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A first-order multi-displacement microstructure continuum model is introduced to represent a discrete

diatomic lattice system. This model is developed based on a two-term Taylor series expansion of the

local displacement of the lattice. It is found that the multi-displacement continuum model obtained by

keeping two terms in the Taylor series yields, in general, a better representation of the lattice system

than the effective modulus model. However, this microstructure continuum model cannot characterize

the negative group velocity of an optical mode of harmonic wave motion in the diatomic lattice. To

capture the negative group velocity, a higher-order multi-displacement continuum model is necessary.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Emerging nanotechnology has given rise to increased interest
in modeling material behavior at the nanoscale. The analysis
methods used for nanoscale includes, for example, ab initio, tight
binding, and molecular dynamics. These methods are developed
based on quantum mechanics with appropriate approximations.
They can be accurate enough with expensive computation.
Moreover these atomic approaches are mostly limited to small-
scale problems due to the high cost of computation. One solution
to resolve the problem is to rely on the equivalent continuum
model. Such an approach yields great simplifications and has been
widely adopted for modeling and analyzing discrete lattice
structures [1,2]. By combining discrete atomic domains with
continuum domains, a large-scale domain of interests can be
analyzed. For instance, Kwon and Manthena [3] developed a
homogenization technique to replace a discrete atomic domain by
an equivalent continuum domain. An efficient finite-element
analysis could therefore be performed for a large sized domain.

However, modern materials are becoming more and more
complex. Many new materials are heterogeneous systems, which
consist of multiple phases, each serving a different function. The
conventional continuum approach may become inadequate in
describing the response of solids with micro/nano-structures,
when the characteristic length (or wavelength) of deformation
becomes comparable to or smaller than the dimensions of the
representative cell of the micro/nano-structure. An example is the
wavelength-dependent wave velocity in composite materials. If a
composite is modeled as a homogeneous elastic solid, then the
bulk plane wave (longitudinal or shear) would propagate at a
ll rights reserved.

ng).
constant speed. In contrast, the exact solution based on the model
that retains the identity of the microstructure (fiber, particle)
indicates that the wave is dispersive meaning that the wave speed
is not a constant, but is affected by wavelength.

The main reason for the aforementioned deficiency of the
classical continuum model can be attributed to its inability to
account for the local motion of the micro/nano-structure. A
common way to solve this problem is to employ additional
kinematic variables to describe the non-homogeneous local
deformation in the microstructure of the solid. This approach
leads to Cosserat type continuum models that are often attributed
to the Cosserat brothers [4]. There are variations among these
models which are often referred to as microstructure, micropolar,
or micromorphic models [5–9]. Some authors have even
attempted to use these extended continuum models to bridge
continuum theory and molecular dynamics down to the atomic
scale [10,11]. Common to all of the above models is that, in
addition to the usual translational displacement vector to
describe the average displacement, additional deformation kine-
matic variables or even multiple displacement vectors are
introduced to describe the nonhomogeneous local deformation.
Among the existing Cosserat continuum type models, most of
them only present a general form of the governing equations;
extensive experiments are required to determine numerous
material constants associated with the models. On the other
hand, the micro/nano-structure continuum models developed in
[8,9,12–14] are based on the unit cell of the original material and
all the material constants of the continuum models can be derived
analytically from the micro/nano-structure. The governing equa-
tions are directly derived from the geometry and the mechanics of
the micro or nano-structure in the unit cell.

In this study, we employ the multi-displacement approach to
describe the local motions of microstructures. A diatomic lattice
model representing the heterogeneous system is considered, and
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how the present multi-displacement continuum model captures
the dynamic characteristics of the lattice system is studied.
2. First-order multi-displacement continuum model

A one-dimensional discrete system consisting of alternating
masses m1 and m2 as shown in Fig. 1 is considered to illustrate the
multi-displacement continuum concept. The pair-wise interac-
tions between the adjacent periodic masses are represented by
elastic springs with spring constants k1 and k2. The corresponding
lattice spacing is denoted as L1 and L2. Because of the periodic
characteristic of the lattice system, a unit cell enclosed by
the dashed line, shown in Fig. 1, is considered to represent the
overall responses of the discrete system. The dimension of the
unit cell is L, equal to L1+L2. The displacements for the masses m1

and m2 are denoted as u1 and u2. It is noted that the displacements
u1 and u2 are expressed in terms of the global coordinate system.
Since the dimension of the unit cell is small as compared to the
deformation gradient, the two displacement quantities are
associated with the same material point in the continuum
concept. As a result, the displacement fields in the (j)th unit cell
are expressed explicitly as

uðjÞ1 ¼ u1ðxÞ ð1Þ

uðjÞ2 ¼ u2ðxÞ ð2Þ

When the length of the unit cell is sufficiently small as
compared to the characteristic length of deformation, the
displacement, uðjþ1Þ

1 ¼ u0, at the right end of the unit cell can be
approximated by the linear Taylor series expansion as

u0ðxÞ ¼ u1ðxÞþ
@u1

@x
L ð3Þ

The strain energy density, W, and kinetic energy density, T, in
the unit cell are defined as the volume averages of the strain
energy and kinetic energy of the unit cell, respectively. Assuming
the volume of the unit cell to be 1�1� L and using the relation of
Eq. (3), one obtains

W ¼
1

2L
k1ðu2�u1Þ

2
þ

1

2L
k2ðuo�u2Þ

2

¼
1

2L
k1ðu2�u1Þ

2
þ

1

2L
k2 u1þ

@u1

@x
L�u2

� �2

ð4Þ

and

T ¼
1

2L
m1ð _u1Þ

2
þ

1

2L
m2ð _u2Þ

2
ð5Þ
Fig. 1. One-dimensional discrete lattice model.
Expressions of W and T, shown above, can be regarded as the
deformation and kinetic energy densities, respectively, at a point x

in an equivalent one-dimensional continuum with two displace-
ment vectors u1(x) and u2(x). By defining normal strain e¼qu1/qx

and relative strain er¼(u2�u1)/L, the deformation energy density
function is rewritten as

W ¼
Lk1

2
e2

r þ
Lk2

2
ðe�erÞ

2
ð6Þ

The constitutive relations for the equivalent continuum are
then deduced as follows:

s¼ @W

@e
¼ Lk2ðe�erÞ ð7Þ

sr ¼
@W

@er
¼ Lðk1þk2Þer�Lk2e ð8Þ

where s is the normal stress and sr is the relative stress.
By use of Hamilton’s principle

d
Z t1

to

Z
V
ðT�WÞdV dtþ

Z t1

to

Z
S

TiduidAdt¼ 0 ð9Þ

the equations of motion of the equivalent multi-displacement
continuum are derived as

m1 €u1�ðk1þk2Þu2þðk1þk2Þu1þk2L
@u2

@x
�k2L2 @

2u1

@x2
¼ 0 ð10Þ

m2 €u2�ðk1þk2Þu1þðk1þk2Þu2�k2L
@u1

@x
¼ 0 ð11Þ

together with the boundary condition

t¼ k2 u1�u2þ
@u1

@x
L

� �
ð12Þ

in which t is the applied boundary traction. It is noted that this
boundary condition can be simplified by using constitutive
relations Eqs. (7) and (8), and reduces to

t¼ k2ðeL�erLÞ ¼ Lk2ðe�erÞ ¼ s ð13Þ

3. Static problem

In order to interpret the physical meanings of the normal and
the relative strains defined earlier, we consider a uniform static
deformation in the equivalent continuum, i.e. q2u1/qx2

¼0. Thus,
u1 assumes a linear form as

u1 ¼ CxþD ð14Þ

In addition, from Eqs. (10) and (11), the following relation

@

@x
ðu2�u1Þ ¼ 0 ð15Þ

is obtained. Therefore, u2 can be expressed as

u2 ¼ CxþE ð16Þ

Substitution of Eqs. (14) and (16) into Eq. (11) leads to

ðE�DÞ ¼
k2

k1þk2
LC ð17Þ

The coefficients, C, D and E in Eqs. (14) and (16), need to be
determined from the boundary condition. From Eq. (12) in
conjunction with (14) and (16), the coefficient C is expressed in
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terms of the applied loading as

C ¼
t
L

1

k1
þ

1

k2

� �
ð18Þ

Subsequently, from the definition of the normal strain, relative
strain, relative stress and normal stress, the quantities are
expressed alternatively in terms of the spring constants and the
applied loading, t, as

e¼ @u1

@x
¼
t
L

1

k1
þ

1

k2

� �
ð19Þ

er ¼
u2�u1

L
¼

E�D

L
¼

t
k1L

ð20Þ

sr ¼ Lðk1þk2Þer�Lk2e¼ 0 ð21Þ

s¼ Lk2ðe�erÞ ¼ t ð22Þ

It is evident from Eq. (19) that in the static case, normal strain e
represents the average strain generated in the unit cell of the
original lattice, when subjected to a tensile loading. Also, the
equivalent Young’s modulus is k1k2L/(k1+k2). The relative strain er

denotes the relative displacement of m1 and m2, divided by the
total length of the unit cell. It is of interest to note that the re
lative stress, sr, is equal to zero in the static simple loading
case, while the normal stress, s, is identical to the applied
traction ,t.
4. Harmonic wave propagation

We consider free harmonic wave propagation in the multi-
displacement continuum medium. The displacement fields
assume the form

u1 ¼ A1exp½iðqx�otÞ� ð23Þ

u2 ¼ A2exp½iðqx�otÞ� ð24Þ

where q is wavenumber, and o is angular frequency. Substituting
Eqs. (23) and (24) in equations of motion (10) and (11) yields two
homogeneous equations for A1 and A2 as

�m1o2þðk2q2L2þk1þk2Þ �ðk1þk2Þþ ik2qL

�ðk1þk2Þ�ik2qL �m2o2þðk1þk2Þ

" #
A1

A2

( )
¼

0

0

� �

ð25Þ
Fig. 2. Dispersion curves for the multi-displacement continuum model and
The dispersion equation is obtained by solving the above
eigen-value problem as

o2 ¼
ðm1þm2Þðk1þk2Þþm2k2ðqLÞ2

2m1m2

17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4m1m2k1k2ðqLÞ2

½ðm1þm2Þðk1þk2Þþm2k2ðqLÞ2�2

s !
ð26Þ

Two branches of wave form are obtained. The lower mode is
the acoustic mode and the higher one is the optical mode. Fig. 2a
and b shows, respectively, the dispersion curves for the acoustic
and optical modes with the material constants chosen as m1¼1,
m2¼3, k1¼6 and k2¼1. In addition, the dispersion curves
obtained from the original one-dimensional lattice [9] are also
included for comparison. It is evident that, for the acoustic mode,
the dispersion curve predicted by the multi-displacement model
agrees well with that of the lattice model for values of qL less than
2.5, which corresponds approximately to the wavelength l¼2.5L.
For the optical mode, the multi-displacement solution is accurate
for qL less than 0.5, i.e., l412.6L. When the wavenumber q

approaches zero (long wavelength limit), the angular frequency of
the optical mode reduces to

o¼ ðm1þm2Þðk1þk2Þ

m1m2

� �1=2

ð27Þ

It should be noted that if the lattice is represented by a classical
elastic solid (the effective modulus theory) with an effective Young’s
modulus derived based on the static consideration, then the wave
motion is not dispersive and the optical mode is absent.

5. Discussion

5.1. Comparison of dispersion curves

Numerical results for the dispersion curves obtained with the
first-order multi-displacement continuum and the effective
modulus models are plotted in Fig. 3 for two different cases. Only
the acoustic mode is shown because of the absence of the optical
mode with the effective modulus model. Some aspects of interest
are noted. First, the ratio of the lattice spacing L1/L2 does not affect
the dispersion relation, since its effect is accounted for by spring
constants. Second, it can be seen that, in both cases, the multi-
displacement theory is more accurate than the effective modulus
theory as the wavelength becomes shorter.
the discrete lattice model in (a) acoustic mode and (b) optical mode.



Fig. 3. Comparison of the dispersion curves for different models. Material constants are chosen as Case 1: m1¼2, m2¼1, k1¼2, k2¼1 and Case 2: m1¼10, m2¼1, k1¼2,

k2¼1.

Fig. 4. The dispersion curves when the material constants are set m1¼1, m2¼2,

k1¼1 and k2¼10.

Fig. 5. Alternative unit cell to be chosen.

Fig. 6. Comparison of the dispersion curves for different models. Material

constants are chosen as m1¼1, m2¼2, k1¼1 and k2¼10.
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5.2. Choice of unit cell

One can see from Fig. 3a that the multi-displacement model has
over-corrected the dispersion curve from that of the original lattice
model, i.e., frequencies predicted by the multi-displacement model
are lower than those by the original lattice model within some range
of wavenumbers. For the present case, the multi-displacement model
represents the original lattice system pretty well. However, there are
some cases for which the first-order multi-displacement model is not
as accurate. Fig. 4 shows an example for the case m1¼1, m2¼2, k1¼1
and k2¼10. It is evident that the dispersion curve according to the
first-order multi-displacement model deviates significantly from that
of the original lattice model and the effective modulus model actually
outperforms the multi-displacement model.

The reason for the poor representation is in part due to the
choice of the unit cell. Recall that, in developing the multi-
displacement model, the unit cell shown in Fig. 1 was selected.
For cases where m1/m2 or k1/k2 is small, the two term series
expansion for the displacement of mass 1 as given by the unit cell,
as shown in Fig. 5, should be used. Note that the two mentioned
unit cells actually form the same infinite lattice system. By
adopting this alternative unit cell, we need not re-derive the
earlier equations. The whole derivations are just slightly modified
by interchanging notations 1 and 2. For instance, Eq. (3) is now
rewritten as

u0ðxÞ ¼ u2ðxÞþ
@u2

@x
L ð28Þ

In other words, the displacement of the denser or stiffer part of
the unit cell is used for the series expansion. By using this approach,
the dispersion curve for the case m1¼1, m2¼2, k1¼1 and k2¼10 is
obtained and shown in Fig. 6. Much improved result is seen.



Fig. 7. Comparison of the dispersion curves for various a. Material constants are chosen as m1¼1, m2¼3, k1¼6 and k2¼1: (a) acoustic mode and (b) optical mode.
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5.3. Higher order multi-displacement model

Another issue to be noted is that the optical mode cannot be
well predicted by the present multi-displacement model
(see Fig. 3b). In particular, the negative slope of the initial portion
of the optical mode cannot be described by the first-order multi-
displacement model. The negative slope of the dispersion curve
indicates a negative group velocity, which has attracted attention
from some researchers [15,16]. In order to capture the negative
slope, we expand the displacement field of mass 1 by a higher-
order Taylor series as

u0ðxÞ ¼ u1ðxÞþ
@u1

@x
Lþa @

2u1

@x2
L2 ð29Þ

where a is a correction factor for truncation errors.
The strain energy density, W, and kinetic energy density, T, in

the unit cell corresponding to the displacement expansion, given
by Eq. (29) are, respectively

W ¼
1

2L
k1ðu2�u1Þ

2
þ

1

2L
k2 u1þ

@u1

@x
Lþa @

2u1

@x2
L2�u2

 !2

ð30Þ

and

T ¼
1

2L
m1ð _u1Þ

2
þ

1

2L
m2ð _u2Þ

2
ð31Þ

According to Hamilton’s principle, Eq. (9), the equations of
motion of the higher order multi-displacement continuum are
derived as

m1 €u1�k1ðu2�u1Þþk2ðu1�u2Þþð2a�1Þk2L2 @
2u1

@x2

þa2k2L4 @
4u1

@x4
þk2L

@u2

@x
�ak2L2 @

2u2

@x2
¼ 0 ð32Þ

m2 €u2þk1ðu2�u1Þ�k2ðu1�u2Þ�k2L
@u1

@x
�ak2L2 @

2u1

@x2
¼ 0 ð33Þ

It is seen that when a¼0, Eqs. (32) and (33) are identical to
Eqs. (10) and (11). The dispersion relation can be obtained in a
manner similar to that described in Section 4. Fig. 7 shows the
dispersion curves obtained using the higher order multi-displace-
ment model, with a varying from 0 to 1. For the acoustic mode,
one sees that the dispersion curve with a¼0 best fits that of the
lattice model. However, the advantage of introducing a can be
seen from the dispersion curve of the optical mode, as shown in
Fig. 7b. It is seen that, for a nonzero a, the optical mode of the
dispersion curves starts to curve down at small wavenumbers
(long wavelengths), and then curve up while the wavenumber
increases. It is evident that curve of the higher order continuum
model is in good agreement up to qL¼1 with that of the lattice
model when a is around 0.5. While improving the optical mode
with a¼0.5, it actually causes the acoustic mode to deviate
somewhat from the lattice solution.
6. Conclusion

Two multi-displacement microstructure continuum models
are introduced to describe the dispersive behavior of a diatomic
lattice model. The non-dispersive effective modulus model is
employed for comparison. The first-order multi-displacement
model, in general, describes the dispersion curve of the acoustic
mode very well. However, it cannot describe the negative group
velocity of the optical mode. The higher order continuum model is
found able to describe the negative group velocity with the proper
choice of a weighting factor for the higher order expansion term.
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