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Deterministic Extractors for
Independent-Symbol Sources

Chia-Jung Lee, Chi-Jen Lu, and Shi-Chun Tsai

Abstract—In this paper, we consider the task of deterministically
extracting randomness from sources consisting of a sequence of
� independent symbols from ��� ���. The only randomness guar-
antee on such a source is that the whole source has min-entropy �.
We give an explicit deterministic extractor which extract����� ��
��� ��������� bits with error �, for any �, �, � � and � � ��� ��.
For sources with a larger min-entropy, we can extract even more
randomness. When � � ������ , for any constant � � ��� ��	�,
we can extract � 
 � � 	�� ��������� bits with any error � �
	���� �. When � � ���� �, for some constant 
 � �, we can extract
� 
 ����������� bits with any error � � ������. Our results gen-
eralize those of Kamp and Zuckerman and Gabizon et al. which
only work for bit-fixing sources (with � 
 � and each bit of the
source being either fixed or perfectly random). Moreover, we show
the existence of a nonexplicit deterministic extractor which can ex-
tract � 
 � � 	���������� bits whenever � 
 ��� � ���������.
Finally, we show that even to extract from bit-fixing sources, any
extractor, seeded or not, must suffer an entropy loss � � � 

�����������. This generalizes a lower bound of Radhakrishnan
and Ta-Shma on extracting from general sources.

Index Terms—Independent-symbol sources, min-entropy,
pseudo-randomness, randomness extractors.

I. INTRODUCTION

R ANDOMNESS has become a useful tool in computer sci-
ence. For many computational problems, the most effi-

cient algorithms known are randomized. For some tasks in dis-
tributed computing, only randomized solutions are possible. In
cryptography, randomness is essential in generating secret keys.
However, when using randomness in designing algorithms or
protocols, people usually assume the randomness being perfect,
and the performance guarantees are based on this assumption.
In reality, the random sources we (or computers) have access to
are typically not so perfect at all, but only contain some crude
randomness. One approach to solve this problem is to construct
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so-called extractors, which can extract almost perfect random-
ness from weakly random sources [35], [22]. Extractors turn
out to have close connections to other fundamental objects such
as pseudorandom generators, hash functions, error-correcting
codes, expander graphs, and samplers, and they have found a
wide range of applications in areas such as complexity theory,
cryptography, data structures, coding theory, distributed com-
puting, and combinatorics (e.g., [29], [22], [36], [37], [34], [32],
[31], [18], [33]). A nice survey can be found in [27].

We measure the amount of randomness in a source by its
min-entropy; a source is said to have min-entropy if every el-
ement occurs with probability at most . Given sources with
enough min-entropy, one would like to construct an extractor
which can extract a string with distribution close to uniform.
However, it is well known that one cannot deterministically ex-
tract even one bit from an -bit source with min-entropy
[6]. In contrast, it becomes possible if we are allowed a few
random bits, called a seed, to aid the extraction. Such a pro-
cedure is called a seeded extractor. During the past decades, a
long line of research has worked on using a shorter seed to ex-
tract more randomness (e.g., [22], [21], [24], [11], [26], [32],
[30], [28]), and finally an optimal (up to constant factors) con-
struction has been given recently [19].

The problem with a seeded extractor is again to get a seed
which is perfectly (or almost) random. For some applications,
this issue can be taken care of (for example, by enumerating all
possible seed values when the seed is short), but for others, we
are back to the same problem which extractors are originally
asked to solve. This motivates one to consider the possibility
of more restricted sources from which randomness can be ex-
tracted in a deterministic (seedless) way.

One line of research studies the case with multiple indepen-
dent sources. The goal is to have a small number of indepen-
dent sources with a low min-entropy requirement on sources,
while still being able to extract randomness from them. With
two independent sources, the requirement on the min-entropy
rate (average min-entropy per bit) stayed slightly above for
a long time [6], [8], [16], but this barrier has been broken by a re-
cent construction which pushes the requirement slightly below

[5]. The requirement on min-entropy rate can be lowered
to any constant when there are a constant number of indepen-
dent sources [3], and the number of sources has recently been
reduced to three [4].

The other line of research considers the case of bit-fixing
sources. In an oblivious bit-fixing source, each bit is either fixed
(containing no randomness) or perfectly random, and is inde-
pendent of other bits. From such a source of length with
min-entropy , for any constant , Kamp and
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Zuckerman [14] gave a seedless extractor which can extract
bits of randomness. Building on this result together with

some new idea, Gabizon et al. [9] were able to extract even
more randomness. In particular, when the source has min-en-
tropy , they can extract bits and when

for some constant , they can extract bits.
Note that the two lines of research discussed above can be

seen as belonging to two extremes of a spectrum in the following
sense. Sources in both cases consist of multiple parts which are
mutually independent. In the first case, one usually has in mind
sources with relatively few parts while each part is long and con-
tains a substantial amount of randomness. In the second case, a
bit-fixing source consists of many parts, while each part is only
a single bit either random or fixed. We would like to put both
cases in the same framework and study sources that lie in be-
tween these two extremes.

A. Independent-Symbol Sources

We consider the following more general class of sources,
characterized by the parameters , , , which we call
independent-symbol sources. Each source in the class consists
of mutually independent parts, each of length , and the whole
source has min-entropy . For small and large , this covers
sources of the first type, while for large and , this covers
sources of the second type. For other ranges of and , very
little is known, and the main focus of our paper is to extract ran-
domness from such sources.

Previously, [16], [15] were able to extract randomness from
such a source with the condition that there are two parts in it
with a combined min-entropy slightly above . Independent of
our work, Kamp et al. [13] recently also considered the same
class of sources as ours and obtained some similar results. Fur-
thermore, they showed that extractors for such sources also work
for a more general class of sources which can be generated in
small space.

Note that for deterministic extractors, the goal is to maximize
the number of extracted bits (or equivalently to minimize the
entropy loss ) and to minimize the distance , which we
call error, of its output distribution to the uniform one.

B. Our Results

Our first result (Theorem 1 in Section III) gives an explicit
extractor which works for any min-entropy but extracts only
about random bits. More precisely, for any , , and

, our extractor can extract bits
with error . This can be seen as a generalization of the extractor
of Kamp and Zuckerman [14], but note that theirs only works
for bit-fixing sources and does not seem to work for the case
that allows each bit having arbitrary bias. In fact, our extractor
works for sources in which randomness could be distributed
very nonuniformly among the parts (e.g., some may have no
min-entropy at all, but we do not know which ones), while pre-
vious constructions such as [3], [4], [23] do not seem to work
for such sources. Independent of our work, Kamp et al. [13] also
gave the same construction but used a different analysis.

To extract more randomness, we borrow the technique of
Gabizon et al. [9]. Now, as in [9], we need to be at least

some large enough constant, and we have two constructions,
both built on our first construction mentioned above. First, when

, for any constant , we can extract
random bits with any error

(Theorem 2 in Section IV). Second, when , for some
constant , we can extract bits with
error (Theorem 3 in Section IV). That is, when
the min-entropy is high, we can have a small entropy loss
and a small error, but when is small, the loss and error be-
come larger. Note that the two main results in [9] only work
for bit-fixing sources (with ) and follow from our two
with and , and and

, respectively. On the other hand, we cover a
large range of and , and capture the tradeoff between error
and entropy loss. For example, for constant and , we show
that the entropy loss can be lowered to a constant.

One may wonder if the entropy loss can be further reduced.
We show that this is indeed possible, by proving the existence
of a seedless extractor which can extract
random bits for (Theorem 4 in Section V).
However, the existence is not shown in an explicit way; we only
know such an extractor exists but we do not know how to con-
struct it. Still, this shows that better explicit constructions than
ours may be possible. We only have an explicit construction
matching this bound for the case with , ,
and .

On the other hand, one may also wonder whether this ex-
istential upper bound we derive on entropy loss is tight. Our
final result (Theorem 5 in Section VI) shows that this is in-
deed the case by giving a matching lower bound. In fact, we
show that even for the case of bit-fixing sources and even al-
lowing a seed of length , any extractor can only extract

random bits. That is, even to extract from bit-fixing
sources, any extractor, seeded or not, must suffer an entropy loss
of . This generalizes the result of Radhakrishnan
and Ta-Shma [25], which has the same bound on seeded extrac-
tors for general sources. The idea in [25] is to show that for
any extractor with output longer than the bound, one can find a
(general) source on which it fails, and our task is much harder
because we need to find one from the much more restricted class
of bit-fixing sources.

C. Our Techniques

Our first extractor, which extracts about bits, was in-
spired by that of Kamp and Zuckerman [14], but our approach
is quite different. Instead of taking a random walk on an odd
cycle, we walk on the group for a prime . More pre-
cisely, given a source , we see each as
an element of and outputs over . More
precisely, after reading the ’th symbol , we walk from the
state to the state . As in [14],
we will show that each step of our walk brings the distribution
closer to uniform when the symbol from the source contains
some randomness. However, even for the case of , we
cannot directly use the analysis from [14], which is based on
bonding the second eigenvalue of the transition matrix for a per-
fectly random step on a cycle. This is because we may walk in a
highly biased way as each bit of our source can have an arbitrary
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bias. Our proof is very different and elementary, and has the fol-
lowing interesting point. The recent breakthrough construction
of multi-source extractors [3] and its subsequent works all re-
lied on using both sums and products to increase entropy. We
show that in fact even doing sums alone can increase entropy.
The increase, however, is slower, so we need a larger number of
sources (as opposed to a constant number in [3]).

To extract more randomness, we apply the technique of [9].
Our constructions and proofs in this part follow very closely
those in [9]. The only difference is that we deal with a more
general classes of sources, do a more careful analysis, and use
our first extractor instead of that in [14] as a building block.

Our existential upper bound on entropy loss is proved via a
probabilistic argument. That is, we generate a seedless extractor
randomly, and show that it works for all of our sources with a
positive probability. For each source, we can show that it fails
with a small probability. However, the number of all possible
sources is in fact infinite. Instead, we show that it suffices to
consider only a small set of sources, since any source is close
to a convex combination of them. Sources in this set are those
with the property that their distributions in each dimension are
“almost flat” and have only a small number of possible min-
entropy values.

Our lower bound proof of entropy loss follows the outline
of that in [25]. Namely, given any function EXT

with , we show
the existence of a bit-fixing source with min-entropy on which
the error of EXT exceeds , again using a probabilistic argument.
We generate a source by randomly picking bits of the
source and fixing them to some random values; the remaining

bits are left free and given a uniform distribution. The diffi-
cult part is to show that any such EXT fails on such a randomly
chosen source with a positive probability. This probability turns
out to be related to the size of some “almost” -wise indepen-
dent space, whose distribution is close to random on most sets
of dimensions. This can be seen as a relaxation of the standard
notion of approximate -wise independent space, in which the
close-to-randomness property is required on every set of di-
mensions. We prove a size lower bound on such a sample space,
which seems to have an interest of its own. In particular, it im-
mediately implies a size lower bound on any approximate -wise
independent space.

II. PRELIMINARIES

For , let denote the set . For ,
and , let denote the bit in the ’th dimension of

and denote the projection of onto those dimensions in .
For a set , let denote the collection of subsets of , and
let , for , denote the collection of -element subsets
of . All the logarithms in this paper will have base two.

When we sample from a finite set, the default distribution is
the uniform one. For , let denote the uniform distri-
bution over . For a distribution over a set and an
element , let denote the probability measure of
in the distribution . We say that a distribution is a convex
combination of distributions over a set , if there
exist numbers with such that for
every , . We will sometimes see

a distribution over a set as an -dimensional vector, with
at dimension . We will mainly measure the distance

between two distributions , over by their -distance,
defined as

Note that this distance is exactly twice the variational distance,
defined as

Another distance measure that will be used sometimes is the
-distance, defined as

Call a distribution -random if its -distance to the uniform
distribution is at most . We will measure the amount of ran-
domness in a distribution over by its min-entropy, defined
as

In this paper, we will focus on a special kind of sources which
consist of independent symbols over some set .

Definition 1: A distribution over the set
is called an -source if the symbols are

distributed independently from each other. An -source
with min-entropy is called an -source. A bit-fixing
source is an -source with the additional condition that each
bit of the source has min-entropy either 0 or 1.

When we talk about an -source, we always assume
since any -source has min-entropy at most

. The task of this paper is to extract randomness from
such -sources.

Definition 2: For , , , , and , a function
EXT is called an -ex-
tractor if for any -source

The second input, of -bit long, to an extractor is called its
seed. We allow the case of (i.e., without a seed) and
we call such an extractor a seedless (or deterministic) extractor.
The entropy loss of an extractor is defined as the value

, which is the difference between the amount of randomness
given to the extractor and the amount of randomness it can ex-
tract. Minimizing this entropy loss is one of the main goals of
extractor construction. Moreover, one usually prefers construc-
tions which are explicit, in the sense that given any input, one
can compute the output in polynomial time.

III. EXTRACTOR FROM RANDOM WALK

In this section, we give an explicit seedless extractor for in-
dependent-symbol sources, which works for any min-entropy
but only extracts about bits.
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Theorem 1: For any , , and any prime number
, there is an explicit -extractor EXT

, with .
Note that for , our extractor has

. Alternatively, for any , our ex-
tractor can extract bits.
This achieves the same asymptotic bound as the recent result
in [13], but here we provide a different and completely elemen-
tary proof.

To extract randomness, we will work on the group , for
a prime , and see any symbol of the source as an
element in . Throughout this section, operation or on
elements in is understood as an operation over the group

. Our extractor is then defined as

which can be seen as taking an -step walk on the group ,
using the symbols from the source in the following way. Each
time when we are at some state (initially at )
and read a symbol from the source, we go to the state

. The extractor of Kamp and Zuckerman [14] for bit-fixing
sources can be seen as a special case of ours, with and

.
As in [14], we will show that each step of the walk brings the

distribution closer to uniform if the symbol read from the source
contains some randomness. See a distribution over as an

-dimensional vector in the natural way. Suppose the current
distribution is and the next symbol in the
source has a distribution (let for

). Then the next distribution is
with

for . Let denote the uniform distribution over .
Let and , i.e., and

for . The following is our key lemma
which shows the progress we can make after each step.

Lemma 1: .
We will prove this lemma in Section III-A. Now let us see

how it can be used to prove the theorem.
Proof: (of Theorem 1)

From Lemma 1, we know that after reading the ’th symbol
from the source, the -distance between the resulting dis-

tribution and the uniform one decreases by a factor

Therefore, we have

Since the symbols of the source are independent of each other,
we have , so the bound above

becomes . Then by Cauchy-Schwartz inequality

A. Proof of Lemma 1

Note that for , . So

which, using the equality on the
second term, equals

where the last line follows from the fact that
. Then we need the following two

claims.
Claim 1: For any nonzero ,

.
Proof: First, by an average argument, there exists some

such that . Next, since , there
exists some such that and have different signs,
so . Since and are relatively
prime, the sequence of elements in
must have period and contain every element of . Thus,
there exists an integer such that over

. By a triangle inequality,
. Finally

which by Cauchy-Schwartz inequality is at least
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Claim 2: .
Proof: Let , so

. Then we have

Note that is a distribution over , so . For in
this range, we have

Using the bounds of the claims in our derivation before, we
have

which proves the lemma.

IV. EXTRACTING MORE RANDOMNESS

The extractor in the previous section can extract about
bits of randomness. Building on this, we show how to extract
more randomness in this section. More precisely, we have the
following two extractors, which generalize the corresponding
ones in [9]. The first one works for the case of large min-entropy
and can achieve a smaller error and a smaller entropy loss, while
the second can work for the case of smaller min-entropy but has
a larger error and a larger entropy loss.

Theorem 2: For any constant , and ,
there exist constants , such that for any ,

, and , there exists an explicit seedless
-extractor with

.

Theorem 3: There exist constants , ,
, , such that for any ,

with , , and , there exists an
explicit seedless -extractor
with .

Note that the two main results in [9] only work for bit-fixing
sources (with ) and follow respectively from Theorem
2 with and , and from Theorem 3
with and . On the other hand, our two
theorems above cover a large range of the parameters and
, and capture the tradeoff between error and entropy loss. In

particular, for a small , if we allow a large , the entropy loss
can become very small.

We will give the proofs of the two theorems in Sections IV-B
and IV-C respectively, which follow closely the corresponding
ones in [9]. The main difference is that we consider indepen-
dent-symbol sources, so we cannot build on the extractor of [14]
as [9] did, and instead, we build on our extractor in Theorem 1.
Furthermore, we do a more careful analysis in order to identify

the relationship between error and entropy loss. Before giving
the proofs, let us first describe some basic ideas and useful tools.

Suppose we have extracted a short random string from the
source . One may think about using as a seed for a seeded
extractor to extract more randomness from , but the problem
is that may have dependence on . This issue was taken care
of in [9] by constructing the so-called seed obtainer. The idea
is to divide into two parts and use to sample a set

of positions from the source so that still
has enough min-entropy but becomes independent of . To guar-
antee this, we would like the set to have the property that
the min-entropy of the sampled bits is within a certain range,
which can be achieved by using the so-called averaging sam-
pler.

Definition 3: Suppose , , , , and
, with . An

-sampler is a
function such that for every function with

Throughout this section, we will let for an
-source , and will be the function

such that . Note that the definition
of samplers used in [9] is a special case of ours, as it only
deals with Boolean functions , which arise
from bit-fixing sources considered there. As shown in [9], after
obtaining of enough min-entropy together with an
independent seed , one can then apply a seeded extractor to
extract more randomness. This is guaranteed by the following
lemma. Note that this was proved in [9] for bit-fixing sources,
but it is easy to check that the same proof indeed works for our
independent-symbol sources.

Lemma 2: [9] Suppose there exist explicit construc-
tions for the following three ingredients: 1) a seedless

, -extractor ; 2)
an -sampler ;
and 3) a seeded , -extractor

. Then there exists an explicit
seedless -extractor with

.

A. Sampling and Partitioning

For our two extractors, we need the following two samplers
respectively. Both constructions basically come from [9], and
the proofs are very similar. The first sampler uses a longer seed
and achieves a smaller error probability, while the second one
uses a shorter seed but has a higher error probability.

Lemma 3: There exist constants , , such that for any
, , , , and ,

there exists an explicit -sampler
with .

Lemma 4: For any constant , there exist constants
, , , ,
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such that the following holds. For any , ,
, and , there exists an explicit

-sampler with
.

The proof of Lemma 3 is given in Appendix A. Lemma 4
follows immediately from Lemma 5 below by using as the
output of the sampler .

Lemma 5: For any constant , there exist constants
, , , , such that

the following holds. For any , , ,
and , one can use random bits to explicitly
partition into sets such that for any
function with

In addition to proving Lemma 4, Lemma 5 will also be used to
prove Theorem 3. We give the proof of Lemma 5 in Appendix B.

B. Proof of Theorem 2

The construction is very similar to that in [9]. First, as in [14],
we have the following seedless extractor for the case of large
min-entropy.

Lemma 6: For any large enough and any
with , there exists an explicit seedless

-extractor where
and .

Proof: This lemma is a generalization of the main result in
[14] for bit-fixing sources. The proof is very similar, so we only
give a sketch here.

The extractor works as follows. Let be the smallest
prime greater than . Set , for some large
enough constant . Partition the symbols of the source into

blocks, each consisting of symbols
(assuming for simplicity that is a multiple of and
is a multiple of ). Within each block, use our extractor in
Theorem 1 to extract a symbol in . Then use the extracted
symbols (one per block) to take a -step walk on an expander
which has nodes, for some to be determined later,
and has its second eigenvalue , for some constant

. The final node of the walk is the output of the
extractor.

Call a block good if it has min-entropy at least . By a
Markov inequality, the number of good blocks is at least

For each good block, the extracted symbol is -random for some
by Theorem 1. Then according to Lemma 3.8. of [14],

after the -step walk on the expander, the distribution of the final
node is -random, for

Then for some , we have ,
which proves the lemma.

Following [9], to extract more randomness, we apply Lemma
2 with above together with two additional ingredients: (1)
an -sampler
from Lemma 3, with , , and

, and (2) a seeded -extractor
from [24], with ,

, and . Note that the above three
ingredients exist for large enough . From Lemma 2, we get
an -extractor with

, when
for a small enough constant . This proves Theorem

2.

C. Proof of Theorem 3

The construction is again very similar to the corresponding
one in [10]. Suppose for a large enough constant

. We first use the seedless extractor in Theorem 1 to extract
bits of randomness. To apply Lemma 2 to extract more

randomness, we need a seeded extractor with such a short seed.
Similar to [9], the existence of such an extractor is guaranteed
by the following.

Lemma 7: For any constant , there exist constants
, , such that the following holds. For

any , with , and , there
exists an explicit seeded -extractor

with , , and
.

Proof: The idea is to use the short seed for the partitioner
in Lemma 5 to partition the source into several parts and then
apply our seedless extractor in Theorem 1 on each part.

Fix any constant . Consider any -source
. Let be the function

. Note that . According to Lemma 5,
using random bits, one can partition the set into
subsets such that the probability that

for every (call such good) is at least
.

Define our extractor as , where
for and

is our -extractor in Theorem 1, with
, , and . We want to prove that

is close to where . Note
that when is good, the distribution of each is

-random, and, by a standard hybrid argument (see e.g., [10]),
the distribution of is -random, with

. Thus

Then we can apply Lemma 2 with the following ingredients:
1) a seedless -extractor from
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Theorem 1, with and for a small
enough constant ; 2) an -sam-
pler from Lemma 4, with ,

for a constant , , and
; and 3) a seeded -extractor

from Lemma 7 with
, , and . As a result, we obtain a

seedless -extractor , with
.

To extract even more random bits, we again apply Lemma 2,
but now using the above extractor together with the fol-
lowing two ingredients: 1) an -sampler

from Lemma 4 with
, , and and 2) a seeded

-extractor
from [24], with and . As a re-

sult, we obtain a seedless -extractor
, since ,

when for a small enough constant . This proves The-
orem 3.

V. EXISTENTIAL UPPER BOUND ON ENTROPY LOSS

In the previous section, we obtain two explicit extractors for
independent-symbol sources. One may wonder if it is possible
to extract more randomness and achieve a smaller entropy loss
for such sources. In this section, we prove the existence of a
(nonexplicit) seedless extractor for independent-symbol sources
with entropy loss . More precisely, we have the fol-
lowing theorem, whose proof is given in Section V-A.

Theorem 4: Suppose for a large enough
constant . Then there exists an -extractor

with .
We will show the existence of such an extractor by a prob-

abilistic argument. More precisely, we will show that if we
choose a random function as our extractor , then we suc-
ceed with a positive probability.

A. Proof of Theorem 4

Let denote the set of all functions .
We say that a function fails on an -source if

. We have the following.

Lemma 8: For any -source , we have

Proof: Consider any -source . For a
test , we say that fails on if

. Clearly, fails on
if and only if fails on for some . Now

consider any test , and we would like to bound the
probability that a random fails on .

Suppose . For , let be the indicator
random variable for the event . Then

Note that the probability is a weighted sum of the random
variables ’s, with each weight being at most . Let
us consider instead the random variable ,
which now takes its value in the interval , and note that

. Then

which by a Chernoff bound is at most

Since there are possible ’s, a union bound gives the
lemma.

The lemma says that a random fails on each source with a
small probability. However, there are infinitely many sources,
since for any , can have an arbitrary value in the
interval . The following shows that it suffices to consider
sources with , for each , being an (integral)
multiple of .

Lemma 9: For any -source , there exists an
-source such that and

is a multiple of for any .
Proof: For , let . It is not hard to see

that there exists such that and
for each , is a multiple of and , by
rounding each up or down to its nearest multiple of .

Next, we construct a source from with
for every . As we consider -sources, we can deal
with the dimensions of the sources separately. For with

, we keep shifting measure into a fixed element until its
measure reaches . For with , we keep
shifting measure away from an element while its measure ex-
ceeds . Clearly, we can do this while keeping the measures
of any element in and within a distance .
Note that for the function , its derivative at any

has an absolute value at most 1, which implies
by the mean value theorem in calculus. Thus

for any , .
Then by a standard hybrid argument (see, e.g., [10]), we have

. Since
, we have the lemma.

The other issue is that when , given any ,
for , there are still infinitely many over that can
have . The following shows that it suffices to
consider -sources ’s with each being “almost flat”
in the sense that elements in have measure , one
element has measure , and the rest have measure
0.

Lemma 10: Any -source can be expressed as a
convex combination of -sources with the property
that for any , and is almost flat.

Proof: This is a generalization of the well known fact that
any source with an integer min-entropy can be expressed as a
convex combination of flat sources. Here, we need to deal with
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real-valued min-entropy. The proof is similar so we will only
give a sketch.

Consider any -source , with for
. We claim that for each , the source can be

expressed as a convex combination of almost-flat sources over
with min-entropy . The reason is the following. See any

source over with min-entropy as a vector
with the property that and for
every . The set of such vectors forms a convex polytope,
and each vector in the set is expressible as a convex combination
of vertices (corners) of the polytope. The claim follows from the
fact that the vertices of the polytope correspond exactly to the
vectors given by those almost flat sources over . Now as
is a convex combination of almost-flat sources of min-entropy

for each , the source is a convex combination
of -sources in which is almost flat and has min-
entropy for .

Let denote the set of -sources with the property
that for every , is almost flat and is a multiple
of . The following gives a bound on the size of .

Lemma 11: .
Proof: Recall that . Let us

first bound the number of such that
and each is a multiple of for . Note

that this is the same as the number of such that
and is an integer in for .

This number is exactly

Now for any , the number of -sources
such that each , for , is almost flat with min-entropy
is at most . As a result, we have

From Lemma 8 and Lemma 11 and using a union bound, we
have

for some when for
a large enough constant . This implies the existence of some

such that for any ,
and thus for any which is a convex combination of sources in

. According to Lemma 9 and Lemma 10, any -source
has distance at most to some source which is a convex

combination of sources in , so

That is, is an -extractor, which proves The-
orem 4.

VI. LOWER BOUND ON ENTROPY LOSS

In this section, we show that the existential upper bound on
the entropy loss in Section V is tight by giving a matching lower

bound. In fact, we show that even for bit-fixing sources and even
allowing a seed, any extractor must suffer an entropy loss of

.

Theorem 5: Let be an
-extractor for bit-fixing sources, with , , ,

, and , for some
large enough constants . Then .

We will basically follow the proof idea in [25]. Briefly
speaking, given any
with exceeding the bound, we will show the existence of a
bit-fixing source of min-entropy on which fails, using
a probabilistic argument. Before giving the proof, let us first
state some definitions and lemmas which will be needed. For
any , consider the set

and we say that is -missed by if

We will rely on the following lemma from [25].1

Lemma 12: Suppose is the uniform distribution over a set
with , and .

Then at most fraction of can be
-missed by .

For , , , , , and
, we say that is -biased in if

Our key lemma is the following.

Lemma 13: Suppose , and , with
and for some large

enough constant . Consider any satisfying the
property that over a random and a random

, is -biased in with probability at most .2

Then .
Note that a set satisfying the property in Lemma 13 can be

seen as an “almost” -wise independent space, in the sense that
the uniform distribution over looks random on most sets of
dimensions. This can be seen as a relaxation of the standard no-
tion of approximate -wise independent space. Lemma 13 gives
a size lower bound on such a set, which seems to have an interest
of its own. We will prove the lemma in Section VI-A. With this
lemma, we can now prove Theorem 5.

Proof: (of Theorem 5)
Assume for the sake of contradiction that

for some small enough constant . We will show
that in this case fails on some bit-fixing source of min-en-
tropy . As in [25], the existence of such a source will be shown

1Note that this lemma does not appear explicitly in [25] but corresponds to
Claim 2.7 there, which is stated in a graph-theoretical term and says that any
extractor gives rise to some kind of “slice-extractor”.

2This justifies the condition ���� � � � � assumed at the beginning of the
lemma.
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using a probabilistic argument. The difference is that [25] had
the luxury of having all possible sources of min-entropy to
search through, while we are limited to the much smaller class
of bit-fixing sources, which makes our task much harder. We
randomly generate such a bit-fixing source in the following way.

• Randomly pick a set and a string
. Generate the source which is uniform over

the set .
Next, we will show that fails with a positive probability

over such a randomly generated source . As in [25], the idea
is to show that when is large, most ’s in can only
have a small set , and such ’s are -missed by

with a nonnegligible probability. As we will show next, this
probability is guaranteed by Lemma 13, by observing that the
condition that is -missed by is exactly the
condition that is -biased in , because

Let and , and note that the conditions
on the parameters in the theorem imply those in Lemma 13 (in
particular, the condition implies the condition

). Now the average of over is

Call small if for a small enough constant
. By Markov inequality, at least fraction of ’s are small.

From Lemma 13, for any small , with ,
the probability over and that is

-missed by is more than . By an average argument,
there must exist and such that more
than fraction of small ’s are -missed by . Thus,
for this and , more than

fractions of all possible are -missed by
. From Lemma 12, this implies that

, a contradiction. Therefore, one must have
, which proves the theorem.

A. Proof of Lemma 13

Consider any set satisfying the property stated in the
lemma. Our goal is to show a lower bound on the size of
such a set. We can assume without loss of generality that

, because otherwise we are done. From [2], [7],
we know that for an even , any -wise independent space over

must have a size at least , and we would like to
apply it to get our bound. However, there are two difficulties
in front of us. One is that only guarantees some randomness
property on most, instead of all, collections of dimensions.
The other is that the randomness property only guarantees
being close to random instead of perfectly random. We get
around these by showing that for some appropriate to be

chosen later, there exists some set such that
when we partition into subsets

for , many of these subsets will embed an -wise
independent space.

From the property of , an average argument shows the exis-
tence of some such that over a random

and a random , is -bi-
ased in with probability at most . Fix one such set , and
let . Call nice for if for
every , is not -biased in . The
following shows that most are nice for most .

Claim 3: At least fraction of are
nice for all but fraction of .

Proof: By a Markov inequality, there are at most frac-
tion of which are -biased in

for at least fraction of . Thus, at most
fraction of can have some bad (de-
pending on ) which is bad for at least fraction of

in the sense that is -biased in .
As a result, at least fraction of do
not have such a bad , and each such is nice for all but
fraction of , as any now is bad for at most
fraction of .

Fix any which is nice for all but
fraction of . Next, we will show that embeds
an -wise independent space. For this, we need the following
lemma which shows that if is nice for , the space

projected to dimensions in gives a uniform distribution.
Claim 4: Suppose is nice for . Then for any

, .
Proof: Suppose is nice for , so for every

As we assume that , this means that all the
probabilities , for , have
a distance less than to the value , so any two of
the probabilities can only have a distance less than from
each other. This implies that all these probabilities must all
be equal, because they are all multiples of . Then note that

which is the same for every . As a result, all these
probabilities , for , must all

equal .

Then we consider the following two cases according to the
range of . In each case, we will choose a proper and show
that . Let , so .

Case 1: . In this case, we choose to be
that guaranteed in the following claim.

Claim 5: There exists an even integer such that
and .
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Proof: Note that the value of increases smoothly
as we increase from 2 to . For , the value is

On the other hand, for , we have

according to the assumption that , while for
, we also have

according to the assumption that . Thus, when
increasing from 2 to , we will encounter an even
integer such that .

With this choice of , we have

which implies that is nice for every . By Claim 4,
this means that the set projected to dimensions in forms
an -wise independent space. From [2] and [7], such a set must
have size at least

where the last inequality follows from the condition .
As a result, we have

Case 2: . In this case, we choose ,
and now . Then the following claim, together with
Claim 4, implies that the set projected to dimensions in
gives a pair-wise independent space, so by [2] and [7], we have

Claim 6: There exists a subset of size such
that is nice for every .

Proof: Consider the undirected graph with vertex set
and edge set .

Note that is at least

Then by the well-known Turan’s theorem in graph theory (e.g.,
see [13, Theorem 4.7]), must contain a clique of size at
least . By the definition of , is nice for every

, which proves the claim.

In both cases, we have shown that , for
any which is nice for all but fraction of . Since
the number of such ’s is at least

and the corresponding sets ’s are all disjoint subsets of ,
we conclude that

This proves Lemma 13.

APPENDIX

A. Proof of Lemma 3

Similar to [9], we will use the following lemma to prove
Lemma 3. It is very similar to a lemma in [9] showing the ex-
istence of an analogous sampler with respect to their definition,
and our proof is based on theirs.

Lemma 14: For any , , , such that
and , there is an explicit

-sampler which uses a
seed of random bits.

Proof: It is shown in [9] that for any with
, there exists an explicit function

such that for any Boolean function ,

for . A closer inspection of their proof shows
that it actually works for any real-valued function

. Now given any real-valued function ,
consider the function defined as
for , and note that
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Thus, is also an -sampler, which
proves Lemma 14.

Now we proceed to prove Lemma 3. Suppose for
a small enough constant , and for a large
enough constant . Let us choose , so that

and

Thus, we can choose and have
. From Lemma 14, we have

an -sampler, with
. This completes the proof of Lemma 3.

B. Proof of Lemma 5

The proof is very similar to that for an analogous lemma in
[9], which can be seen as a derandomization of Lemma 3, using
approximate pair-wise independent variables.

Definition 4: [20] We say that the random variables
are pair-wise -dependent if the joint distribution

of any two of them is -random.

Lemma 15: [1] Let be a power of 2. For any
and , one can use
random bits to generate random variables
that are pair-wise -dependent.

Let be a power of 2 such that . For any given
constant , let , , and .
We use pair-wise -dependent random variables

to partition the set into sets: where
for . By Lemma 15, the number of random

bits needed to generate them is at most

Let . Then we have for all ,
. This shows that one can generate such random vari-

ables using random bits.
Now consider any function satis-

fying . For now, let us fix an ,
and define random variables such that for

, if and otherwise. Let
, and we would like to bound the

probability . Since the expected value
of is close to , with

we have
. Since for some large enough

and , and thus , it suffices
to bound the probability .

We would like to apply Chebyshev inequality, so we need to
bound the variance of , which is

. For any

For any distinct ,

as . Therefore

where the last inequality follows from the fact that for
every and .

Now by Chebyshev inequality, we have

for some small enough constant and . Thus, setting
, we have for any

Then, Lemma 5 follows from the union bound.
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