
A

H
D

a

A
R
R
A
A

K
S
I
S
P
S

1

s
a
p
a
n
p
S
(
S
2
K
p
e
s
M
2
s
t
w
h
f

a

e

0
d

The Journal of Systems and Software 83 (2010) 2528–2535

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

perfect maze based steganographic method

ui-Lung Lee, Chia-Feng Lee, Ling-Hwei Chen ∗

epartment of Computer Science, National Chiao Tung University Hsinchu, Taiwan, ROC

r t i c l e i n f o

rticle history:
eceived 8 January 2010
eceived in revised form 7 June 2010
ccepted 24 July 2010

a b s t r a c t

In steganography, several different types of media have been used as carriers, such as images, audios
and video streams, to hide secret data. Nevertheless, various novel media and applications have been
developed due to the rapid growth of internet. In this paper, we select maze games as carrier media to
conceal secret data. The original idea of embedding data in a maze is proposed by Niwayama et al. Their
vailable online 3 August 2010

eywords:
teganography in games
nformation hiding

method has two disadvantages. One is the very small embedding capacity; the other is that the stego
maze is not perfect. Here, we propose an improved algorithm for increasing the embedding capacity and
preserving the “perfect” property.

© 2010 Elsevier Inc. All rights reserved.
teganalysis
erfect maze
olution path

. Introduction

Steganography (Cox et al., 2008) is a method to conceal and pre-
erve the secrecy of information in a carrier. Traditionally, images,
udios and video streams have been used as carriers due to their
opularity on the internet. Nevertheless, various novel media and
pplications have been developed due to the rapid growth of inter-
et. For example, users can play online games with friends, send
uzzles to friends’ mobile devices (Shirali-Shahreza and Shirali-
hahreza, 2008), or download printable puzzles for kid education
Fun Printable Mazes for Kids, 2009). Hence, some methods (Shirali-
hahreza and Shirali-Shahreza, 2008; Hernandez-Castro et al.,
006; Niwayama et al., 2002; Diehl, 2008; Desoky and Younis, 2009;
ieu et al., 2009; Farn and Chen, 2009a,b; Zander, 2008) have been
roposed to conceal message in these novel media. A maze is an
xcellent educational game (Fun Printable Mazes for Kids, 2009),
o many maze games could be found on the internet (Fun Printable
azes for Kids, 2009; Novel Games, 2009; WORLDVILLAGE KIDZ,

009; Lost in the maze, 2009). Besides, the maze is a novel carrier in
teganography (Niwayama et al., 2002). Discovering new and bet-
er carrier can enhance the secrecy of steganography. In this paper,
e will propose a steganographic method using a perfect maze to

ide secret data. In the following, we will give a brief description

or a perfect maze.
A maze (see Fig. 1) basically contains cells, walls, a starting cell,

nd an end cell. Logically, a maze is a puzzle with complex mul-

∗ Corresponding author. Tel.: +886 3 5712121x54744; fax: +886 3 5721490.
E-mail addresses: huilung@debut.cis.nctu.edu.tw (H.-L. Lee),

ncounter@debut.cis.nctu.edu.tw (C.-F. Lee), lhchen@cc.nctu.edu.tw (L.-H. Chen).

164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2010.07.054
Fig. 1. An example to illustrate a maze structure.

tipath network, and a player is to find a solution path from the
starting cell to the end cell. A rectangular maze has m cells in width
and n cells in height and is denoted as m × n maze, it is called perfect
if there exists one and only one path between any two cells (Pullen,
2009). Figs. 2 and 3 (Kirkland, 2009) show a perfect maze and an
imperfect maze, respectively. From our observation, most puzzles
appearing in websites (Fun Printable Mazes for Kids, 2009; Novel
Games, 2009; WORLDVILLAGE KIDZ, 2009; Lost in the maze, 2009)
are rectangle and perfect. For security consideration, the created
maze should look like a common one (Pullen, 2009). Hence, here
we only deal with rectangular perfect mazes.

Regarding cells as nodes, carved invisible walls as links, we can
express a maze as a graph. Fig. 4 shows an example, a number
attached to a link connecting two nodes N and M stands for the
number of intermediate nodes appearing in the shortest path from

N to M. Based on this representation, we can find that a perfect
maze corresponds to a tree (see Fig. 5), such relation can be used to
prove whether a generated maze is perfect.

The rest of the paper is organized as follow. Section 2 outlines
the previous works. Section 3 describes the proposed algorithm

dx.doi.org/10.1016/j.jss.2010.07.054
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:huilung@debut.cis.nctu.edu.tw
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Fig. 2. A 16 × 12 perfect maze.
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Fig. 5. Correspondence between a perfect maze and a tree.
Fig. 3. A 16 × 12 imperfect maze.

nd Section 4 is the proof and security analysis for the proposed
ethod. Section 5 illustrates the experimental results, and Section
draws conclusions.

. Previous works

In this section, we will first introduce a typical maze generator,
hen a steganographic method based on this generator is described.

.1. Hunt-and-Kill maze generating (HKMG) algorithm
There are a number of maze generating algorithms (Pullen,
009), Hunt-and-Kill maze generating algorithm (Niwayama et al.,
002) is typical. The HKMG algorithm generates a maze by carving
alls. Fig. 6 shows a maze generated by the HKMG algorithm. In

Fig. 4. Correspondence between an
Fig. 6. An maze generated by HKMG algorithm.

HKMG algorithm, there are three types of cells defined as follows:

• ‘In’ cell (I): a cell that has been processed and always keeps its
type.

• ‘Frontier’ cell (F): a cell that is processed and is a 4-neighbor of a
certain “I” cell.
• ‘Out’ cell (O): a cell not yet processed.

In the following, we will give a brief description for the HKMG
algorithm.

imperfect maze and a graph.
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ig. 7. An imperfect maze generated by the HK embedding algorithm. (a) A perfect
”. (c) Secret data ‘111111’ embedded with six embeddable cells marked by “ ”

. Mark all cells as O cells.

. Mark the starting cell as I cell, and mark each O cell in the 4-
neighborhood of the I cell as F cell.

. Choose an F cell around an I cell, and carve the wall between the
F cell and the I cell. Mark the F cell as I cell, and mark each O cell
in the 4-neighborhood of the I cell as F cell. Repeat step 3 until
there is no F cell.

. End.

As mentioned previously, a maze can be represented as a graph.
herefore, we can show that the HKMG algorithm generates a per-
ect maze only by only showing that the corresponding graph is

tree. The reason is that any two nodes in a tree have one and
nly one path. This matches the property of a perfect maze. In the
ollowing, we will give a brief proof.

heorem 1. A maze generated by the HKMG algorithm is a perfect
aze.

roof. At first, let set A contain only the starting cell. Create a
raph G with the starting cell to be its root node. In step 3 of the
KMG algorithm, when an F cell is chosen, a new node correspond-

ng to the F cell is created and added in G. When a wall between
he F cell and its neighbor I cell is carved, a link between the cor-
esponding two nodes (one for I cell in set A, the other for F cell
utside A) is added in G, and the F cell is added in set A. This will
uarantee that no loop occurs in G. Thus, at the end of the HKMG
lgorithm, each cell has a corresponding node added to G and con-
ected to a certain node. This means that the corresponding graph
is a tree.

The HKMG algorithm is nearly bias free (Lost in the maze, 2009).

maze generation algorithm is called bias free, if it treats all direc-

ions and sides of the maze equally. Since HKMG algorithm is nearly
ias free, we could say it generates almost all perfect mazes with
he same probability. Besides, the HKMG algorithm does not require
xtra memory (Lost in the maze, 2009). Hence, the HKMG algorithm
generated. (b) The solution path remained with eight embeddable cell marked by
maze with an inaccessible area generated based on (c).

can be used to create mazes of larger size or executed on systems
with limited processing power.

2.2. Hunt-and-Kill embedding algorithm

Niwayama et al. (2002) provided a data hiding method called HK
embedding algorithm, which embeds secret data in a maze gen-
erated by the HKMG algorithm. The HK embedding algorithm is
described as follows:

1. Locate a solution path from the starting cell to the end cell.
2. Make branches in the solution path depending on embedded

data. Concretely, if the embedded data bit is 1 then make a branch
on the right, else if the data bit is 0 then on the left.

3. Applying HKMG algorithm to complete the maze creation.

Unfortunately, the HK embedding algorithm may generate some
inaccessible sections (Niwayama et al., 2002). Fig. 7 shows an exam-
ple. A perfect maze (Fig. 7(a)) is first generated by HKMG algorithm.
Secondly, all cells are cleared besides the solution path from the
starting cell S to the end cell E (see Fig. 7(b)). If the embedded data
are ‘111111’, then the solution path makes six right branches (see
Fig. 7(c)). After applying HKMG algorithm to Fig. 7(c) to complete
the maze creation, an inaccessible section on the upper part of the
maze (see Fig. 7(d)) is generated. Each cell in this section does not
connect to S and E. Thus, the maze generated by this algorithm
is not a perfect maze. This might attract the attention of inspec-
tors. According to Cox et al. (2008), the property of undetectability
is the main requirement of steganography. Furthermore, the HK

embedding algorithm provides very small embedding capacity. To
overcome these problems, we will propose an improved embed-
ding method to generate a perfect maze, and the proposed method
will provide more embedding capacity by using multiple paths
instead of only one path.
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Fig. 8. One example to illustrate embeddable cells. (a) The white path

. Proposed method

The main idea of the proposed method is to consider multipaths
ather than only the solution path to gain more embedding capacity.
efore describing the proposed method, we will define “embed-
able cell” which will be used to embed a bit. Suppose the HKMG
lgorithm is used to generate a perfect maze, and the solution path
rom the starting cell to the end cell is located. All cells on the path
re marked as I cells, the other cells are reset to be O cells, and all
alls are rebuilt, except those in the path (see Fig. 8(a)).

efinition 1. An embeddable cell, A, is an I cell, which is in the
olution path with exact two O cells in its 4-neighbors, and each

cell should not be a neighbor of another embeddable cell which
ppears before A.

Fig. 8 shows an example. In Fig. 8(b), the cells with black trian-
les are embeddable ones and the gray cell is an O cell and is the
verlapped neighbor of two I cells, thus the cell with a black solid
ircle is not an embeddable cell. Based on the definition, all embed-
able cells can be located. According to the embedding bit, we carve
he wall between an embeddable cell and one O cell around it, and

ark the O cell as I cell. There are six kinds of embeddable cells
hown in Fig. 9. Each embeddable cell has two neighboring O cells
arked as 1 and 0. If a “1” bit is embedded, then the wall between

he embeddable cell and the cell marked “1” is carved, and the “1”
ell is marked as I cell. Otherwise the wall between the embeddable

ell and the cell marked as “0” is carved, and the “0” cell is marked
s I cell.

To increase embedding capacity, we can embed bits into mul-
ipaths instead of only one path. In the proposed method, we first

Fig. 9. Six kinds of embeddable cells.
for the solution path. (b) Embeddable cells marked by black triangles.

generate a perfect maze with HKMG algorithm. Subsequently, we
choose some cells as the start cells and one cell as the common
end one of the multipaths. Finally, we solve the perfect maze to
obtain the corresponding multipaths. These multipaths sometimes
will merge at some cells. Fig. 10(a) shows a 10 × 10 perfect maze
generated by the HKMG algorithm. Fig. 10(b) shows two solution
paths. The two solution paths start at S and T, respectively, they
have the common end cell E. The second path from T to E is merged
into the first path from S to E at cell A. Note that the number of solu-
tion paths and all the start cells and one end cell are chosen through
a random number generator and a seed, which will be considered
as the secret key. This part will be further addressed in Section 3.3.

3.1. Embedding algorithm

After obtaining the multiple paths, we order these paths accord-
ing to their starting cells from top to bottom and then left to right.
According to the path sequence, we trace each path from the start
cell to locate all embeddable cells. Note that if a subpath of a cer-
tain path has already been traced, it will be skipped. As a result, we
obtain a sequence of embeddable cells. Then data can be embedded
according to this sequence. Here, we will define a new type of cell,
‘D’ cell, which will be used in the proposed embedding algorithm.

Definition 2. Let A be an embeddable cell, B and C be its two
neighboring O cells. If the wall between A and B is carved to embed
one bit, cell C is called a D cell.

The details of the proposed embedding algorithm are described
as follows:

1. Create a maze using the HKMG algorithm (see Fig. 10(a)).
2. Choose some cells as start cells and one cell as the end cell. Solve

multipaths from these starting cells to the end cell (see Fig. 10(b),
S and T stand for two starting cells, E stands for the end cell, and
A stands for the merging cell).

3. Reset all cells to be O cells and all walls as visible. Set those cells
on multipaths to be I cells. Carve each wall between two I cells
(see (c)).

4. Find all embeddable cells in each path and order them accord-
ing to the path sequence. Note that we do not set the cell on
boundary to be embeddable cell even if the cell is embeddable
(see Fig. 10(d), black triangles stand for embeddable cells).

5. For each embeddable cell, if the embedding bit is 1 (0), the wall

between the embeddable cell and its neighboring O cell marked
1 (0) (see Fig. 9) is carved and the cell marked 1 (0) is set as I cell,
the other neighboring O cell marked 0 (1) is set as D cell (see
Fig. 10(e), D stands for the D cell).

6. Set those O cells around I cells to be F cells.
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ig. 10. An example of using our proposed method to embed data in a perfect maz
n (a) located with merged points A. (c) The result after performing Step 3 of the pr
mbedding data in embeddable cells with D cells marked. (f) The result of applyin
roposed embedding algorithm to (f). (h) The perfect maze generated after process

. Process these F cells using HKMG algorithm (see Fig. 10(f), O
stands for the O cell).

. Process the D cells.
(a) Scan the maze, and check if any D cell exists. If none, go to

step 9. Otherwise, choose a D cell with one of its neighbors
being an un-embeddable I cell and carve the wall between
the D cell and the un-embeddable I cell. Mark the D cell as I
cell, and mark each O cell in the 4-neighborhood of the I cell
as F cell (see Fig. 10(g)).

(b) Check if any F cell exists. If yes, go to step 7. If none, go to
step 8.

. End (see Fig. 10(h)).

.2. Extracting algorithm

To extract the embedded bits, the receiver must know the num-
er of solution paths and locate the start and end cells of multipaths,
hich can be extracted through the secret key and a pseudo ran-
om number generator. This part can be found in Section 3.3. Since

he generated maze is perfect, the receiver can get the original mul-
ipaths accurately according to these start and end cells. Then, the
eceiver can locate all embeddable cells. Finally according to the
irection of the branch in each embeddable cell, secret data can be
xtracted successfully.
perfect maze generated by HKMG algorithm. (b) Two paths from S to E and T to E
d embedding algorithm to (b). (d) All embeddable cells located. (e) The result after
G algorithm to process F cells. (g) The immediate result of applying Step 8 of the
Ds.

3.3. Maze information generation

In the proposed method, when the sender wants to embed secret
messages in mazes, he should determine a set of maze information
including the maze size (m × m), the number of solution paths (k),
six types of embeddable cells, the positions of start cells (s0, s1,
. . ., sk), and the position of end cell (e). In the paper, we provide
a method to produce the set of maze information automatically.
First, the sender inputs a seed to a pseudo random generator to
generate the set of maze information: the maze size (m × m), the
number of solution paths (k), six types of embeddable cells, the
positions of start cells (s0, s1, . . ., sk), and the position of end cell
(e), sequentially. Then, the sender uses the set of maze information
to generate a perfect maze with secret message embedded. If the
capacity of the generated maze is less than the size of the secret
message, the sender will continue to generate more perfect mazes
in the same way until the whole secret message is embedded. The
procedure is repeated until all secret messages are embedded. Note
that the secret messages will be padded to the capacity of the gen-
erated mazes. Finally, the sender considers the seed used to embed

secret messages as a secret key and share it with the receiver in a
secure way.

When the receiver receives mazes, the receiver can use the
secret key to produce the maze information, and based on the maze
information to extract secrets.
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Table 1
The embedding capacity of the proposed method.

osed method
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Proposed method
(3 paths)
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the solution path (see Fig. 7(c)), this makes some embeddable
cells in the solution path become un-embeddable (see Fig. 7(c),
two embeddable cells become un-embeddable). In our proposed
method, we mark all the embeddable cells and embed bits into
these embeddable cells before applying the HKMG algorithm.
Number of solution path HK embedding
algorithm (1 path)

Proposed method
(1 path)

Prop
(2 pa

Average capacity (bits) 64 125 152

. Proof and security analysis for the proposed method

In this section, we first prove the maze generated by the pro-
osed method is a perfect maze, then the security analysis for the
roposed method is described.

.1. The proof for generating a perfect maze

As mentioned previously, since the maze generated by HKMG
lgorithm is a perfect maze, we can build a corresponding tree. In
he proposed method, we first get the multipaths from some start
ells to one end cell. Thus, the corresponding subgraph, T, of these
ultipaths can be obtained by taking off all nodes and edges, which

re not in these multipaths. The subgraph, T, is still a tree, since all
ells in the multipaths are connected through the end cell. When
e embed one bit into one embeddable cell, A, on the multipaths,

nly one cell neighboring to A and not in T is added to T, and the link
onnecting the cell and A are added to T. Thus, the expanded graph
after embedding all bits is still a tree. Subsequently, we use the
KMG algorithm to process F cells. Since the HKMG algorithm is a

ree based algorithm, this will make the expanded graph T still be
tree after all F cells are processed. At last, when a D cell with one
n-embeddable I neighboring cell is added, the expanded graph T

s still a tree. Thus, to prove that the generated maze is perfect, we
nly need to prove that all Ds are marked as I cells after the proposed
lgorithm ends. To prove this point, six lemmas are first given; their
roof can be found in Appendix A. Here, we briefly describe the idea
f proof. For a D cell, its four 4-neighbors have four situations. The
rst is that each of its four 4-neighbors is not a D cell, the second is
hat exactly one of its four 4-neighbors is a D cell, the third is that
xactly two of its four 4-neighbors are D cells, the fourth is that
xactly three of its four 4-neighbors are D cells. Lemmas 3–6 are
rovided to prove that for each situation, the D cell should become
n I cell after applying the proposed embedding algorithm. Lemmas
and 2 are provided to aid the proof of Lemmas 3–6.

Based on Lemmas 3–6, we can get the following theorem imme-
iately.

heorem 2. In the proposed method, any D cell will become an I cell
hen the method ends.

.2. Security analysis for the proposed method

In steganography, there are two stages to break a stegano-
raphic system (Zollner et al., 1998; Katzenbeisser and Petitcolas,
000): First, an attacker can detect the existence of a secret mes-
age in a steganographic system. Second, the attacker can extract
he embedded message. Since each maze produced by the HKMG
lgorithm is perfect, to make a HKMG based embedding method
ndetectable, the perfect property should be kept. We have proved
hat all mazes generated by the proposed method are perfect. This

akes an attacker not able to distinguish the mazes produced by
ur proposed method from those produced by the HKMG algo-
ithm. However, the HK algorithm cannot guarantee that each
enerated maze is perfect, this makes the HK algorithm detectable.

n the other hand, if an attacker wants to extract the embedded
its by “brute force”, the attacker must guess correct start and
nd cells and embedded type. Suppose that K is the maximum
umber of solution paths. The attacker should guess the correct
ix kinds of embeddable cells (total number of choices is 26), the
Fig. 11. The capacities of different sizes of mazes.

possible positions of start (total number of possible positions is(
n2

i

)
) and end cells (total number of possible positions is (n2 − i)),

and the order of solution paths (total number of possible orders
is i! for i solution paths). Hence, the probability of the attack is

1

26 ×
∑

2≤i≤K

(n2 − i) ×
(

n2

i

)
× i!

≈ 1
n2(K+1)

. Note that when n ≥ 10,

K ≥ 4, the probability of the attack is less than 10−10, this is very
small. Thus, the proposed method is secure.

5. Experimental results

Note that when the HK embedding algorithm embeds a bit into
the solution path, a branch path will be generated and may adjoin
Fig. 12. A maze generated by the HKMG algorithm.
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that H is not embeddable, and from Lemma 2, we have that K
(or G) is an I cell. Since H is not a D cell, H will become an I cell,
this makes A become an I cell.

(2) If H is an embeddable I cell, then from Lemma 2, we have that K
is an I cell, and from Definition 1, we have that J is not embed-
ig. 13. A maze generated by the proposed method with 221 bits embedded.

ence, no embeddable cells become un-embeddable. Thus, our
roposed method has higher capacity. We also conduct some
xperiments to show this point. In Table 1, we generate twenty
4 × 64 mazes and calculate their capacities using different num-
er of solution paths. In the HK embedding algorithm, only 64 bits
an be embedded into a 64 × 64 maze (Niwayama et al., 2002).
ccording to our experiment, the average capacity of the pro-
osed algorithm using one solution path is nearly twice that of
he HK embedding algorithm, and the capacity using three solu-
ion paths is three times. When embedding bits in more than three
olution paths, the capacity of our proposed algorithm will not
e increased substantially. Fig. 11 shows the capacity of 32 × 32,
4 × 64, and 128 × 128 mazes which embed bits into one to five
olution paths, respectively. Fig. 12 shows a 64 × 64 maze gen-
rated by the HKMG algorithm. Fig. 13 shows a 64 × 64 maze
enerated by our proposed method using three paths, in which
here is 221 bit embedded. Both figures show perfect mazes,
nd based on visual inspection we cannot identify the maze
hat embeds secret data. From our experiments, we can also see
hat our proposed algorithm actually provides higher embedding
apacity.

. Conclusions

We proposed a novel method to embed secret data into
azes (Fun Printable Mazes for Kids, 2009; Novel Games, 2009;
ORLDVILLAGE KIDZ, 2009; Lost in the maze, 2009). It gener-

tes perfect mazes (Pullen, 2009) that cannot be distinguished
isually by humans from other perfect mazes commonly used.
ence, it significantly improves security over the existing HK
mbedding algorithm (Niwayama et al., 2002) that does not gen-
rate perfect mazes. When encoding bits into one solution path
ur new method on average provides approximately twice the
mbedding capacity of the one-path HK algorithm. With larger

azes our algorithm can utilize multiple paths for encoding to

urther increase capacity, while maintaining its “undetectability”
or human vision. In future work, we will focus on other puzzle
ames.
d Software 83 (2010) 2528–2535
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Appendix A.

Lemma 1. For a D cell, exact one of its 4-neighbors is an embeddable
I cell.

Proof. Suppose A is a D cell, then A is an O cell. By Definition 2, we
know that there is one of A’s 4-neighbors to be an embeddable I cell.
By Definition 1, we know that any two embeddable cells should not
have an O cell as their common 4-neighbors. Thus, only one of A’s
4-neighbors could be an embeddable I cell. The proof is completed.

Lemma 2. For an embeddable I cell, after a bit is embedded, exact
three 4-neighbors of the embeddable I cell are I cells.

Proof. Let A be an embeddable I cell. According to Definition 1,
we know that there are exact two 4-neighbors of A to be O cells,
that is, there are exact two 4-neighbors of A to be I cells. After a bit
is embedded, one of these two O cells will become an I cell. Thus,
there are exact three 4-neighbors of A to be I cells.

Lemma 3. Let A be a D cell, and each of its four 4-neighbors is not
a D cell, then A should become an I cell after applying the proposed
embedding algorithm.

Proof. Since A is a D cell, by Lemma 1, we have exact one of its four
4-neighbors to be an embeddable cell. Without loss of generality,
suppose that C (see Fig. 14) is an embeddable cell, by Lemma 2, we
have exact three of C’s four 4-neighbors are I cells. This implies that
B is an I cell. Since J is not a D cell, J will become an I cell. Since J is
not embeddable, this will make A become an I cell.

Lemma 4. Let A be a D cell with exact one of its four 4-neighbors being
a D cell, then A should become an I cell after applying the proposed
embedding algorithm.

Proof. Suppose that A has exact one of its four 4-neighbors being
a D cell, and suppose that C is a D cell (see Fig. 14). Since A is a D
cell, from Lemma 1, we have one of J, H, and F to be an embeddable
I cell.

(1) If J (or F) is an embeddable I cell, then from Definition 1, we have
Fig. 14. An example to illustrate Lemmas 3 and 4.
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dable. Since J is not a D cell, J will become an I cell, this will
make A become an I cell.

emma 5. Let A be a D cell, and exact two of its four 4-neighbors
re D cells, then A will become an I cell after applying the proposed
mbedding algorithm.

roof. We prove this Lemma in two different cases (see Fig. 15).

ase 1. Suppose that C and J are D cells (for C and F, J and H, or F and
, the proof is similar), then one of H and F will be an embeddable
cell. If H is an embeddable I cell, then F is not embeddable and G

s an I cell (by Lemma 2). This implies that F is an un-embeddable I
ell. This make A become an I cell. If F is an embeddable I cell, the
roof is similar.

ase 2. Suppose J and F (or C and H) are D cells.

1) Consider F cell, if E, T and G are not D cells. By Lemma 4, we
have F is an I cell, this will imply A to be an I cell.

2) If one of E and G is a D cell, according to the proof of Case 1, we
have F is an I cell, this make A be an I cell.

3) If E and G (for E and T, G and T, the proof is similar) are D cells,
by Lemma 6 (will be proved later), we have F is an I cell, this
will imply A to be an I cell.

4) If exact T is a D cell, we consider S, Z, and U. According to the
number of D in S and U cells, we apply the similar proof of (1) to
(3) to get T to be an I cell. Since T is an I cell, F will become an I cell,
this will imply A to be an I cell. If the proof of (1) to (3) cannot be
applied, this means that the horizontal cells such as that from F
to M except W are D cells. Since we restrict all boundary points
not to be embeddable cell, W is not embeddable, and W is not
D due to that L and N are not embeddable cells. This means that
M has exact one of its 4-neighbors being D cell. By Lemma 4, M
will become an I cell, then we get the left cell of M be an I cell.
In the similar fashion, we get all horizontal cells from M to F be
I cells, then A will be an I cell.

emma 6. Let A be a D cell, and exact three of its four 4-neighbors be
cells, then A will become I cells after applying the proposed algorithm.

roof. If J, H, and F are D cells (see Fig. 15), then C will be an
mbeddable I cell (by Lemma 1). According to Lemma 2, B, R, and E
ill be I cells.
1) Consider F, if G and T are not D cells. By Lemma 4, we have F is
an I cell, this will imply A to be an I cell.

2) If one of G and T is a D cell, by Lemma 5, we have F is an I cell,
this will imply A to be an I cell.

Fig. 15. An example to illustrate Lemmas 5 and 6.
d Software 83 (2010) 2528–2535 2535

(3) If G and T are D cells, then E will be an embeddable I cell (by
Lemma 1), and S will be I cells (by Lemma 2). According to the
number of D in U and Z, we apply the similar proof of (1) or (2)
to get T to be an I cell. This make F become an I cell, then A will
be an I cell. If (1) and (2) cannot be applied, this means that we
have horizontal cells such as that from F to M are D cells except
the end cell W. Since we restrict all boundary points not to be
embeddable cell, W is not embeddable, and W is not D due to
that L and N are not embeddable cells. This means that M has
exact one of its 4-neighbors being D cell. By Lemma 4, M will
become an I cell, then we get the left cell of M be an I cell. In
the similar fashion, we get all horizontal cells from M to F be I
cells, then A will be an I cell.
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