has a longer system lifetime than the centralized algorithm.
The reason is that the distributed algorithm clusters event
locations into grids, and thus, reduces the energy consump-
tion of mobile sensors to visit them. However, when
jLj ¼ 140, since the number of event girds is large, mobile
sensors may be asked to visit multiple event grids, and thus,
move longer distances. We will further discuss the energy
consumption of mobile sensors under different dispatching
algorithms in Section 6.3.

6.2 Survived Mobile Sensors

We then examine the number of survived mobile sensors in
each round under different dispatching algorithms. We
consider two scenarios. In the scenario of jSj > jLj, we
randomly select [10, 15] static sensors as event locations in
each round. On the other hand, in the scenario of jSj < jLj, we
randomly select [120, 160] static sensors as event locations in
each round. The number of mobile sensors is 50.

Fig. 7a shows the result in the scenario of jSj > jLj. For the
greedy algorithm, the first mobile sensor exhausts its energy
very early in the 53rd round. After 248 rounds, all mobile
sensors drain out their energy. For the centralized algorithm,
since we have jSj > jLj in most rounds, the effect of different
clustering schemes is not significant. The first mobile sensor
exhausts its energy in the 440th round, and the system
lifetime is 475 rounds. For the distributed algorithm, the first
mobile sensor exhausts its energy in the 367th round, and
the system lifetime is 546 rounds. With a grid structure, the
distributed algorithm has a longer system lifetime than the
centralized algorithm when jSj > jLj.

Fig. 7b shows the result in the scenario of jSj < jLj. For
the greedy algorithm, the first mobile sensor exhausts its
energy very early in the 9th round and the system lifetime is
25 rounds. For the centralized algorithm, different cluster-
ing schemes affect the number of survived mobile sensors.
Specifically, the first mobile sensor exhausts its energy in
the 21st, 16th, and 23rd rounds under the K-means,
MaxMin, and balanced clustering schemes, respectively.
Note that since MaxMin may generate unbalanced clusters,
it spends the fewest rounds to let the first mobile sensor
exhaust the energy. The system lifetimes are 32, 31, and 33
rounds under the K-means, MaxMin, and balanced cluster-
ing schemes, respectively. These results show the benefit of
both balancing energy consumption of mobile sensors and

WANG ET AL.: ENERGY-BALANCED DISPATCH OF MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 1845

3. In our simulations, the term “random” means uniformly random.

TABLE 2
Comparison on the System Lifetime under

Different Dispatching Algorithms

clustering event locations to extend the system lifetime. For
the distributed algorithm, the first mobile sensor exhausts
its energy in the 21st round and the system lifetime is
29 rounds. Without global information, the distributed
algorithm has a shorter system lifetime than the centralized
algorithm when jSj < jLj.

6.3 Energy Consumption

We then evaluate the energy consumption of mobile sensors
under different dispatch algorithms. The number of mobile
sensors is 20, and the number of events is ranged from 10 to
80. In the simulation, mobile sensors have infinite energy.
We observe the average and standard deviation of energy
consumption per mobile sensor per round.

Fig. 8a shows the average energy consumption of mobile
sensors. The averages of energy consumption under all
schemes increase when the number of event locations
increases because each mobile sensor has to visit more event
locations. For the greedy algorithm, when jLj � 70, it has a
smaller average than the centralized algorithm because the
greedy algorithm always tries to minimize the total energy
consumption of mobile sensors. However, when jLj ¼ 80, the
greedy algorithm has a larger average than the centralized
algorithm. This shows the necessity of clustering event
locations, especially when the number of event locations is
much larger than that of the mobile sensors (around jLj �
4 � jSj as shown in Fig. 8a). For the centralized algorithm,
different clustering schemes have impacts on the average of

energy consumption when jLj � 30. Both the MaxMin and
balanced clustering schemes help the centralized algorithm
to reduce the average of energy consumption because they
try to adjust the clustering result of K-means by reducing the
total cluster cost. For the distributed algorithm, it has a
smaller average than the centralized algorithm when
jLj � 50. Interestingly, the distributed algorithm even incurs
a smaller average than the greedy algorithm when jLj � 20.
This is due to two reasons. First, in the distributed algorithm,
some mobile sensors might be asked to visit their current
grids, thereby reducing their energy consumption. Second,
each event grid automatically clusters those event locations
inside itself. That is, it naturally clusters event locations when
jSj � jLj. However, when jLj increases, the number of event
grids may become larger, and thus, a mobile sensor may
need to visit multiple event grids. In this case, since the
distributed algorithm does not have global information,
mobile sensors may need to move longer distances as
compared to the centralized algorithm.

Fig. 8b shows the standard deviation of energy consump-
tion of mobile sensors. The greedy algorithm has a larger
standard deviation than the centralized algorithm (under the
K-means and balanced clustering schemes). The reason is that
the greedy algorithm does not balance the energy consump-
tion among mobile sensors, which causes some mobile
sensors to exhaust their energy earlier. For the centralized
algorithm, different clustering schemes result in different
standard deviations. The balanced clustering scheme has the

1846 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

Fig. 7. Comparison on the number of survived mobile sensors under

different dispatch algorithms. (a) Scenario of jSj > jLj. (b) Scenario of

jSj < jLj.

Fig. 8. Comparison on the energy consumption of mobile sensors under

different dispatch algorithms. (a) Average of energy consumption.

(b) Standard deviation of energy consumption.

smallest standard deviation because it tries to balance the
costs among clusters. On the other hand, the standard
deviation of the MaxMin clustering scheme significantly
increases when jLj increases. The reason is that the MaxMin
clustering scheme tries to reduce the overall cluster cost,
resulting in unbalanced clusters. (We will further discuss this
issue in Section 6.4.) For the distributed algorithm, since event
grids are not clustered and they do not have global knowl-
edge, some mobile sensors may be asked to visit more event
grids, thereby increasing the standard deviation.

From Fig. 8, we conclude that the distributed algorithm
can reduce the average energy consumption of mobile
sensors when there are fewer event locations, but increase
the standard deviation of energy consumption of mobile
sensors. With the K-means and MaxMin clustering schemes,
the centralized algorithm can reduce both the average and
standard deviation of energy consumption of mobile sensors.

6.4 Impact of Clustering

We then evaluate the clustering results derived by different
schemes. We set the number of mobile sensors as 20 and
randomly select 30, 40, 50, 60, 70, and 80 static sensors as
event locations. We compare the K-means, MaxMin, and
balanced clustering schemes.

Fig. 9a shows the average cluster costs under different
schemes. The MaxMin clustering scheme has the minimum

average cluster cost because it always splits the cluster with
the longest intracluster edge and then merges two clusters
with the shortest intercluster edge. In this way, the total
cluster cost is greatly reduced. On the other hand, the
balanced clustering scheme also adjusts the clustering result
of K-means by splitting the cluster with the maximum cost,
thus incurring a smaller average cluster cost.

Fig. 9b shows the standard deviation of cluster costs
under different schemes. Since the MaxMin clustering
scheme has a goal of reducing the total cluster cost, it
may generate unbalanced clusters, thus increasing the
standard deviation. This effect is more prominent when
the number of event locations increases. In Fig. 9b, when
jLj ¼ 30, the MaxMin clustering scheme has a smaller
standard deviation than K-means. The reason is that the
average number of event locations in each cluster is only
1.5. By adjusting the clustering result of K-means, the
MaxMin clustering scheme could have more balanced
clusters. On the other hand, the balanced clustering scheme
has the minimum standard deviation because it tries to
balance the costs between two split clusters.

In Fig. 9b, the MaxMin clustering scheme has the largest
standard deviation. This is because MaxMin always groups
sparse event locations into zero-cost one-node clusters. Fig. 10
shows the ratio of one-node clusters under different schemes.
When jLj ¼ 30, the ratios of all schemes are more than
60 percent because the average number of event locations in
each cluster is smaller than 2. When jLj increases, the ratio
tends to decrease. Such an effect is more significant under the
K-means and balanced clustering schemes. The ratio of
MaxMin is always larger than 37.8 percent, which makes its
standard deviation increase (as shown in Fig. 9b). On the
other hand, since the balanced clustering scheme has the
smallest ratio, it can result in more balanced clusters.

6.5 Communication Cost

We then measure the number of messages incurred by the
centralized and distributed algorithms. We set 10 � jLj �
80 and let jSj ¼ jLj. The centralized algorithm may incur the
following message costs:

1. The sink (or the server) broadcasts commands to all
static and mobile sensors to ask them to report their
current states.

WANG ET AL.: ENERGY-BALANCED DISPATCH OF MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 1847

Fig. 9. Comparison on the cluster costs under different schemes.

(a) Average of cluster costs. (b) Standard deviation of cluster costs.

Fig. 10. Comparison on the ratio of one-node clusters under different

schemes.

2. Static sensors report any detected event.
3. Mobile sensors report their locations and remaining

energy to the sink.
4. The sink transmits its dispatch schedules to all

mobile sensors.

Fig. 11 shows the numbers of messages sent by both
algorithms. The centralized algorithm incurs more message
exchanges because the sink needs to notify all sensors to
report their information through network flooding.4 On the
other hand, the grid structure makes the distributed
algorithm more message efficient for two reasons. First,
no costly flooding is incurred. Second, only grid heads need
to conduct intergrid message exchanges.

6.6 Effect of � Value

We finally investigate the effect of the system parameter �
on the performance of the centralized algorithm. To
eliminate the effect of clustering, we set the numbers of
both event locations and mobile sensors as 20 and 80. The
value of � is increased from 1 to 10. We observe the average
and standard deviation of energy consumption of mobile
sensors, as shown in Fig. 12. The average energy consump-
tion decreases while the standard deviation of energy
consumption increases when � grows. The reason is that
each event location can have more candidate mobile sensors
and its bound value will increase faster. In this case, some
event locations could match mobile sensors closer to them,
thereby reducing the total energy consumption of mobile
sensors. On the other hand, some other event locations may
be asked to match mobile sensors relatively farther from
them, and thus, make the energy consumption of mobile
sensors unbalanced. In Fig. 12, we find the best value of � to
be around 4 or 5 since both the average and standard
deviation of energy consumption can be kept quite small.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed energy-balanced centralized
and distributed algorithms to efficiently dispatch mobile
sensors in a hybrid WSN. We formulate a general sensor
dispatch problem that allows an arbitrary relationship

between the numbers of mobile sensors and event locations.
Our dispatch algorithms can extend the system lifetime by
reducing and balancing the energy consumption of mobile
sensors. In the centralized algorithm, when there are more
mobile sensors, we translate the sensor dispatch problem into
a maximum matching problem in a weighted complete
bipartite graph. On the other hand, when there are more event
locations, they are grouped into clusters and then each mobile
sensor is assigned to one cluster of event locations. In the
distributed algorithm, a grid-quorum approach is adopted to
reduce the message complexity for event grids to obtain the
information of mobile sensors. Then, by applying the bound
concept in the centralized algorithm, event grids can bid for
mobile sensors. Mobile sensors then apply the proposed two-
level TSP scheme to visit event locations. Simulation results
have shown that our proposed dispatch algorithms can
extend the system lifetime compared to the greedy algorithm.

Next, we give several future research topics. In this
work, we consider dispatching mobile sensors in a sensing
field without obstacles. Several studies [43], [44], [45] have
discussed how to find the shortest path for a mobile sensor
to reach its destination without colliding with any obstacle.
These results can help extend our dispatch solutions. In
addition, we make several assumptions on the movement
model of mobile sensors such as uniform moving speed and
uniform energy consumption. How to relax these assump-
tions deserves further investigation. Finally, for some

1848 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

4. Here, we adopt the naive flooding scheme. Although a more efficient
broadcast scheme can be used, it is out of the scope of this work.

Fig. 11. Comparison on the number of messages incurred by the

centralized and distributed algorithms.

Fig. 12. Effect of � value on the average and standard deviation of

energy consumption of mobile sensors. (a) Twenty event locations.

(b) Eighty event locations.

critical event applications, events have their time con-
straints. Thus, a more challenging issue is how to dispatch
mobile sensors to event locations with delay constraints.

ACKNOWLEDGMENTS

Y.-C. Tseng’s research is cosponsored by the MoE ATU

Plan, by the NSC under grant nos. 97-3114-E-009-001, 97-

2221-E-009-142-MY3, 98-2219-E-009-019, and 98-2219-E-009-

005, by the MOEA under grant nos. 98-EC-17-A-02-S2-0048

and 98-EC-17-A-19-S2-0052, and by the ITRI, Taiwan.

REFERENCES

[1] G. Cao, G. Kesidis, T.F.L. Porta, B. Yao, and S. Phoha, “Purposeful
Mobility in Tactical Sensor Networks,” Sensor Network Operations,
Wiley-IEEE Press, 2006.

[2] Y.C. Wang and Y.C. Tseng, “Intentional Mobility in Wireless
Sensor Networks,” Wireless Networks: Research, Technology and
Applications, Nova Science Publishers, 2009.

[3] M.A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G.S. Sukhatme,
W.J. Kaiser, M. Hansen, G.J. Pottie, M. Srivastava, and D. Estrin,
“Call and Response: Experiments in Sampling the Environment,”
Proc. ACM Int’l Conf. Embedded Networked Sensor Systems, pp. 25-
38, 2004.

[4] T. Wark, P. Corke, P. Sikka, L. Klingbeil, G. Ying, C. Crossman, P.
Valencia, D. Swain, and G. Bishop-Hurley, “Transforming
Agriculture through Pervasive Wireless Sensor Networks,” IEEE
Pervasive Computing, vol. 6, no. 2, pp. 50-57, Apr.-June 2007.

[5] Y.C. Tseng, Y.C. Wang, K.Y. Cheng, and Y.Y. Hsieh, “iMouse: An
Integrated Mobile Surveillance and Wireless Sensor System,”
Computer, vol. 40, no. 6, pp. 60-66, June 2007.

[6] R. Rao and G. Kesidis, “Purposeful Mobility for Relaying and
Surveillance in Mobile Ad Hoc Sensor Networks,” IEEE Trans.
Mobile Computing, vol. 3, no. 3, pp. 225-231, July 2004.

[7] Y.G. Mei, Y.H. Lu, Y.C. Hu, and C.S.G. Lee, “Deployment Strategy
for Mobile Robots with Energy and Timing Constraints,” Proc.
IEEE Int’l Conf. Robotics and Automation, pp. 2816-2821, 2005.

[8] B.I. Kim, J. Shin, S. Jeong, and J. Koo, “Effective Overhead Hoist
Transport Dispatching Based on the Hungarian Algorithm for a
Large Semiconductor FAB,” Int’l J. Production Research, vol. 47,
no. 10, pp. 2823-2834, 2009.

[9] H.W. Kuhn, “The Hungarian Method for the Assignment
Problem,” Naval Research Logistics Quarterly, vol. 2, pp. 83-97,
1955.

[10] M. Blaser, “A New Approximation Algorithm for the Asymmetric
TSP with Triangle Inequality,” Proc. ACM-SIAM Symp. Discrete
Algorithms, pp. 638-645, 2003.

[11] I. Stojmenovi, “A Routing Strategy and Quorum Based Location
Update Scheme for Ad Hoc Wireless Networks,” Technical Report
TR-99-09, Computer Science, School of Information Technology
and Eng., Univ. of Ottawa, Sept. 1999.

[12] Z.J. Haas and B. Liang, “Ad Hoc Mobility Management with
Uniform Quorum Systems,” IEEE/ACM Trans. Networking, vol. 7,
no. 2, pp. 228-240, Apr. 1999.

[13] Y.G. Mei, Y.H. Lu, Y.C. Hu, and C.S.G. Lee, “A Mobility
Management and Routing Protocol Using Tree Architecture for
Internet Connectivity of Mobile Ad Hoc Networks,” Proc. IEEE
Int’l Conf. Computer Comm. and Networks, pp. 967-972, 2007.

[14] N. Li, J.C. Hou, and L. Sha, “Design and Analysis of an MST-
Based Topology Control Algorithm,” IEEE Trans. Wireless Comm.,
vol. 4, no. 3, pp. 1195-1206, May 2005.

[15] J. Wu and F. Dai, “Mobility-Sensitive Topology Control in Mobile
Ad Hoc Networks,” IEEE Trans. Parallel and Distributed Systems,
vol. 17, no. 6, pp. 522-535, June 2006.

[16] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models
for Ad Hoc Network Research,” Wireless Comm. and Mobile
Computing, vol. 2, no. 5, pp. 483-502, 2002.

[17] T. Balch and R.C. Arkin, “Behavior-Based Formation Control for
Multirobot Teams,” IEEE Trans. Robotics and Automation, vol. 14,
no. 6, pp. 926-939, Dec. 1998.

[18] M.J. Mataric, G.S. Sukhatme, and E.H. Ostergaard, “Multi-Robot
Task Allocation in Uncertain Environments,” Autonomous Robots,
vol. 14, pp. 255-263, 2003.

[19] M. Asada, E. Uchibe, and K. Hosoda, “Co-Operative Behaviour
Acquisition for Mobile Robots in Dynamically Changing Real
Worlds via Vision-Based Reinforcement Learning and Develop-
ment,” Artificial Intelligence, vol. 110, pp. 275-292, 1999.

[20] K.H. Park, Y.J. Kim, and J.H. Kim, “Modular Q-Learning Based
Milti-Agent Cooperation for Robot Soccer,” Robotics and Autono-
mous Systems, vol. 35, pp. 109-122, 2001.

[21] C.F. Touzet, “Distributed Lazy Q-Learning for Cooperative
Mobile Robots,” Int’l J. Advanced Robotic Systems, vol. 1, no. 1,
pp. 5-13, 2004.

[22] B.P. Gerkey and M.J. Mataric, “A Formal Analysis and Taxonomy
of Task Allocation in Multi-Robot Systems,” Int’l J. Robotics
Research, vol. 23, no. 9, pp. 939-954, 2004.

[23] Z. Butler and D. Rus, “Event-Based Motion Control for Mobile-
Sensor Networks,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 34-
42, Oct. 2003.

[24] P. Basu and J. Redi, “Movement Control Algorithms for
Realization of Fault-Tolerant Ad Hoc Robot Networks,” IEEE
Network, vol. 18, no. 4, pp. 36-44, July/Aug. 2004.

[25] J. Wu and S. Yang, “SMART: A Scan-Based Movement-Assisted
Sensor Deployment Method in Wireless Sensor Networks,” Proc.
IEEE INFOCOM, pp. 2313-2324, 2005.

[26] Y. Zou and K. Chakrabarty, “Sensor Deployment and Target
Localization in Distributed Sensor Networks,” ACM Trans.
Embedded Computing Systems, vol. 3, no. 1, pp. 61-91, 2004.

[27] N. Heo and P.K. Varshney, “Energy-Efficient Deployment of
Intelligent Mobile Sensor Networks,” IEEE Trans. Systems, Man
and Cybernetics—Part A: Systems and Humans, vol. 35, no. 1, pp. 78-
92, Jan. 2005.

[28] G. Wang, G. Cao, and T.F.L. Porta, “Movement-Assisted Sensor
Deployment,” IEEE Trans. Mobile Computing, vol. 5, no. 6, pp. 640-
652, June 2006.

[29] Y.C. Wang, C.C. Hu, and Y.C. Tseng, “Efficient Placement and
Dispatch of Sensors in a Wireless Sensor Network,” IEEE Trans.
Mobile Computing, vol. 7, no. 2, pp. 262-274, Feb. 2008.

[30] Y.C. Wang and Y.C. Tseng, “Distributed Deployment Schemes for
Mobile Wireless Sensor Networks to Ensure Multilevel Cover-
age,” IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 9,
pp. 1280-1294, Sept. 2008.

[31] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and
D. Culler, “Design and Implementation of a Sensor Network
System for Vehicle Tracking and Autonomous Interception,” Proc.
IEEE European Workshop Wireless Sensor Networks, pp. 93-107, 2005.

[32] M.D. Naish, E.A. Croft, and B. Benhabib, “Dynamic Dispatching
of Coordinated Sensors,” Proc. IEEE Int’l Conf. Systems, Man, and
Cybernetics, pp. 3318-3323, 2000.

[33] Y. Zou and K. Chakrabarty, “Distributed Mobility Management
for Target Tracking in Mobile Sensor Networks,” IEEE Trans.
Mobile Computing, vol. 6, no. 8, pp. 872-887, Aug. 2007.

[34] A. Verma, H. Sawant, and J. Tan, “Selection and Navigation of
Mobile Sensor Nodes Using a Sensor Network,” Pervasive and
Mobile Computing, vol. 2, no. 1, pp. 65-84, 2006.

[35] G. Wang, G. Cao, P. Berman, and T.F.L. Porta, “Bidding Protocols
for Deploying Mobile Sensors,” IEEE Trans. Mobile Computing,
vol. 6, no. 5, pp. 563-576, May 2007.

[36] G. Wang, G. Cao, T.F.L. Porta, and W. Zhang, “Sensor Relocation
in Mobile Sensor Networks,” Proc. IEEE INFOCOM, pp. 2302-
2312, 2005.

[37] X. Li, N. Santoro, and I. Stojmenovic, “Localized Distance-Sensitive
Service Discovery in Wireless Sensor and Actor Networks,” IEEE
Trans. Computers, vol. 58, no. 9, pp. 1275-1288, Sept. 2009.

[38] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-Less Low-Cost
Outdoor Localization for Very Small Devices,” IEEE Personal
Comm., vol. 7, no. 5, pp. 28-34, Oct. 2000.

[39] M. Udi, Introduction to Algorithms: A Creative Approach. Addison-
Wesley Publishing Company, 1989.

[40] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Academic Press, 2001.

[41] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms. The MIT Press, 2001.

[42] M. Rahimi, H. Shah, G.S. Sukhatme, J. Heideman, and D. Estrin,
“Studying the Feasibility of Energy Harvesting in a Mobile Sensor
Network,” Proc. IEEE Int’l Conf. Robotics and Automation, pp. 19-24,
2003.

[43] G.M. Dai, A.H. Du, Q.H. Li, and M.C. Wang, “Planning of Moving
Path Based on Simplified Terrain,” Proc. Int’l Conf. Machine
Learning and Cybernetics, pp. 1915-1918, 2003.

WANG ET AL.: ENERGY-BALANCED DISPATCH OF MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 1849

[44] Y.H. Liu and S. Arimoto, “Finding the Shortest Path of a Disc
among Polygonal Obstacles Using a Radius-Independent Graph,”
IEEE Trans. Robotics and Automation, vol. 11, no. 5, pp. 682-691, Oct.
1995.

[45] S.Q. Zheng, J.S. Lim, and S.S. Iyengar, “Finding Obstacle-
Avoiding Shortest Paths Using Implicit Connection Graphs,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 9, pp. 103-110, 1996.

You-Chiun Wang received the BEng and MEng
degrees in computer science and information
engineering from the National Chung-Cheng
University and the National Chiao-Tung Univer-
sity, Taiwan, in 2001 and 2003, respectively, and
the PhD degree in computer science from the
National Chiao-Tung University, Taiwan, in
October 2006. Currently, he is a postdoctoral
research fellow in the Department of Computer
Science, National Chiao-Tung University, Tai-

wan. His research interests include wireless network and mobile
computing, communication protocols, and wireless sensor networks.
He served as a guest editor of The Computer Journal on the special
issue of “Algorithms, Protocols, and Future Applications of Wireless
Sensor Networks” (2009), on the editorial broad of IARAI International
Journal on Advances in Networks and Services (2009-present), and as
TPC members of several international conferences. He is a member of
the IEEE and the IEEE Communication Society.

Wen-Chih Peng received the BS and MS
degrees from the National Chiao-Tung Univer-
sity, Taiwan, in 1995 and 1997, respectively, and
the PhD degree in electrical engineering from
the National Taiwan University, in 2001. Cur-
rently, he is an associate professor in the
Department of Computer Science, National
Chiao-Tung University, Taiwan. Prior to joining
the Department of Computer Science and
Information Engineering at the National Chiao-

Tung University, he was mainly involved in the projects related to mobile
computing, data broadcasting, and network data management. He
serves as a PC member in several prestigious conferences, such as the
IEEE International Conference on Data Engineering (ICDE), Pacific Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), and
the International Conference on Mobile Data Management (MDM). His
research interests include mobile computing, network data manage-
ment, and data mining. He is a member of the IEEE.

Yu-Chee Tseng received the PhD degree in
computer and information science from the Ohio
State University in January 1994. He is a
professor (2000-present), chairman (2005-
2009), and the associate dean (2007-present)
in the Department of Computer Science, Na-
tional Chiao-Tung University, Taiwan. He is also
an adjunct chair professor at the Chung-Yuan
Christian University since 2006. He received the
Outstanding Research Award by the National

Science Council, ROC, twice in periods 2001-2002 and 2003-2005, the
Best Paper Award (International Conference on Parallel Processing,
2003), the Elite I.T. Award in 2004, and the Distinguished Alumnus
Award by the Ohio State University in 2005. His research interests
include mobile computing, wireless communication, and parallel and
distributed computing. He serves on the editorial boards for Telecom-
munication Systems (2005-present), the IEEE Transactions on Vehi-
cular Technology (2005-2009), the IEEE Transactions on Mobile
Computing (2006-present), and the IEEE Transactions on Parallel and
Distributed Systems (2008-present). He is a senior member of the IEEE
and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1850 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

