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ABSTRACT 

Support vector machine (SVM) is one of the most powerful 
techniques for supervised classification. However, the 
performances of SVMs are based on choosing the proper 
kernel functions or proper parameters of a kernel function. 
It is extremely time consuming by applying the k-fold cross-
validation (CV) to choose the almost best parameter. 
Nevertheless, the searching range and fineness of the grid 
method should be determined in advance. In this paper, an 
automatic method for selecting the parameter of the RBF 
kernel function is proposed. In the experimental results, it 
costs very little time than k-fold cross-validation for 
selecting the parameter by our proposed method. Moreover, 
the corresponding SVMs can obtain more accurate or at 
least equal performance than SVMs by applying k-fold 
cross-validation to determine the parameter. 

Index Terms— Support vector machine, kernel method, 
optimal kernel

1. INTRODUCTION 

In the recent years, support vector machines (SVMs) are 
widely and successfully used in several remote sensing 
studies. In many studies, they performed more accurately 
than other classifiers or performed at least equally well [1]-
[6], since SVMs have three properties: 1) they can handle 
large input spaces efficiently; 2) they are robust for dealing 
with noisy samples; and 3) they can produce sparse 
solutions [3].  

However, the performances of SVMs are based on 
choosing the proper kernel functions or proper parameters 
of a kernel function [6]-[9]. In generally, a “grid-search” on 
parameters of SVMs with the k-fold cross-validation (CV) 
is used for choosing the parameter and prevents the 
overfitting problem [6]-[7]. Nevertheless, it is time 
consuming. Furthermore, before doing a grid-search, a 
better region and fineness on the grid should be determined 
in advance. 

In this paper, we will propose an automatic method for 
selecting the parameter of the RBF kernel function. The 
experimental results indicate that the searching efficiency is 
much improved and the corresponding performance is 
almost as good as the SVM with grid-search. The paper is 
organized as following. The review of SVM is introduced in 
Section 2. The proposed search method will be introduced 
in section 3. The experiments on hyperspectral image 
datasets are designed to evaluate the performances of the 
proposed method in section 4 and the experimental results 
are also reported in this section. Section 5 contains 
comments and conclusions. 

2. SOFT-MARGIN SUPPORT VECTOR MACHINE 

SVM is to find a hyperplane in the feature space, a Hilbert 
space , in the middle of the most separated margins 
between two classes, and this hyperplane can be applied for 
classifying the new testing samples [1]-[7]. Let 

 and  be a set of training 
samples and the corresponding label set, respectively. The 
soft-margin SVM algorithm is performed by the following 
constrained minimization optimal problem: 

where  is a vector normal to the hyperplane,  is a 
constant such that  represents the distance of 
hyperplane from the origin space,  is a 
nonlinear mapping function, ’s are slack variables to 
control the training errors, and  is a penalty 
parameter that permits to tune the generalization capability.  

In general, an equivalent dual representation by using 
the Lagrange optimization is used to find the optimizer. The 
corresponding dual Lagrange function is defined as: 

836978-1-4244-9566-5/10/$26.00 ©2010 IEEE IGARSS 2010



where artificial variable ’s are Lagrange multipliers. 
According to the Mercer’s theorem, the  can be 
replaced by a kernel function  which is used to 
implicitly map samples from original space  to a feature 
space  without knowing the function .

The Gaussian radial basis function (RBF) kernel, 

is one of the most popular kernel functions with convincing 
performance and is a reasonable first choice [7], where 

 is the parameter. Different value of the 
parameter  indicates that different corresponding mapping 

 and the corresponding feature space  is adopted.  
Once the ’s are determined, any new test pattern 

 is associated with a forecasting label ,

where  is chosen so that 

for any  with .
There are two parameters,  and , for soft-margin 

SVM with the RBF kernel.  Which are the best for a given 
problem is unknown beforehand. To identify good  and 
so that the classifier can accurately predict unknown 
samples is the main goal. A “grid-search” on   and  of 
SVMs with the k-fold cross-validation (CV) is often used 
and prevents the overfitting problem [6]-[7]. However, this 
approach is extremely time-consuming, especially for the 
large training data set situation or the high-dimensional 
dataset situation. Moreover, the range and fineness of the 
grid could also affect the quality of the selected parameter 
value. Hence, in the next section, an automatic way for 
determining the value of  is proposed for solving this 
parameter selection problem. 

3. AUTOMATIC RBF PARAMETER SELECTION 

Suppose  is the set of training samples in class ,
. There are two important properties of the 

RBF kernel function: (1) , ,
i.e., the norm of every sample in the feature space is 1 and 
(2) , , i.e., the cosine 
value of two training samples  and  in the feature space 
can be computed by  and it determines the 
similarity between these two samples. 

Based on the above two observations and the concepts, 
two properties are desired and described as follows. (1) The 
samples in the same class should be mapped into the same 
area in the feature space and (2) the samples in the different 
classes should be mapped into the different areas. We want 
to find a proper parameter  such that 

(1)  and 
(2) 
In this paper, two criterions are proposed for measuring 

these properties. First one is the mean of values applied by 
the RBF kernel function on the samples in the same class: 

,

where  is the number of training samples in class . The 
parameter  should be determined such that  closes to 
1. Second one is the mean of values applied by the RBF 
kernel function on the samples in the different classes: 

.

So  should be determined also such that  closes to 0. It 
is easy to find that  and . Hence, 
the optimal  can be obtained by solving the following 
optimization problem: 

.

Fig. 1.  vs. . The optimizer locates in the range [3500,4000]. 
The shape of the function  by using the Indian Pine 

Site dataset which details will be described in the next 
section is shown in Figure 1. The horizontal and vertical 
axes are the values of the parameter  and the 
corresponding , respectively. This graph indicates that 

 has only one minimum value which is the desired 
selected value of  in the proposed method. Figure 2 shows 
the accuracies and kappa accuracies of testing samples and 
all samples in the Indian Pine Site Image at different  by 
applying soft-margin SVMs with a fixed . One can note 
that the minimum of  in Fig. 1 locates in the range 
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[3500,4000] and the near optimal overall and kappa 
accuracies of testing samples and all samples in the Indian 
Pine Site Image by applying SVMs with a fixed  occur in 
the rage [3500,4500]. These two figures show that the 
proposed method obtains a proper parameter which the 
overall classification accuracy and kappa accuracy are near 
the best. 

Note that  is differentiable with respect to 
and 

.

In this paper, the gradient descent method [10], 

is used to solve the proposed optimization problem, where 

,

,

and 

Fig. 2. There are accuracies and kappa accuracies of testing samples and all samples in the Indian Pine Site Image at different
 by applying SVMs with a fixed . The near optimal performances occur in the rage [3500,4500]. 

4. EXPERIMENTS 

In this study, for investigating the influences of training 
sample sizes to the dimension, three distinct cases, 

 (case 1), (case 2), and 
 (case 3), will be discussed. The 

MultiSpec [11] was used to select training and testing 
samples (100 testing samples per class) in our experiments 
which is the same method in [11], [12], and [13]. 

Two real data sets are applied to compare the 
performances. They are the Indian Pine, a mixed 
forest/agricultural site in Indiana, and the Washington, DC 
Mall hyperspectral image [11] as an urban site. The first one 

of these data sets was gathered by a sensor known as the 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). 
The Indian Pine image, mounted from an aircraft flown at 
65000 ft altitude and operated by the NASA/Jet Propulsion 
Laboratory, with the size of 145 × 145 pixels has 220 
spectral bands measuring approximately 20 m across on the 
ground. Since the size of samples in some classes are too 
small to retain enough disjoint samples for training and 
testing, only eight classes, Cornmin, Corn-notill, Soybean-
clean, Grass/Pasture, Soybeans-min, Hay-windrowed, 
Soybeans-notill, andWoods, were selected for the 
experiments. 

The other data set, Washington, DC Mall from an urban 
area, is a Hyperspectral Digital Imagery Collection 
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Experiment airborne hyperspectral data flight line over the 
Washington, DC Mall. Two hundred and ten bands were 
collected in the 0.4–2.4 m region of the visible and infrared 
spectrum. Some water-absorption channels are discarded, 
resulting in 191 channels [11]. There are seven information 
classes, roofs, roads, trails, grass, trees, water, and shadows, 
in the data set. 

The purpose of this experiment is to compare the 
multiclass classification performances of the soft-margin 
SVMs with the RBF kernel function by applying the 
proposed method (OP) and the 5-fold cross-validation (CV) 
to find the best  within the given set of 
parameters. Both the parameters  of OP and CV should 
still be selected via grid-search on the set .

Table 1 and 2 are the overall and kappa accuracies in 
Indian Pine dataset and Washington, DC dataset, 

respectively. One can find that the cost of time for proposed 
method is less 9 times than the 5-fold cross-validation on 
both two datasets. Moreover, the classification results show 
that the soft-margin SVMs with RBF kernel function using 
OP to find the parameter can obtain more accurate in the 
small sample size. 

4. CONCLUSION 

In this paper, an automatic method for selecting the 
parameter of the RBF kernel was proposed, and we have 
compared it and k-fold cross-validation experimentally. The 
experimental results of two hyperspectral images show that 
the cost of the proposed method is less 9 times. Furthermore, 
we will try to develop the framework to other kernel 
functions 

Table 1. Overall and Kappa Accuracies in Indian Pine Dataset 
Method CPU Time (sec) Overall Accuracy Overall Kappa Accuracy 

20 CV 197.50 8192 512 0.749 0.712 
OP 21.22 3622.80 1024 0.768 0.733 

40 CV 531.25 8192 256 0.811 0.781 
OP 58.78 3615.36 128 0.831 0.804

300 CV 22859.95 4096 256 0.928 0.915 
OP 2416.61 3795.66 256 0.928 0.916 

Table 2. Overall and Kappa Accuracies in Washington, DC Mall 
Method CPU Time (sec) Overall Accuracy Overall Kappa Accuracy 

20 CV 91.56 524288 64 0.826 0.80 
OP 9.91 178600.96 32 0.844 0.82 

40 CV 249.64 131072 8 0.886 0.87 
OP 27.91 177898.80 2 0.881 0.86 

300 CV 1474.45 182370.06 16 0.951  0.94  
OP 14191.69 2097152 32768 0.961  0.96  
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