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THE PROFILE MINIMIZATION PROBLEM IN TREES*
DAVID KUO AND GERARD J. CHANGt

Abstract. The profile minimization problem is to find a one-to-one function f from the vertex set V (G) of a
graph G to the set of all positive integers such that xeV(G) {f(x) minyN[x] f(y)} is as small as possible, where

N[x] {x} t3 {y y is adjacent to x} is the closed neighborhood of x in G. This paper gives an O(n 1"722) time
algorithm for the problem in a tree of n vertices.
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1. Introduction. The profile minimization problem was introduced by [5], [6] as a tech-
nique for handling sparse matrices. For instance, in the finite element method [8], [9], we want
to solve a system of linear equations Ax b where A is a sparse symmetric n n matrix.
Suppose for each row i, aii 0 and Pi is the position of the first non-zero element in this row.
We call

UO Pi min{j aij 0}

the width of row i, and call

n

P(A) Z 11)i

i=1

the profile of matrix A. To store A, we need only store L0 J- elements in each row i, which are
from position Pi to position i. The total amount of storage for this scheme is then P(A) + n.
In order to reduce the amount of storage, we need only permute the rows and columns of
A simultaneously such that the resulting matrix has minimum profile, i.e., we need to find a
permutation matrix Q such that the profile P(QA Qt) is minimized.

We can reformulate this problem in terms of graphs. Associate the matrix A with a graph
G such that V(G) {v,/)2 On} and E(G) {(1)i, l)j) :/: j and aij 0}. Note that

P(A)- wi -(i-
i=1 i=1

min j)vjEN[vi]

where N[vi] {1)i} I,.J {1)j l) is adjacent to vj} is the closed neighborhood of 1) in G.
The row and column permutation Q corresponds to a one-to-one function f from V(G)
onto {1, 2 n} and P(QAQt) yxEv(6) (f(x) minyENtxl f(Y)). This motivates the
definition of the profile of a graph given below.

For technical reasons, however, we shall give a slightly more general definition than that
described in the previous paragraph. A labeling of a graph G is a one-to-one function f from
the vertex set V (G) to the set of all positive integers. A labeling is simple if it maps V (G)
onto {1, 2 V(G)I}. For a labeling f, the profile-width of a vertex x is defined as

wf(x)- f(x)- min f(y).
yEN[x]
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72 DAVID KUO AND GERARD J. CHANG

The profile ofG with respect to f is

Pu(G) Z wf(x)
xEV

and the profile of G is

P(G) min{Pf(G) f is a labeling of G}.

A labeling f is optimal if Pf(G) P(G).
The purpose of this paper is to study the profile minimization problem, i.e., the problem

of determining the profile P(G) of a graph G, from an algorithmic point of view. The profile
minimization problem is analogous to the linear arrangement problem, which is to find a

labeling f of a graph G such that ’{If(x) f(Y)l (x, y) is an edge in G} is minimized
(see [1 ], [3], [7]). Reference [5] proved that the profile minimization problem is equivalent to
the problem of interval graph completion, which is known to be NP-complete even when G is

stipulated to be an edge graph (see [4]). The main result of this paper is to give an O(n 1"722)
time algorithm for the problem when G is a tree of n vertices.

The rest of this paper is organized as follows. In 2, we establish several basic properties
that motivate the development of our algorithm. In particular, we prove that for a tree T
there exists a basic path c(x, y) such that P(T) P(T -or(x, y)) + IE(T)I. So the problem
becomes that of finding a path c (x, y) such that P(T -or (x, y)) is minimized. For the purposes
ofrecurrence, we also introduce the problem of finding a path c(x, y) such that P(T-ot(x, y))
is minimized, with the boundary condition that y is fixed. In order to determine the basic path,
3 develops theorems that narrow the possibilities for the basic path. For instance, we prove
that c (x, y) contains centroids of the tree. This also means that the number of vertices of each
component of T ot (x, y) is no more than half the number of vertices of T. This is important
in determining the speed of our recursive algorithm. Section 4 uses these results to design an
algorithm, and 5 analyzes the time complexity of the algorithm.

2. Motivating properties. This section shows the existence of a basic path c (x, y) such
that P(T) P(T a(x, y)) + IE(T)I and introduces the problem of finding a minimum
such path with the boundary condition that y is fixed. The following properties are obvious
and their proofs are omitted.

PROPOSITION 2.1. An optimal labeling ofa connected graph G maps V (G) onto a set of
consecutive integers.

PROPOSITION 2.2 ([5]). If H is a subgraph of G, then P(H) < P(G).
PROPOSITION 2.3 ([5]). If G has m components G1, G2 Gm, then P(G) Eim=l

P(Gi).
We can in fact assume that an optimal labeling of a graph is simple even if it is not

connected. Suppose T is a tree of n vertices. For any leaf x and any vertex y in T, consider
the unique (x, y)-path c(x, y) (v0, vl vr), where v0 x and vr y. Suppose that
for each i, < < r, T c (x, y) has n components Til, T/2 Tin each with a vertex vii
adjacent to vi in T (see Fig. 2.1). Let f be an optimal simple labeling of F/ tO<_j<_niTij.
We consider a simple labeling fxy defined by

fxy(1)) Ly(Vi_I) + J(/))
Ly(Ui-1) -" IV(F/)I +

if v v0,

if v 6 V(Fi),

ifv vi.
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PROFILE MINIMIZATION PROBLEM 73

See Fig. 2.2 for an example of fxy with oe(x, y) (a, b, c, d). Note that the numbers beside
the vertices are their labels. Then

and

w./..,. (vo) 0,

w,.;,.(v) fx(V) fxy(V_) -IV(F,.)I + forl <i _<r,

for v V(F,-).

Consequently

(2.1)

We call oe(x, y) the basic path (with respect to the labeling fy). Note that

fxy(Vo) < Ly()l) <"" < Ly(Vr)- n.

In general, an optimal labeling of a tree is of this type.

FIG. 2.1. Tree T.

THEOREM 2.4. If f is an optimal labeling ofa tree T of n vertices, then f .Ly where
x f- (1) is a leafand y f- (n) is adjacent to at most one non-leaf vertex.

Proof. Let oe(z, u) (vo, Vl v) be a longest path containing both x and y, say,
x v and y vt for 0 _< s < _< r. Note that since r is the maximum, v0 and v,. are leaves.
In this case n 0 and PU:,, (T) PJi,,, (T), where u’ v,._.

Suppose T and oe(z, u) are as shown in Fig. 2.1. Let fj f[v(r/) be the labeling f
restricted on V (Tij). Then, by definition,

(2.2) P(T) Pu(T) > wf(vi) +
i=0 i=! ./’=1
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74 DAVID KUO AND GERARD J. CHANG

2( 1 1

Tll T2 Ta

1 7 8 13

T

FIG. 2.2. An example off y.

Note that

(2.3) Wf(Ui) Wf(Ui) > {f(vi) f(vi-1)} n IE(T)I.
i=0 i=s+l i=s+l

Consequently, by (2.1),

(2.4)
ni

P(T) > IE(T)I + P(Tij)- PL.(T) > P(T).
i=1 j=l

Therefore, all inequalities in (2.2) to (2.4) are equalities. This implies the following:
(1) each fj is an optimal labeling for T/j,
(2) wf(vo) wf(Vl) tof(Vs) O,
(3) Wf(l)t+l) //)f(l)t+2) Wf(Ur) O,
(4) f(vi-1) minyeN[vi] f(y) for s + < < t.
Statement (2) implies that s 0, otherwise wf(Vs-1) f(vs-1) f(Vs) > 0. That is,

x z, which is a leaf. Statement (3) implies that r < t, otherwise either f(vt+ > f(vt+2)
or f(vt+l) < f(vt+2), i.e., either Wf(1)t+l) > 0 or tof(vt+2) > 0. So either y u or y u’.
In the former case, y u is a leaf. In the latter case, y u’ is adjacent to at most one non-leaf
vertex, otherwise we can choose a longer c(z, u). In this case, since Pfz,, (T) Pfz, (T), we
replace u by u’ and assume y u. Note that in this case nr > 0. So, now cg(x, y) or(z, u).
Finally, statement (4) implies the following"

(5) f(vo) < f (v) <... < f(Vr)"--n,
(6) f(vi-1) < f(vij) for < < r and < j < hi.
On the other hand, statement (1) and Proposition 2.1 imply that each f(V (Tij)) contains

consecutive integers. From this, together with statements (5) and (6), we obtain f fz,
fxy" [-]
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PROFILE MINIMIZATION PROBLEM 75

COROLLARY 2.5. For any tree T there is an optimal labeling fxy in which both x and y
are leaves.

From now on, all optimal labelings we consider are as specified in Corollary 2.5. The
path a(x, y) is called a basic path for P(T).

Theorem 2.4 and (2.1) tell us that in order to find the profile of a tree T we need only find
a basic path ct (x, y) whose deletion results in a forest with the smallest possible profile.

For technical reasons, we now consider the following restricted path deletion problem.
Suppose y is a fixed vertex in tree T; find a path ot (x, y) ending at y such that P(T ct (x, y))
is minimum. We use P’(T, y) to denote this minimum value. We also call a (x, y) the basic
path for P’(T, y).

Suppose fxy is an optimal labeling of T and the tree T is as shown in Fig. 2.1. Denote
by k T (respectively Tk) the subtree of T that contains v0, vl vk, F1 Fk (respectively
vk vr, Fk Fr). From Theorem 2.4 and (2.1), we obtain the following corollary.

COROLLARY 2.6. For a basic path (vo, Vl v) for P(T), thefollowing hold:
(1) (vo, Vl Vk) is a basic path for P’(kT, vk) and P’(kT, vk) Eki__l P(Fi)

Ei=, Y.=, P(Tij) for 1 < k < r.

(2) (vk, vk+l v) is a basic path for P’(T, vk) and P’(Tk, vk) .i=k P(Fi)
Ei= ET-_, P(T,.) for 1 <_ k <_ r.

t-1(3) P(T) --IE(T)I + P’(ST, vs) + P’(T vt) + i=s+l P(Fi) for < s < <_ r.
PROPOSITION 2.7. P(T) < P’(T, y) + IE(T)lfor any vertex y in T.

3. Main theorems. This section develops theorems that restrict the possibilities of the
basic paths for P(T) and P’(T, y). In particular, the basic path or(x, y) for P(T) contains the
centroids of T. We also prove that the basic path for P’(T, u) is either ct(x, u) or or(y, u), and
the deletion of the basic path for P’ (T, u) from T results in a forest each of whose components
has at most 21V (T) I/3 vertices. These results are the keystone of our algorithm for the profile
maximization problem.

A centroid of a tree of n vertices is a vertex whose deletion results in a forest each of
whose components has at most / vertices. It is well known that a tree has either exactly one
centroid or exactly two adjacent centroids (see [2]). A "from leaves to center" method can be
employed to derive the centroids of a tree. This method requires linear time.

THEOREM 3.1. Any basic path t (x, y) for P(T) contains all centroids of T.
Proof. Suppose there is a centroid of T not in the basic path

or(x, y) (x l)1, u, v y).

Then T is of the form shown in Fig. 3.1, with IV (T’)I >_ n/2 where n V (T)1. By Corollary
2.6 (3), we have

(3.1)
k

P(T) IE(T)I-t- P’(T1, 1)1) -’ P’(T2, v2) + E P(T/) + P(T’).
i=3

Up to a symmetric argument, we may assume that IV(T1)I IV(T2)I. Let a(z, v) be a basic
path for P(T’). Corollary 2.6 (3) and Proposition 2.2 give

(3.2) P(T’) > IE(T’)I + P’(Ta, a) + P’(Tb, b) + Z P()"
j--1

We also assume that IV (Ta)l -< IV (T6)I. Now consider the labeling fry for T. By (2.1) and
Corollary 2.6, we have
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76 DAVID KUO AND GERARD J. CHANG

(3.3)
k

Pfoy(T) --IE(T)I + P’(Tb, b) 2r- P’(T2, /)2) - P(Ta) 2t- y P(Fj) + P(T1) + P(Ti).
j=l i=3

Equations (3.1)to(3.3)togetherleadtothat E T’) < P Ta P’ Ta a +P TI P’ T v
Then IE(T’)I < IE(Ta)I q- IE(T)[ by Proposition 2.7. Thus

IE(T)I > IE(T’)I- IE(Ta)I
> IE(T’)[/2 (since IE(Ta)I <_ IE(Tb)I and T’- (Ta t3 Tb) 5 0)
> (n --IE(T’)I)/2 (since IE(T’)[ >_ n/2)
>_ IE(T)I (since IE(T1)I _< IE(T2)]),

which is a contradiction.

FIG. 3.1.

Similar arguments lead to the following theorem.
THEOREM 3.2. Suppose y is a fixed vertex ofa tree T of n vertices. For any basic path

ot (xy) of P’ (T, y), every component of T ot (x, y) has at most 2n /3 vertices.

Proof. The proof of this theorem is exactly the same as that for Theorem 3.1, except
now we assume IE(T’)I > 2n/3 and IE(Ta)I < IE(Tb)[, and there is no assumption that
IE(T1)I < IE(T2)I. However, we still have IE(T’)I < IE(Ta)I + IE(T)I. Then

IE(T1)I >_ IE(T’)I- IE(Ta)I
>_ IE(T’)I/2 (since IE(T)I _< IE(T)I)
> n- IE(T’)I (since IE(T’)I > 2n/3)
>_ IE(T)I,

which is a contradiction.
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PROFILE MINIMIZATION PROBLEM 77

Figure 3.2 gives an example in which a basic path cg(x, y) for P’(T, y) does not contain
the centroid z of T.

FIG. 3.2.

THEOREM 3.3. Ifot(x, y) is a basic pathfor P(T) and u is afixed vertex in T, then either
or(x, u) or or(y, u) is a basic pathfor U(T, u).

Proof. Suppose or(x, y) (x vl, ul, v2 y) and (u, u2 Ur u) is the
unique path from c(x, y) to u, as shown in Fig. 3.3. Let or(z, u) be a basic path for P’(T, u).

FIG. 3.3.

Case 1. z V(Tx). In this case, us u, v3 v, and Tz Tx. By Corollary 2.6 (1),
or(x, v) is a basic path for P’(Tx, Vl), and so P(Tx or(x, vl)) < P(Tz c(z, v3)). Then

P’(T, u) P(T or(z, u))

P(Tz -or(z, v3)) q- P(Ty) q- P(Fi)
i=1

> P(Tx -or(x, v)) + P(Ty) + P(Fi)
i=1

P(T o(x, u)).

Hence c(x, u) is also a basic path for P’(T, u).
Case 2. z V (Ty). By a similar argument, or(y, u) is also a basic path for P’ (T, u).
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78 DAVID KUO AND GERARD J. CHANG

Case 3. z V(Tx) and z T(Ty). Let T’, T", and T’" be subtrees, as shown in Fig. 3.3.
Note that in the case of s 1, T’ Tx tO Ty is not a tree. Now

(3.4) P(T -a(z, u)) P’(Tz, v3) + P(T’) +

_
P(Fi).

i--s

Note that P’ (Tz, v3) P(Tz a (z, v3)). By Proposition 2.2, we have

(3.5)
s-1

P(T’) >_ P(T) + P(Ty) +

_
P(Fi).

i--I

Since ct(x, y) is a basic path for P(T), we have Pfxz(T) > efxy(T). By (2.1) and Corollary
2.6 (3) we have

(3.6) IE(T)I + P(Tx -or(x, Vl)) + P(Ty) + L P(Fi) + P(T") + P(Tz -or(z, v3))
i=1

> IE(T)I + P’(Tx, v) + P’(Ty, v2) + P(F) + P(T"’).

Note that P’(Tx, vl) P(Tx or(x, vl)). Again, by Proposition 2.2,

(3.7) P(T’) > L P(F) + P(Tz) + P(T").
i=2

Equations (3.4) to (3.7) together lead to

P(T -a(z, u)) > P’(Ty, /32) q- P(Tx) + P(Fi) + P(T) P(T -or(y, u)).
i--1

Hence ct(y, u) is a basic path for P’(T, u). ]

4. The algorithm. We can use the theorems in 3 to design an efficient algorithm for the
profile minimization problem in a tree T. By Theorem 3.1, the basic idea of our algorithm is
to find a centroid z first in linear time. Suppose T z tO<i<m Ti, where u; is the only vertex
of T,. that is adjacent to z in T (see Fig. 4.1). To use Corollary 2.6 (3), we need to find all

FIG. 4.1.
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PROFILE MINIMIZATION PROBLEM 79

profiles P(T/) and P’(T/, ui) recursively. In the following, Algorithm PROFILE finds P(T)
and Algorithm PROFILE1 finds P’(T, u). Note that, in order to make use of Theorem 3.3,
Algorithm PROFILE not only has to output the value P(T) but also a basic path.

ALGORITHM PROFILE
Input: A tree T of n vertices.
Output: A basic path c(x, y) (v0, v, ,1)r) for P(T) and the values P(T) and P(Tij)
for 1 < < r- and <_ j < hi.
Method:

1. find a centroid z of T.
2. let T z U<k<m Tk and z be adjacent to uk V (Tk) for < k < m.
3. for each 1 < k < m, recursively call PROFILE for Tk to get a basic path ot(xk, Yk)

and values P(Tk) and P(Tkij), where Tkij are the components of Tk ot(Xk, Yk).
4. for each < k < m, recursively call PROFILE1 for (Tk, Uk) to get a basic path

c(zk, uk) and values P’(Tk, uk) and P(Tij), where Tij are the components of Tk
(z, u).

5. let P(T) n + minl<_p<q<_m{P’(Tp, Up) + P’(Tq, Uq) -+- Zip,q(Ti)}, where p* and
q* attain the above minimum.

6. let c(x, y) ot(Zp,, Up,) + z + ot(Uq,, Zq,).
7. combine profiles P(Tp,ij), P(T,) for k : p*, q*, and P(Tq,ij) to get profiles P(Tij).

To find P’(T, u), we note that by Theorem 3.3, either or(x, u) or c(y, u) is a basic path
for P’ (T, u). So we consider the configuration in Fig. 3.3 with Tz omitted.

ALGORITHM PROFILE
Input: Tree T of n vertices with a basic path c(x, y) (v0, Vl Vr) for P(T) and the
values P(Tij) for 1 < < r and < j < ni. u is a fixed vertex in T.
Output: A basic path or(z, u) (Vo, v’ V’r,) for P’(T, u) and the values P’(T, u) and

P(Ti.)forl <i <r’andl <j<ni.
Method:

1. identify the path (u, u2 Ur) as in Fig. 3.3.
2. recursively use PROFILE to solve P(Tx), P(Ty), P(Fi) (in fact P(Tij) for each

component in Fi) for < < r.

3. a P’(Tx, v) + P(Ty) + Yi= P(Fi),
b P’(Ty, l)2) + P(Tx) + Yi=, P(Fi),
where P’(Tx, v) and P’(Ty, 1)2) can be computed from the input values P(Tij).

4. P’(T, u) min{a, b}.
if a < b then z x else z y.

5. combine part ofthe profiles P(Tij), P Tx ), or P(Ty), and P Fi to get profiles P(T,.}).
5. Time complexity. This section shows that the time complexities of the above two

algorithms are O(n1"722). Let f(n) (respectively, g(n)) be the time complexity for Algorithm
PROFILE (respectively, PROFILE1).

In Algorithm PROFILE, Step 3 (respectively, 4) needs Yim__ f(ni) (respectively, Yim__
g(ni)) time, where n V (Ti)[ for 1 < < m. All other steps need O(n) time. Note that for
Step 5 we only have to find the smallest and the second smallest values of P’(Ti, wi) P(Ti).
Therefore

(5.)
m

f(n) Z{f(ni) + g(ni)} + cn,
i=1

where
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m

E ni n and ni < n/2 for
i=1

l<i<m.

Similarly, in Algorithm PROFILE1, Step 2 needs zim___l f(ni) time and all other steps
need O(n) time. Thus, by Theorem 3.2,

m

(5.2) g(n) f(ni) + c2n,

i=1

where

m

Z ni n and ni 2n/3 for
i=1

l<i<m.

To solve (5.1) and (5.2), we first choose a number cr > 1, which is very close to 1, say,
cr 1.001. Then choose < ) < 2 such that

e= + <1

and

6= (1 + o-e)2 ()
x

Note that a simple computer program gives that )v 1.722 for r 1.001.
THEOREM 5.1. There exists a constant c such that f(n) < cn and g(n) < ctren for all

n, i.e., f(n) O(n) and g(n) O(nX).
Proof. The proof is by induction on n. Assume that there exists a constant c such that

f(n’) < cn’ and g(n’) < cren’z for all n’ < n. We also assume that c > Cl/(1 3) and

> C2/(0" 1).
For 0 < a _< b, consider the function h(x) (b + x) + (a x) b a where

0 < x < a. Note that h’(x) ,k(b + x)- ,k(a x)- > O. So h is an increasing function
and then h (x) > h (0) 0 for 0 < x < a. Thus

b+aZ<(b+x)+(a-x) for O<x<a<b.

By (5.1) and the induction hypothesis, we have f(n) < c(1 + re) ’im=l n} + cln where

Yi=I n _<i= ni n 1 and ni < n/2 for 1 < < rn Repeatedly apply (5.3) to get
n );k n(7) + (7 1) z. Therefore f(n) <_ c(1 + r)2 ( + cn c3n + c,n. By the choice

of c, cn < c(1 -6)n < c(1 -6)nz. Then f(n) < cn.
m mBy (5.2) and the induction hypothesis, we have g(n) < c -,i= nczn where i=1 ni <

n 1 and ni < 2n/3 for 1 < < rn. Repeatedly apply (5.3) to get Y.i= n < (2n/3)z +
n Also, by the choice of c, czn <_ c( 1)n < c(r 1)nz. Then g(n) <

cen + c(cr 1)en caen.
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