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Abstract—In order to release the growing demand for computa-
tional complexity with respect to increasing information sequence
length in the priority-first search decoding algorithm, a path
elimination modification is proposed and also analyzed in this
work. Specifically, we propose to directly eliminate all paths
whose end nodes are Δ-level prior to the farthest node among
those that have been visited thus far by the priority-first search.
Following the argument on random coding, we then analyze the
path elimination window Δ that results in a larger exponent
for additional decoding error caused by path elimination than
the exponent of the maximum-likelihood error performance, and
hence guarantees exponentially negligible performance degrada-
tion. Our analytical results indicate that under additive white
Gaussian noise (AWGN) channels, the path elimination window
required for exponentially negligible performance degradation is
just three times the code constraint length for rate one-half con-
volutional codes. It can be further reduced to 1.7-fold of the code
constraint length when rate one-third convolutional codes are
considered instead. Simulation results confirm these analytical
window sizes. As a consequence, the priority-first search decoding
algorithm can considerably reduce its computation burden and
memory consumption by directly eliminating a large number of
paths with nearly no performance degradation. This makes the
priority-first search decoding algorithm with path elimination
suitable for applications that demand low-complexity software
implementation with near optimal performance.

Index Terms—Priority-first search decoding, maximum-
likelihood, soft-decision, random coding.

I. INTRODUCTION

ONE of the commonly used decoding algorithms for
convolutional codes is the Viterbi algorithm. It operates

on a convolutional code trellis and has been shown to be a
maximum-likelihood (ML) decoder [8]. When the information
sequence is long, path truncation is proposed for practical im-
plementation of the Viterbi algorithm [8]. Instead of recording
all trellis branches of survivor paths in the decoder memory,
only a certain number of the most recently visited trellis
branches are retained, and a decision is forced on the oldest
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trellis branch whenever new data arrives at the decoder. Three
strategies have been proposed in regard to this kind of forceful
decision: (i) The majority vote strategy traces back from all
states, and outputs the decision that occurs most often; (ii) The
best state strategy only traces back from the state with the best
metric, and outputs the information bits corresponding to the
path being traced; (iii) The random state strategy randomly
traces back from one state, and outputs the information bits
corresponding to the path being traced. Although none of these
three strategies guarantee maximum-likelihood performance,
their performance degradation can be made negligible as long
as the truncation window is sufficiently large.

Forney [4] proved that a truncation window that is 5.8-fold
of the code constraint length suffices to provide negligible
performance degradation for the best state strategy under a
very noisy channel. Hemmati and Costello [7] later derived
an upper performance bound as a function of the truncation
window and distance property of a given code, and suggested
that at very high signal-to-noise ratio, a truncation length
larger than the code free distance is sufficient to achieve near-
optimal performance for the best state strategy. McEliece and
Onyszchuk [11] studied the tradeoff between the truncation
window size and performance loss for the random state
strategy under both binary symmetric channels and additive
white Gaussian noise (AWGN) channels, concluding that
the truncation window for the random state strategy should
be about twice as large as that for the best state strategy.
Onyszchuk [12] continued to investigate the truncation lengths
for the best state strategy under AWGN channels, and sug-
gested that the truncation lengths for codes with constraint
length greater than seven are in general larger than 5.8 times
the code constraint length.

Another well-known decoding algorithm for convolutional
codes is the sequential decoding algorithm [8]. Although it
is suboptimal in performance, its decoding complexity does
not depend on the code constraint length in contrast to the
exponential growth of the Viterbi decoder. This makes the
sequential decoding algorithm especially suitable for convo-
lutional codes with large constraint length. For this reason, it
has recently been used in the decoding of the so-called “super-
code” that considers the joint effect of multi-path channel and
convolutional code [6]. Furthermore, sequential-type search
algorithms have been shown promising for sphere detector
in communication systems with high-order modulation and
multiple antennae [9][10].

In 2002, by replacing the Fano metric with one derived
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from maximum-likelihood criteria, a variant of the sequential
decoding algorithm was established in [5]. The same paper
showed that with the new metric, optimal performance can
be obtained by following the priority-first search procedure
of sequential decoding. Thus, the performance of the priority-
first search decoding algorithm (PFSDA) proposed therein is
exactly the same as that of the Viterbi algorithm. As far as the
software complexities1 of the two equal-performance decoding
algorithms are concerned, it has been shown by simulations
that the algorithmic complexity of the proposed PFSDA is in
general smaller [5].

When compared with the sequential decoding algorithm
using the Fano metric, the PFSDA has four advantages. Firstly,
in contrast to the asymptotical maximum-likelihoodness of
the sequential decoding algorithm, the PFSDA is an exact
maximum-likelihood (ML) decoding algorithm for codes of
any given finite blocklength. Secondly, by adding another
stack for the examination of path merging, the PFSDA can
operate over a code trellis without sacrificing its optimality
in performance. Thirdly, the decoding metric used by the
PFSDA does not depend on the channel signal-to-noise ratio
(SNR) under AWGN channels, and hence no estimation of
channel SNR is necessary at the receiver end. Fourthly, the
decoding metric of the PFSDA is less sensitive to quantization
distortion than the sequential decoding algorithm. As such
distortion is unavoidable during the practical implementation
of a decoding algorithm, it will be shown in this work that 4-bit
quantization causes only 0.05 dB loss on block error rate for
the PFSDA, while the same quantization distortion leads to an
evident performance loss for the sequential decoding algorithm
(cf. Figure 10). These factors make the PFSDA suitable for
systems that provide only a simple quantizer but no channel
SNR estimator.

Analogous to both of the Viterbi algorithm and the sequen-
tial decoding algorithm, the computational complexity and
memory consumption of the PFSDA grow with the length
of information sequence. An effective approach to reduce
the growing computational effort with respect to increasing
information sequence length is perhaps to restrict the number
of paths involved in the computations. Specifically, we propose
to directly eliminate the paths whose end nodes are Δ-level-
prior to the farthest one among all nodes that have been
visited thus far by the priority-first search. This process is
referred to as early elimination. Following the random coding
argument used by Forney [4], we analyze the early-elimination
window Δ that achieves exponentially negligible performance
degradation in the sense that the exponent of additional error
introduced by early-elimination is larger than the exponent
of the ML error performance. Our analytical results indicate
that the required early-elimination window for exponentially
negligible performance degradation is around three times
the code constraint length for half-rate convolutional codes.
This window can be further reduced to 1.7-fold of the code
constraint length when rate one-third convolutional codes are
considered. Simulations are then performed, and are found
to conform to our analytical results. Consequently, the com-

1By software complexity (as contrast to hardware complexity), we mean the
decoder is programmed and executed in a sequential fashion, and no parallel
processing technique is employed in its implementation.

putational burden and memory consumption of the PFSDA
can be considerably reduced by introducing early-elimination
modification with nearly no sacrifice in performance.

It should be emphasized that the early-elimination window
for the PFSDA functions differently in its notion from the
path truncation window for the Viterbi algorithm. The former
is the window to eliminate paths from the stacks in order to
reduce the maintenance burden of a large stack, while the
latter is used by the Viterbi algorithm to truncate the paths
under consideration (without eliminating any of them) and its
objective is to provide a timely decoding output. As such,
path truncation can also be applied to the PFSDA together
with the early-elimination scheme when timely decision is
also required. Simulations show that by adopting the best state
strategy over (2, 1, 12) convolutional codes, the path trunca-
tion window for the PFSDA with early elimination window
Δ = 40 ≈ 3(12+1) should be no less than 110 ≈ 8.5(12+1)
under AWGN channels, if 0.05 dB performance degradation
from the ML decoder is required for block error rate less than
10−2. This number is exactly the same as that required by the
Viterbi algorithm under an identical requirement. Thus, the
decision delays for both the Viterbi algorithm and the early-
elimination PFSDA are comparable.

The rest of the paper is organized as follows. The system
model and the PFSDA are introduced in Section II. The early-
elimination scheme is presented in Section III. Numerical and
simulation results are summarized and remarked in Section IV.
Section V concludes the paper.

II. PRELIMINARIES

We use 𝒞∼ to denote a binary (𝑛, 𝑘,𝑚) convolutional code
with input information sequence of 𝑘 × 𝐿 bits, followed by
𝑘×𝑚 zeros for the purpose of clearing the encoder memory.
Thus, 𝒞∼ forms an (𝑁,𝐾) linear block code with effective code
rate 𝑅 ≜ 𝐾/𝑁 , where 𝐾 ≜ 𝑘𝐿 and 𝑁 ≜ 𝑛(𝐿 + 𝑚). With
this setting, the code rate, the memory order and the constraint
length2 of 𝒞∼ are given by 𝑘/𝑛, 𝑚 and 𝑚 + 1, respectively.

Let a binary codeword of 𝒞∼ be represented by 𝒗 ≜
(𝑣0, 𝑣1, . . . , 𝑣𝑁−1), where each 𝑣𝑗 ∈ {0, 1}, and denote a
portion of it by 𝒗(𝑎,𝑏) ≜ (𝑣𝑎, 𝑣𝑎+1, . . . , 𝑣𝑏). For convenience,
we drop the subscripts 0 and 𝑁 − 1 whenever they appear
in notation 𝒗(𝑎,𝑏); hence, 𝒗(0,𝑏) and 𝒗(0,𝑁−1) are abbreviated
respectively as 𝒗(𝑏) and 𝒗. The same abbreviation will be
applied to other vector notations.

Assume that the binary codeword is transmitted over a time-
discrete channel with channel output 𝒓 ≜ (𝑟0, 𝑟1, . . . , 𝑟𝑁−1).
Define the hard-decision sequence 𝒚 ≜ (𝑦0, 𝑦1, . . . , 𝑦𝑁−1)
corresponding to 𝒓 as:

𝑦𝑗 ≜
{

1, if 𝜙𝑗 < 0;
0, otherwise,

(1)

where

𝜙𝑗 ≜ log
𝑓(𝑟𝑗 ∣𝑣𝑗 = 0)

𝑓(𝑟𝑗 ∣𝑣𝑗 = 1)
,

2A formal definition of the memory order is 𝑚 ≜ max1≤𝑖≤𝑘 𝜈𝑖, where
𝜈𝑖 is the length of the 𝑖th shift register in a convolutional encoder. This
leads to another known definition of the constraint length, i.e.,

∑𝑘
𝑖=1 𝜈𝑖 (See

for example [8, Definition 11.3]). In this work, by following [16], we adopt
𝑚 + 1 as the constraint length so as to be consistent with the analysis of
early-elimination windows (cf. (4)).
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and 𝑓(𝑟𝑗 ∣𝑣𝑗) denotes the channel transition probability density
for 𝑟𝑗 given 𝑣𝑗 .3 It can then be obtained [5] that the maximum-
likelihood decoding output 𝒗̂ for received vector 𝒓 is given by:

𝒗̂ = 𝒚 ⊕ 𝒆∗, (2)

where 𝒆∗ is the error pattern with the smallest
∑𝑁−1

𝑗=0 𝑒𝑗 ∣𝜙𝑗 ∣
among all 𝒆 ∈ {0, 1}𝑁 satisfying 𝒆ℍ𝑇 = 𝒚ℍ𝑇 , and ℍ is the
parity check matrix of the (𝑁,𝐾) linear block code 𝒞∼. In the
above sentence, “⊕” is the bitwise exclusive-OR operation,
and superscript “𝑇 ” denotes the matrix transpose operation.
Based on the observation in (2), a sequential-type decoder
has been established in [5] by replacing the Fano metric in
the sequential decoding algorithm with a metric defined as:

𝜇
(
𝒙(ℓ𝑛−1)

)
≜

ℓ𝑛−1∑
𝑗=0

𝜇(𝑥𝑗), (3)

where 𝒙(ℓ𝑛−1) = (𝑥0, 𝑥1, . . . , 𝑥ℓ𝑛−1) ∈ {0, 1}ℓ𝑛 represents
the code word label of a path ending at level ℓ in the (𝑛, 𝑘,𝑚)
convolutional code tree, and 𝜇(𝑥𝑗) ≜ (𝑦𝑗 ⊕ 𝑥𝑗)∣𝜙𝑗 ∣ is the
bit metric. Since the decoding metric 𝜇 is nondecreasing
along all code paths, and since finding 𝒆∗ is equivalent to
finding the code path with the smallest metric in the code
tree, it was also proven in [5] that the proposed sequential-
type decoder (referred to as Priority-First Sequential Decoding
Algorithm or PFSDA) guarantees locating the maximum-
likelihood codeword.

By adding a second stack, the PFSDA can be made to
operate on a code trellis instead of a code tree [5]. The two
stacks are referred to as the Open Stack and the Closed Stack,
respectively. The Open Stack contains all paths that end at
the frontier part of the trellis being explored thus far, as
exemplified in Figure 1. It is called the Open Stack because
it functions the same as the single stack in the sequential
decoding algorithm and hence its elements are still open
for further expansion. An efficient management of the Open
Stack can be obtained by using the HEAP data structure [2].
This structure can reduce the computational burden of path
insertion down to the order of 𝑂(log 𝑠), where 𝑠 is the size of
the Open Stack. The Closed Stack stores the information of
the ending states and the ending levels of paths that had been
the top paths of the Open Stack. Analogously, it is named the
Closed Stack because its elements will not be further expanded
and thus are seemingly closed.

In order to facilitate the introduction of early-elimination
modification, the trellis-based PFSDA [5] is reproduced below.

Step 1. Load the Open Stack with the path consisting of
only the origin node, and initialize its metric to be
zero.

Step 2. Put into the Closed Stack both the state and level
of the end node of the top path in the Open Stack.
Compute the path metric for each of the successor
paths of the top path in the Open Stack by adding
the branch metric of the extended branch to the path
metric of the top path. Delete the top path from the
Open Stack.

3For discrete channels, it is understood that the log-likelihood ratio 𝜙𝑗

becomes log[Pr(𝑟𝑗 ∣𝑣𝑗 = 0)/Pr(𝑟𝑗 ∣𝑣𝑗 = 1)]. All the analyses in this work
are accordingly valid for discrete channels.

Close Stack
Open Stack

ℓmax

Early Elimination Threshold ∆

A

D

B

C

ℓ

Fig. 1. Early-elimination window Δ in the trellis-based PFSDA.

Step 3. Discard those successor paths in Step 2, which end
at a node that has the same state and level as any
entry in the Closed Stack. If any successor path
ends at the same node as a path already in the Open
Stack, eliminate the path with higher path metric.4

Step 4. Insert the remaining successor paths into the Open
Stack in order of ascending path metrics. If two (or
more) paths in the Open Stack have equal metric,
sort them in order of descending levels. If they
happen to end at the same level, sort them randomly.

Step 5. If the top path in the Open Stack reaches the end of
the convolutional code trellis, the algorithm stops;
otherwise go to Step 2.

III. EARLY-ELIMINATION MODIFICATION FOR

PRIORITY-FIRST SEARCH DECODING ALGORITHM

The motivation behind early-elimination modification can
be indicated by the following two observations. As shown in
Figure 1, suppose that the path ending at node 𝐶 is the portion
of the final code path found at the end of priority-first search,
and suppose that the path ending at node 𝐷 happens to be the
current top path. Then, expanding node 𝐷 until its offspring
gradually accumulate adequate decoding metrics to exceed the
decoding metric of the path ending at node 𝐶 will consume a
considerable but unnecessary amount of computational effort.
On the other hand, due to the nondecreasing nature of the
adopted decoding metric along paths on the code trellis, a top
path ending at a level much smaller than ℓmax, where ℓmax

is the largest level for all nodes having been expanded thus
far by the priority-first search, is with high probability not the
final code path located at the end of decoding process. These
two observations jointly suggest that by setting a proper level
threshold Δ and directly eliminating the top path whose level
is no larger than (ℓmax − Δ), the computational complexity
of the priority-first search algorithm may be reduced without
sacrificing much of the performance. We call this scheme early
elimination.

In its implementation, because the decoding complexity is
mainly contributed by the branch metric computations follow-
ing the node expansion of the top path in the Open Stack,
we propose to examine the path early-elimination condition
only on the top paths prior to their expansions. This can save

4For discrete channels, it may occur that the successor path not only ends
at the same node as some path already in the Open Stack but also has equal
path metric to it. In such case, just randomly eliminate one of them.
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the extra effort of keeping tract of those paths momentarily
ending at the least level in addition to the maintenance of the
top paths with the least metric value. As such, only Step 2 in
the trellis-based PFSDA needs to be modified.

Initialize at the beginning of the algorithm ℓmax = 0.
Step 2′′. Perform the following check before executing the

original Step 2.

∙ If the top path in the Open Stack ends at a node
whose level is less than or equal to (ℓmax−Δ),
then directly eliminate the top path and go
to Step 5; otherwise, update ℓmax if ℓmax is
smaller than the ending level of the current top
path.

It is worth mentioning that since the decoding metric is
monotonically nondecreasing along the path to be searched,
it is guaranteed that the path that updates the current ℓmax

is exactly the one with the smallest path metric among all
paths ending at the same level [5]. This is the key that leads
to that the priority-first search using a monotonic maximum-
likelihood metric defined in (3) guarantees that the first top
path that reaches the last level of the code trellis is the
maximum-likelihood code path.

A natural question that follows is how to analytically
determine the early-elimination window size Δ that can result
in exponentially negligible performance degradation. For this
purpose, we derive a lower bound for the exponent of addi-
tional decoding error introduced by early-elimination modifi-
cation, and choose an early-elimination window, of which the
corresponding exponent lower bound is larger than the known
error exponent of the maximum-likelihood error performance.
This window can therefore guarantee exponentially negligible
performance degradation. In particular, we show in Appendix
A that for codes with code rate 𝑅 above the channel cutoff
rate, the additional decoding error due to early elimination
becomes exponentially negligible if

Δ/(𝑚 + 1) > 𝐸c(𝑅)/𝐸el(𝑅), (4)

where 𝐸el(𝑅) and 𝐸c(𝑅) are functions defined in (14) and
(15), respectively. In the next section, we will examine the
near-optimal early-elimination windows for various codes by
simulations, and compare them with the ones obtained analyt-
ically from (4).

IV. NUMERICAL AND SIMULATION RESULTS UNDER

AWGN CHANNEL

Inequality (4) is valid only for those code rates no less
than the channel cutoff rate 𝑅0. Although lack of general
evidence, the cutoff rate is widely believed to be the rate
beyond which the communication cost dramatically increases
[1, pp. 184]. This is especially true for sequential decoders
for which the decoding complexity grows rapidly when the
code rate is increased above 𝑅0. The code rate taken into (4)
is accordingly suggested to be an “implementation-feasible"
number no larger than 𝑅0. As a result, 𝑅 = 𝑅0 is the only
choice that can simultaneously meet this requirement and (4).
The same choice has also been used by Forney to show that
under very noisy channels, 5.8-fold of the code constraint
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dotted black line along each curve corresponds to rates below 𝑅0, for which
(𝑚 + 1)min{𝐸sp(𝑅), 𝐸x}/𝐸el(𝑅) is plotted instead (See Footnote 8.)

length is suggested for the path truncation window at the cutoff
rate [4], [15].

As a complement to the above discussion, Figure 2 depicts
the lower bounds of Δ according to (4) with respect to various
code rates and 𝑚 = 12. By considering only the range
corresponding to 𝑅0 ≤ 𝑅 < 𝐶, where 𝐶 is the channel
capacity, Figure 2 clearly indicates that (𝑚+1)𝐸c(𝑅)/𝐸el(𝑅)
peaks at 𝑅 = 𝑅0 as the SNR varies. Since what we concern is
an early-elimination window Δ that guarantees exponentially
negligible performance degradation, this figure again suggests
taking the peak Δ value at 𝑅 = 𝑅0 is sufficient for all
SNRs under consideration. For the SNRs beyond 𝑅0 (i.e.,
0 ≤ 𝑅 < 𝑅0), one can perhaps derive an analytically
suggested Δ value using (16) as remarked in Footnote 8. The
later simulations however consistently show that taking the
minimum Δ satisfying (4) at 𝑅 = 𝑅0 has already provided
almost exact performance to an ML decoder; hence, it is not
necessary to further increase Δ as implied by (16). A side and
reasonable observation from the same figure is that Δ should
be made larger for higher code rates.

By choosing noise variances 𝜎2 = 0.567 and 𝜎2 = 0.940
to respectively approach the cutoff rates 1/2 and 1/3 under
AWGN channels, it can be established from (4) that the
suggested early-elimination windows at rates equal to the
cutoff rates are respectively:

Δ >
0.500

0.164
× (𝑚+ 1) ≈ 3.05(𝑚+ 1) for rate 1/2 codes (5)

and

Δ >
0.333

0.195
× (𝑚 + 1) ≈ 1.71(𝑚+ 1) for rate 1/3 codes.

The exponent functions 𝐸el(𝑅) and 𝐸𝑐(𝑅) for the above
AWGN channels are plotted in Figure 3.

Condition (5) then indicates that for (2,1,6), (2,1,8),
(2,1,10), and (2,1,12) convolutional codes, taking Δ = 22, 28,
34 and 40, respectively, should suffice to result in exponen-
tially negligible performance degradation. Simulations are next
performed and summarized in Figure 4, which confirms that
the performance of the early-elimination PFSDA with these
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suggested window sizes is almost indistinguishable from the
maximum-likelihood decoder.5

By simulations, we also examine the Δ values that result in
at most 0.1 dB performance degradation, and plot their corre-
sponding performance curves also in Figure 4. The simulation
results show that the Δ values are reduced down to 18, 22, 26
and 30 for (2,1,6), (2,1,8), (2,1,10) and (2,1,12) convolutional
codes, respectively, when performance degradation of 0.1 dB
is acceptable. This indicates that although one can adopt the
Δ values directly derived from (4), these values tend to be
larger than what are usually required from the viewpoint of
practical applications.

The discussions in the above two paragraphs can be likewise

5Since their performance curves are indistinguishable, the near-ML early-
elimination PFSDA and the ML decoder are therefore combined in one in the
legends of Figures 4 and 5.
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Fig. 5. Performance for rate one-third convolutional codes for the ML
decoder and the PFSDA with early-elimination window Δ. The message
length is 𝐿 = 200. The generator polynomials for 𝑚 = 6, 8, 10, 12 are
[554,624,764], [557,663,711], [4726,5562,6372], and [42554,43364,77304]
(in octal), respectively.
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PFSDA
PFSDA Δ=40
PFSDA Δ=30
PFSDA Δ=40, Γ=8192
PFSDA Γ=8192
Software Viterbi Decoder

Fig. 6. Average number of branch metric computations per information bit
for (2,1,12) convolutional codes decoded by the Viterbi decoder, the PFSDA
with and without early elimination and also with and without finite stack size
constraint Γ under AWGN channels. The message length is 𝐿 = 200.

observed in Figure 5 for rate one-third convolutional codes,
and hence their discussions are omitted.

The reduction of computational complexity due to early
elimination is illustrated in Figure 6. For sequential-type
decoders, the decoding complexity is clearly determined not
only by the number of branch metrics evaluated but also by
the cost of searching and reordering of the stack elements.
The latter cost however has been proved to be of comparable
order to the former one [3]. It is therefore justified to consider
the branch metric computations as the key determinant of
algorithmic complexity. Figure 6 then shows that for (2, 1, 12)
convolutional code with message length 𝐿 = 200 and at
𝐸b/𝑁0 = 2.5 dB, the average number of branch metric
computations to decode one information bit is 123 for the
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PFSDA Δ = 40, Γ = 8192
ML or PFSDA Δ = 40

Fig. 7. Performance for (2,1,12) convolutional codes decoded by the ML
decoder, the PFSDA with early-elimination window Δ, and the PFSDA with
early-elimination window Δ and finite stack size Γ. The message length is
𝐿 = 200.

PFSDA with early-elimination window Δ = 40. This number
is only 4.4% of that (specifically, 2994) for the PFSDA without
early elimination. One can further reduce the average decoding
complexity down to 53 computations per information bit at a
price of 0.1 dB performance degradation, if Δ decreases down
to 30. The above simulations confirm our anticipation that with
early-elimination modification, the PFSDA can achieve near-
optimal performance with considerable reduction of computa-
tional complexity.

Although we have anticipated that by early elimination, the
stack size requirement for the PFSDA is reduced, we have
been surprised by the amount of the reduction. By setting
a stack size limit Γ to be the same as that required by
the Viterbi decoder, i.e., 2 × 2𝑚, and simply deleting the
path with the smallest level when the stack size exceeds this
limit,6 only 0.05 dB performance degradation is resulted in
comparison with the ML decoder as shown in Figure 7. With
such a small stack size limit, the computational complexity
can be further reduced from 123 down to 96 computations per
information bit at 𝐸b/𝑁0 = 2.5 dB as observed from Figure
6. Notably, this computational complexity is much smaller
than the PFSDA with only the stack size limit but without
early elimination, where 629 computations are required to
decode one information bit at the same 𝐸b/𝑁0. Thus, the
early-elimination modification is more crucial in complexity
reduction than the limitation of stack size.

Figure 6 also presents the number of per-information-bit
metric computations required by the Viterbi decoder. From
this figure, one may question that even though the early-
elimination PFSDA has a much smaller number of branch
metric computations than the Viterbi decoder, the management

6For the purpose of locating the path with the smallest ending level, an
additional HEAP is implemented with the key being the ending levels of the
paths in the Open Stack. The maintenance complexity of the original HEAP
based on path metric indices still remains logarithm of the stack size. A brief
of the HEAP data structure as well as necessary modification for the PFSDA
with finite stack size can be found in Appendix B.

1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

E
b
 / N

0

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
) 

pe
r 

in
fo

rm
at

io
n 

bi
t

 

 
PFSDA Δ = 40
PFSDA Δ = 40, Γ = 8192
PFSDA Γ = 8192
Software Viterbi Decoder

Fig. 8. Average decoding time (in seconds) per information bit for (2,1,12)
convolutional codes decoded by the Viterbi decoder, the PFSDA with early-
elimination window Δ, and the PFSDA with early-elimination window Δ
and finite stack size Γ. The message length is 𝐿 = 200.

of two stacks, such as insertion and deletion of stack elements,
may consume more time in each computation. In order to have
a better understanding in this practical issue, an experiment
was performed on an IBM System x3800 server, and the
resulting average execution times per information bit are
summarized in Figure 8. In this simulation, two implicit
observations that are not shown in this figure can be added.
Firstly, by using the HEAP data structure, the execution time
per branch computation is nearly a constant with respect to
the signal-to-noise ratios for the PFSDA, and this average
execution time is around 13 times that of the Viterbi decoder
when the PFSDA with Δ = 40 and Γ = 8192 is regarded.
Secondly, the PFSDA without stack size limitation needs a
little more time in each computation at low SNR because the
stack size may grow slightly larger in a noisier environment.
Accordingly, to place a moderately small upper limit (such
as Γ = 2 × 212 for (2, 1, 12) convolutional codes) on the
stack size together with the early-elimination modification can
provide the best decoding efficiency subject to near-optimal
performance. Figure 8 substantiates this conclusion, which
shows that the PFSDA with early-elimination window Δ = 40
and stack size limit Γ = 8192 is seven times faster than the
Viterbi algorithm at 𝐸b/𝑁0 = 2.5 dB when both decoders are
implemented by software.

Timely or on-the-fly decision outputs are sometimes re-
quired for certain applications. We next examine the path
truncation window 𝑇 beyond which the corresponding infor-
mation bits can be forcefully decided or well estimated for
the early-elimination PFSDA. Respective comparison with the
Viterbi decoder was also performed. The best state strategy
that traces back the top path in the Open Stack and outputs
the information bits corresponding to the path being traced is
adopted. Figure 9 then implies that for (2, 1, 12) convolutional
code,

both the early-elimination PFSDA and the Viterbi algorithm
require a path truncation window 110 ≈ 8.5(12+1) to achieve
0.05 dB performance degradation from the ML performance
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Fig. 9. Performance for (2,1,12) convolutional codes decoded by the ML
decoder, the Viterbi decoder with truncation window 𝑇 , and the PFSDA with
early-elimination window Δ = 40 and truncation window 𝑇 under AWGN
channels.
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(2,1,12) Convolutional Codes with Quantization for Information Length L=200

 

 
Fano metric (Q=4)
Fano metric (Q=∞)
PFSDA (Δ=40, Q=4)
ML

Fig. 10. Performance with metric quantization for (2,1,12) convolutional
codes decoded by the sequential decoding algorithm and the PFSDA with
early elimination under AWGN channels. The number of quantization levels
is 2𝑄.

at block error rate (BLER) = 10−2. Our result agrees with
the conclusion in [12] where the path truncation window of
5.8(𝑚 + 1) as suggested by Forney [4] may not be enough
to secure near-optimal performance under AWGN channels.
In particular, by simulations, Onyszchuk [12] suggested a
path truncation window of 59 ≈ 6.6(8 + 1) for (2, 1, 8)
convolutional codes, and hint that the ratio of the near-optimal
path truncation window against the code constraint length may
further increase for codes of larger constraint length.

One of the advantages of the PFSDA in distinction to the se-
quential decoding algorithm is that unlike the Fano metric, its
decoding metric is independent of channel SNRs. In addition,
its decoding metric is less sensitive to quantization distortion.
The former advantage of the PFSDA clearly remains after the
introduction of early elimination. Therefore, we only examine

whether the insensitiveness to quantization distortion remains
after applying early-elimination modification. As shown in
Figure 10, the PFSDA with early elimination exhibits only
0.05 dB performance degradation under 4-bit quantization.
This figure also shows that the sequential decoding algorithm
with perfect knowledge on channel SNR results in about 0.3
dB degradation in comparison with the ML performance under
4-bit quantization. In this simulation, the uniform quantization
method7 adopted follows from [13]. Since the decoding metric
of the PFSDA is irrelevant to channel SNRs, no further
performance degradation will be produced in the particular
situation where channel SNRs cannot be accurately estimated.

V. CONCLUDING REMARKS

In this work, we propose to improve the computational com-
plexity and memory requirement of the priority-first search
decoding algorithm by early elimination. The random cod-
ing analysis of the sufficient early elimination window for
exponentially negligible performance degradation, as well as
the subsequent simulations, confirms our anticipated improve-
ment.

Since our result justifies the fitness of the PFSDA with early
elimination for applications that dictate near-ML performance
with limited support in computational power and memory, fu-
ture research of practical interest could apply the PFSDA with
early elimination to sphere detector [9][10] as well as joint
multi-path channel equalization and convolution decoding [6].
In addition, the hardware implementation of the PFSDA may
become feasible with early elimination, and hence, could be
another future work of practical interest.

APPENDIX A
ANALYSIS OF THE WINDOW SIZE WITH EXPONENTIALLY

NEGLIGIBLE PERFORMANCE DEGRADATION

In the analysis of near-optimal early-elimination window,
we first observe, as exemplified in Figure 1, that the current top
path that ends at node 𝐵 with label 𝒙(ℓ𝑛−1) is early-eliminated
if, and only if, node 𝐶 is expanded earlier than node 𝐵,
provided that ℓ ≤ ℓmax −Δ. It then follows from the PFSDA
algorithm and the nondecreasingness of the path metric along
the path to be searched that node 𝐶 being expanded earlier
than node 𝐵 implies that

𝜇
(
𝒙(ℓ𝑛−1)

) ≥ 𝜇
(
𝒙̃(ℓmax𝑛−1)

)
,

7The 𝑄-bit uniform quantization for a decoding metric actually involves
two steps: the first step decides the 2𝑄 uniform partitions on the alphabet of
the received scalar, while the second step determines the 𝑄-bit representative
metric value for each partition. By following [13], the step size of the uniform
partitions that maximize the cutoff rate of the resultant 2-input-2𝑄 -output
quantized channel is adopted, which, for 𝐸𝑏/𝑁0 = 1 dB, is 0.296 in
Figure 10 as the step size should be chosen for the lowest operational 𝐸𝑏/𝑁0

so that the quantizer can work well, even not optimally, for higher SNRs. For
the Fano metric 𝜇F, the second step is tricky because it has to map the
highly asymmetric metric values (e.g., −12 ≤ 𝜇F ≤ 0.5 for 𝑄 = 4) to
either −2𝑄−1, . . . , 0, . . . , 2𝑄−1 − 1 or 0, 1, . . . , 2𝑄 − 1. Apparently, one
has to scale, round to the nearest integer, shift and possibly clip the original
metric value in order to obtain a 4-bit representative metric mapping that
performs well (e.g., max{0,Round(𝜇F ×2)+14} for 𝑄 = 4). Note that the
shifted counterpart of the decoding metric in (3) can be directly applied in
the PFSDA; however, the shifted Fano metric must subtract the shift constant
before it is used to locate the next path to be extended, which introduces
additional subtraction operations in metric computations. Since we restrict
the system to only use 𝑄-bit arithmetic logics, the shift constant should also
be a 𝑄-bit representable number (e.g., 14 for 𝑄 = 4).
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equivalently,

ℓ𝑛−1∑
𝑗=0

𝜇(𝑥𝑗) ≥
ℓmax𝑛−1∑

𝑗=0

𝜇(𝑥̃𝑗), (6)

where 𝒙̃(ℓmax𝑛−1) labels the path ending at node 𝐶. By noting
that (6) can be rewritten using 𝜇(𝑥𝑗) = (𝑥𝑗 − 𝑦𝑗)𝜙𝑗 and
𝜇(𝑥̃𝑗) = (𝑥̃𝑗 − 𝑦𝑗)𝜙𝑗 as:

ℓ𝑛−1∑
𝑗=0

(𝑥̃𝑗 − 𝑥𝑗)𝜙𝑗 +

ℓmax𝑛−1∑
𝑗=ℓ𝑛

𝑥𝑗𝜙𝑗 −
ℓmax𝑛−1∑
𝑗=ℓ𝑛

𝑦𝑗𝜙𝑗 ≤ 0,

and by reformuating the unequal-length log-likelihood ratio
as:

log
𝑓(𝒓(ℓ𝑛−1)∣𝒙(ℓ𝑛−1))

𝑓(𝒓(ℓmax𝑛−1)∣𝒙̃(ℓmax𝑛−1))

=

ℓ𝑛−1∑
𝑗=0

[log 𝑓(𝑟𝑗 ∣𝑣𝑗 = 0) − 𝑥𝑗𝜙𝑗 ]

−
ℓmax𝑛−1∑

𝑗=0

[log 𝑓(𝑟𝑗 ∣𝑣𝑗 = 0) − 𝑥̃𝑗𝜙𝑗 ]

=

ℓ𝑛−1∑
𝑗=0

(𝑥̃𝑗 − 𝑥𝑗)𝜙𝑗 +

ℓmax𝑛−1∑
𝑗=ℓ𝑛

𝑥̃𝑗𝜙𝑗

−
ℓmax𝑛−1∑
𝑗=ℓ𝑛

log 𝑓(𝑟𝑗 ∣𝑣𝑗 = 0),

we found that (6) is equivalent to:

Φ1(𝒓(ℓ𝑛,ℓmax𝑛−1)) ⋅ 𝑓
(
𝒓(ℓ𝑛−1)

∣∣𝒙(ℓ𝑛−1)

)
≤ 𝑓

(
𝒓(ℓmax𝑛−1)

∣∣ 𝒙̃(ℓmax𝑛−1)

)
, (7)

where 𝑓(⋅∣⋅), 𝜙𝑗 and 𝑦𝑗 have been defined in (1), and

log Φ1(𝒓(ℓ𝑛,ℓmax𝑛−1))

≜
ℓmax𝑛−1∑
𝑗=ℓ𝑛

[(1 − 𝑦𝑗) log 𝑓(𝑟𝑗 ∣𝑣𝑗 = 0) + 𝑦𝑗 log 𝑓(𝑟𝑗 ∣𝑣𝑗 = 1)]

=

ℓmax𝑛−1∑
𝑗=ℓ𝑛

log (max {𝑓(𝑟𝑗 ∣𝑣𝑗 = 0), 𝑓(𝑟𝑗 ∣𝑣𝑗 = 1)}) .

Since the path that updates the current ℓmax is exactly the one
with the smallest path metric among all paths ending at the
same level [5], (7) can be equivalently rewritten as:

Φ1(𝒓(ℓ𝑛,ℓmax𝑛−1)) ⋅ 𝑓
(
𝒓(ℓ𝑛−1)

∣∣𝒙(ℓ𝑛−1)

)
≤ max

𝒙̃(ℓmax𝑛−1)∈ 𝒞∼ℓmax

𝑓
(
𝒓(ℓmax𝑛−1)

∣∣ 𝒙̃(ℓmax𝑛−1)

)
,(8)

where 𝒞∼ℓmax is the set of all path labels of length ℓmax𝑛,
whose corresponding paths consist of different branches from
path 𝐴𝐵 after node 𝐴. Consequently, new decoding error (in
addition to the usual ML decoding error) is introduced by
early elimination if (8) is valid for some ℓ and ℓmax, satisfying
ℓ ≤ ℓmax − Δ, and the transmitted 𝒙 labels the ML code
path. Since our goal is to find an upper probability bound
for additional decoding error due to early elimination, we can

include those cases in which 𝒙 does not label the ML code
path when evaluating the probability of the occurrence of (8).

Continue the derivation by replacing ℓmax with 𝛽 to simplify
the notation. The probability 𝜉(ℓ, 𝛽) that (8) occurs is given
by:

𝜉(ℓ, 𝛽) =

∫
ℜ𝛽𝑛

Φ0

(
𝒓(𝛽𝑛−1)

)
𝑓
(
𝒓(𝛽𝑛−1)

∣∣𝒙(𝛽𝑛−1)

)
𝑑𝒓(𝛽𝑛−1),

where Φ0

(
𝒓(𝛽𝑛−1)

)
= 1 if (8) is valid, and 0, otherwise. From

Φ0

(
𝒓(𝛽𝑛−1)

)

≤

⎡
⎢⎢⎢⎣

∑
𝒙̃(𝛽𝑛−1)∈ 𝒞∼𝛽

𝑓
(
𝒓(𝛽𝑛−1)

∣∣ 𝒙̃(𝛽𝑛−1)

)1/(1+𝜌)

Φ1(𝒓(ℓ𝑛,𝛽𝑛−1))1/(1+𝜌)𝑓
(
𝒓(ℓ𝑛−1)

∣∣𝒙(ℓ𝑛−1)

)1/(1+𝜌)

⎤
⎥⎥⎥⎦
𝜌

for 𝜌 ≥ 0,

we obtain:

𝜉(ℓ, 𝛽)

≤
∫
ℜ𝛽𝑛

⎡
⎢⎢⎢⎣

∑
𝒙̃(𝛽𝑛−1)∈ 𝒞∼𝛽

𝑓
(
𝒓(𝛽𝑛−1)

∣∣ 𝒙̃(𝛽𝑛−1)

)1/(1+𝜌)

Φ1(𝒓(ℓ𝑛,𝛽𝑛−1))1/(1+𝜌)𝑓
(
𝒓(ℓ𝑛−1)

∣∣𝒙(ℓ𝑛−1)

)1/(1+𝜌)

⎤
⎥⎥⎥⎦

𝜌

×𝑓
(
𝒓(𝛽𝑛−1)

∣∣𝒙(𝛽𝑛−1)

)
𝑑𝒓(𝛽𝑛−1).

Taking the expected value of 𝜉(ℓ, 𝛽) with respect to random
selection of codewords of length 𝛽𝑛 according to code bit
selection distribution 𝒑 = (𝑝0, 𝑝1), where 𝑝0 and 𝑝1 are the
probabilities respectively for bits 0 and 1, yields that:

𝜉(ℓ, 𝛽) ≤
∫
ℜ𝛽𝑛

Φ1(𝒓(ℓ𝑛,𝛽𝑛−1))
−𝜌/(1+𝜌)

×
⎛
⎝ ∑

𝒙̃(𝛽𝑛−1)∈ 𝒞∼𝛽

𝑓
(
𝒓(𝛽𝑛−1)

∣∣ 𝒙̃(𝛽𝑛−1)

)1/(1+𝜌)

⎞
⎠

𝜌

×𝑓 (𝒓(ℓ𝑛−1)

∣∣𝒙(ℓ𝑛−1)

)1/(1+𝜌)

×𝑓 (𝒓(ℓ𝑛,𝛽𝑛−1)

∣∣𝒙(ℓ𝑛,𝛽𝑛−1)

)
𝑑𝒓(𝛽𝑛−1) (9)

≤
∫
ℜ𝛽𝑛

Φ1(𝒓(ℓ𝑛,𝛽𝑛−1))
−𝜌/(1+𝜌)

×
⎛
⎝ ∑

𝒙̃(𝛽𝑛−1)∈ 𝒞∼𝛽

𝑓
(
𝒓(𝛽𝑛−1)

∣∣ 𝒙̃(𝛽𝑛−1)

)1/(1+𝜌)

⎞
⎠

𝜌

×𝑓 (𝒓(ℓ𝑛−1)

∣∣𝒙(ℓ𝑛−1)

)1/(1+𝜌)

×𝑓 (𝒓(ℓ𝑛,𝛽𝑛−1)

∣∣𝒙(ℓ𝑛,𝛽𝑛−1)

)
𝑑𝒓(𝛽𝑛−1) (10)

= ∣ 𝒞∼𝛽 ∣𝜌
∫
ℜ𝛽𝑛

Φ1(𝒓(ℓ𝑛,𝛽𝑛−1))
−𝜌/(1+𝜌)
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×
(
𝑓
(
𝒓(𝛽𝑛−1)

∣∣ 𝒙̃(𝛽𝑛−1)

)1/(1+𝜌)
)𝜌

×𝑓 (𝒓(ℓ𝑛−1)

∣∣𝒙(ℓ𝑛−1)

)1/(1+𝜌)

×𝑓 (𝒓(ℓ𝑛,𝛽𝑛−1)

∣∣𝒙(ℓ𝑛,𝛽𝑛−1)

)
𝑑𝒓(𝛽𝑛−1)

= ∣ 𝒞∼𝛽 ∣𝜌
{∫

ℜℓ𝑛

(
𝑓
(
𝒓(ℓ𝑛−1)

∣∣ 𝒙̃(ℓ𝑛−1)

)1/(1+𝜌)
)𝜌

×𝑓 (𝒓(ℓ𝑛−1)

∣∣𝒙(ℓ𝑛−1)

)1/(1+𝜌)
𝑑𝒓(ℓ𝑛−1)

}

×
{∫

ℜ(𝛽−ℓ)𝑛

Φ1(𝒓(ℓ𝑛,𝛽𝑛−1))
−𝜌/(1+𝜌)

×
(
𝑓
(
𝒓(ℓ𝑛,𝛽𝑛−1)

∣∣ 𝒙̃(ℓ𝑛,𝛽𝑛−1)

)1/(1+𝜌)
)𝜌

×𝑓 (𝒓(ℓ𝑛,𝛽𝑛−1)

∣∣𝒙(ℓ𝑛,𝛽𝑛−1)

)
𝑑𝒓(ℓ𝑛,𝛽𝑛−1)

}
,

where (9) holds since any labels in 𝒞∼𝛽 are selected inde-
pendently, and (10) is valid due to the concavity of function
𝜑(𝑥) = 𝑥𝜌 with 0 ≤ 𝜌 ≤ 1 and Jensen’s inequality. Finally,
by noting that ∣ 𝒞∼𝛽 ∣ ≤ 2𝑘𝛽 = 2𝑛𝛽𝑅, we obtain:

𝜉(ℓ, 𝛽) ≤ 2−ℓ𝑛[−𝜌𝑅+𝐸0(𝜌,𝒑)] ⋅ 2−(𝛽−ℓ)𝑛[−𝜌𝑅+𝐸1(𝜌,𝒑)],(11)

where

𝐸0(𝜌,𝒑) ≜ − log2

⎡
⎣∫

ℜ

(
1∑

𝑖=0

𝑝𝑖𝑓(𝑟∣𝑣 = 𝑖)1/(1+𝜌)

)1+𝜌

𝑑𝑟

⎤
⎦

and

𝐸1(𝜌,𝒑)

≜ − log2

[∫
ℜ

(max {𝑓(𝑟∣𝑣 = 0), 𝑓(𝑟∣𝑣 = 1)})
−𝜌/(1+𝜌)

×
(

1∑
𝑖=0

𝑝𝑖𝑓(𝑟∣𝑣 = 𝑖)
1

(1+𝜌)

)𝜌( 1∑
𝑖=0

𝑝𝑖𝑓(𝑟∣𝑣 = 𝑖)

)
𝑑𝑟

]
.

Inequality (11) provides an upper probability bound that a
top path ending at level ℓ is early-eliminated. Based on (11),
we can proceed to derive the bound for the probability 𝑃el that
an incorrect codeword is claimed at the end of the priority-first
search because the transmitted path is early-eliminated during
the decoding process.

As only linear codes are considered in this paper, we may
assume without loss of generality that the all-zero codeword

0 is transmitted. Then,

𝑃el ≤ Pr

(
𝐿−Δ∪
ℓ=1

0𝑛ℓ−1 is early-eliminated

)

≤
𝐿−Δ∑
ℓ=1

2−ℓ𝑛[−𝜌𝑅+𝐸0(𝜌)]2−Δ𝑛[−𝜌𝑅+𝐸1(𝜌)], (12)

where the last inequality follows from (11) by letting 𝐸0(𝜌) ≜
max𝒑𝐸0(𝜌,𝒑) = 𝐸0(𝜌,𝒑∗) and 𝐸1(𝜌) ≜ 𝐸1(𝜌,𝒑∗), and also
from the fact that 𝛽 − ℓ ≥ Δ. Denoting 𝜆 ≜ 𝐸0(𝜌) − 𝜌𝑅, we
continue the derivation from (12):

𝑃el ≤ 2−Δ𝑛[−𝜌𝑅+𝐸1(𝜌)]
𝐿−Δ∑
ℓ=1

2−ℓ𝑛𝜆

≤ 2−Δ𝑛[−𝜌𝑅+𝐸1(𝜌)]
∞∑
ℓ=1

2−ℓ𝑛𝜆

= 𝐾𝑛 ⋅ 2−Δ𝑛[−𝜌𝑅+𝐸1(𝜌)],

where 𝐾𝑛 = 2−𝑛𝜆/(1 − 2−𝑛𝜆) is a constant, independent of
Δ. Consequently,

lim inf
𝑛→∞ − 1

𝑛
log2 𝑃el ≥ Δ[−𝜌𝑅 + 𝐸1(𝜌)] + 𝜆

≥ Δ[−𝜌𝑅 + 𝐸1(𝜌)],

subject to 𝜆 = −𝜌𝑅 + 𝐸0(𝜌) > 0 over 0 ≤ 𝜌 ≤ 1, which
immediately implies:

lim inf
𝑛→∞ − 1

𝑛
log2 𝑃el ≥ Δ ⋅ 𝐸el(𝑅), (13)

where

𝐸el(𝑅) ≜ max
{𝜌∈[0,1] : 𝐸0(𝜌)>𝜌𝑅}

[−𝜌𝑅 + 𝐸1(𝜌)]. (14)

Note that by

1∑
𝑖=0

𝑝𝑖𝑓(𝑟∣𝑣 = 𝑖)1/(1+𝜌)

=

1∑
𝑖=0

𝑝𝑖𝑓(𝑟∣𝑣 = 𝑖)𝑓(𝑟∣𝑣 = 𝑖)−𝜌/(1+𝜌)

≥ (max {𝑓(𝑟∣𝑣 = 0), 𝑓(𝑟∣𝑣 = 1)})
−𝜌/(1+𝜌)

×
(

1∑
𝑖=0

𝑝𝑖𝑓(𝑟∣𝑣 = 𝑖)

)
,

we obtain that 𝐸1(𝜌) ≥ 𝐸0(𝜌); hence, 𝐸el(𝑅) ≥ 0.
It is noteworthy that the above analysis can also be applied

to discrete channels by replacing 𝑓(⋅∣⋅) with the binary-input-
and-𝐽-ary-output channel probability mass function. In such
case, (13) is valid in the sense that 𝐸el(𝑅) is redefined
according to

𝐸0(𝜌,𝒑)

≜ − log2

⎡
⎣ 𝐽∑
𝑗=1

(
1∑

𝑖=0

𝑝𝑖 Pr(𝑟 = 𝑗∣𝑣 = 𝑖)1/(1+𝜌)

)1+𝜌
⎤
⎦
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and

𝐸1(𝜌,𝒑)

≜ − log2

[

𝐽∑
𝑗=1

(max {Pr(𝑟 = 𝑗∣𝑣 = 0),Pr(𝑟 = 𝑗∣𝑣 = 1)})
−𝜌/(1+𝜌)

×
(

1∑
𝑖=0

𝑝𝑖 Pr(𝑟 = 𝑗∣𝑣 = 𝑖)
1

(1+𝜌)

)𝜌

×
(

1∑
𝑖=0

𝑝𝑖 Pr(𝑗 = 𝑗∣𝑣 = 𝑖)

)]
.

After the establishment of the lower bound of additional
decoding error exponent introduced by early elimination, we
can subsequently quote the result from [14] that the exact
error exponent of the maximum-likelihood decoding error for
convolutional codes of rates above channel cutoff rate 𝑅0 is
given by (𝑚 + 1)𝐸c(𝑅), where

𝐸c(𝑅) ≜ max
{𝜌∈[0,1] : 𝐸0(𝜌)>𝜌𝑅}

𝐸0(𝜌). (15)

We then follow a similar argument in [4] to conclude that
for code rates above channel cutoff rate 𝑅0, the additional
decoding error due to early elimination in the PFSDA becomes
exponentially negligible8 if

Δ ⋅ 𝐸el(𝑅) > (𝑚 + 1)𝐸c(𝑅). (17)

APPENDIX B
A BRIEF INTRODUCTION OF HEAP DATA STRUCTURE

HEAP is a tree-based data structure with a key assigned to
each node. It satisfies the following two properties: 𝑖) If 𝐴 is a
child node of 𝐵, then the key associated with 𝐴 is no less than
the key associated with 𝐵, and 𝑖𝑖) all leaves are located at the
same tree level, and the leaf nodes are filled from left to right.
The first property implies that the root node is always the one
with the smallest key. Since the PFSDA needs to extend the
node with the smallest metric, this makes the HEAP a suitable
structure for its implementation.

A binary HEAP tree can be easily implemented using an
array structure. As a simple example shown in Figure 11, the

8For rate below the cutoff rate, an early elimination window Δ that
sufficiently guarantees exponentially negligible performance degradation can
be obtained using the sphere-packing bound 𝐸sp(𝑅) and straight-line bound
𝐸x [14] as:

Δ ⋅𝐸el(𝑅) > (𝑚 + 1)min{𝐸sp(𝑅), 𝐸x} (16)

where 𝐸sp(𝑅) ≜ max{𝜌∈[0,∞) : 𝐸̂0(𝜌)>𝜌𝑅} 𝐸̂0(𝜌) with 𝐸̂0(𝜌) being the
concave hull of 𝐸0(𝜌), and 𝐸x = 1/[4𝜎2 log(2)] for antipodal-input AWGN
channels. These two bounds may suggest a slightly larger window size than
the one derived from (17) at 𝑅 = 𝑅0. As an example from Figure 2, (16)
indicates that for (2, 1, 12) convolutional codes, Δ could be as large as 45,
while (17) only requires Δ = 40 at 𝑅 = 𝑅0. Our simulations however
consistently show that taking Δ values that equate (17) at 𝑅 = 𝑅0 are
already sufficient to secure ML performance even for 𝐸b/𝑁0 outside the
valid region of (17) (cf. Figures 4 and 5), and (16) indeed overestimates the
required Δ. This conforms to the general impression that the sphere-packing
bound as well as the straight-line bound is perhaps loose at low rates. This
paper will then focus on the Δ value derived from (17) specifically at 𝑅 = 𝑅0

as adopted similarly in [4].

Fig. 11. Example of a binary HEAP and its respective array.

indexes of the parent, left child and right child of a node
with index 𝑖 are given by ⌊(𝑖 − 1)/2⌋, 2𝑖 + 1 and 2𝑖 + 2,
respectively. Insertion and deletion of a node can then be done
over the array. Specifically, the insertion process will first place
the inserted node 𝑥 at the end of the array, and then repeat
exchanging the new node with its parent until either its key is
no less than the key of its parent or 𝑥 becomes a root node. The
deletion of an existing node 𝑦 requires three steps: 𝑖) Set the
key of the node to be deleted as −∞ (the minimum value), and
then keep exchanging the node with its parent until it becomes
a root node; 𝑖𝑖) Exchange the root node 𝑦 with the last node
𝑧 in the array, and then delete 𝑦; 𝑖𝑖𝑖) Repeat exchanging 𝑧
with its child of smaller key until either no children have a
smaller key than 𝑧 or 𝑧 becomes a leaf. Both processes can be
completed within 𝑂(log 𝑠) exchanges, where 𝑠 is the number
of nodes in the current HEAP.

Now, for the PFSDA with finite stack size, the path with
the smallest level should be efficiently located and deleted
once the stack size exceeds its limit. To fulfill this goal,
two binary HEAPs are implemented for the Open Stack. The
metric HEAP uses the path metric as its key, while the level
HEAP associates its nodes with level keys. An additional
mutual link is then maintained for each node in these two
HEAPs. In other words, the node in the metric HEAP will be
linked to its counterpart in the level HEAP, and vice versus.
By this way, the PFSDA can efficiently locate, for example,
the node with the smallest level, and delete it as well as its
counterpart in the metric HEAP within 𝑂(log 𝑠) exchanges.
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