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We propose an estimation procedure for time-series regression models under the Bayesian inference framework. With
the exact method of Wise [Wise, J. (1955). The autocorrelation function and spectral density function. Biometrika, 42,
151–159], an exact likelihood function can be obtained instead of the likelihood conditional on initial observations.
The constraints on the parameter space arising from the stationarity conditions are handled by a reparametrization,
which was not taken into consideration by Chib [Chib, S. (1993). Bayes regression with autoregressive errors: A Gibbs
sampling approach. J. Econometrics, 58, 275–294] or Chib and Greenberg [Chib, S. and Greenberg, E. (1994). Bayes
inference in regression model with ARMA(p, q) errors. J. Econometrics, 64, 183–206]. Simulation studies show that
our method leads to better inferential results than their results.

Keywords: Autoregressive process; Exact likelihood; Markov chain Monte Carlo; Partial autocorrelations

1 INTRODUCTION

Regression methods have been an integral part of time-series analysis for a long time. Consider
a regression model possessing error terms with zero mean and unknown variance. The assump-
tion that the errors are uncorrelated is generally unrealistic. Violations of the independence
assumption can be checked using residual plots, the runs test, the Durbin–Watson test, and so
on. In most time-series analysis, it is often shown that the covariance matrix of the regression
model disturbance terms has a Markov pattern. Thus the regression model can be written in
matrix form as

Y = Xβ + ε, ε ∼ N(0, σ 2
ε V), (1)

where

Y = (y1, . . . , yn)
T, X = [1, X1, . . . , Xk]n×(k+1) with Xj = (Xj1, . . . , Xjn)

T,

β = (β0, . . . , βk)
T, ε = (ε1, . . . , εn)

T,

∗ Corresponding author. E-mail: chenws@fcu.edu.tw
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728 C. W. S. CHEN et al.

V =




1 ρ1 . . . ρn−2 ρn−1

ρ1 1 . . . ρn−3 ρn−2

ρ2 ρ1 . . . ρn−4 ρn−3

...
...

...
...

...

ρn−1 ρn−2 . . . ρ1 1




,

and σ 2
ε V is an autocovariance matrix with theoretical autocorrelations ρ0, ρ1, . . . , ρn−1. In this

article, we develop an exact method to analyze time-series regression models in a Bayesian
framework. Parameter estimation is done using a Markov chain Monte Carlo (MCMC) method
which is a hybrid of the Gibbs sampler and the Metropolis–Hastings (MH) algorithm. Com-
pared with a simple regression model, the major obstacle in estimating a time-series regression
model involves treating its initial observations. Bayesian inference for time-series regression
regarding autoregressive processes conditional on initial observations has been considered by
Chib (1993), McCulloch and Tsay (1994), and Albert and Chib (1993). However, when condi-
tioning on initial observations, the problem setting loses its time-series feature completely and
becomes a pure regression problem. In this paper, we consider the exact likelihood function
instead of the likelihood conditional on the initial observations. We employ the results of Wise
(1955) to obtain an inverse autocovariance matrix in the exact likelihood function. Alterna-
tively, the unobserved history prior to the first observation can be treated as latent variables
in the model (e.g. Marriott et al., 1996; Chen, 1999). Chib and Greenberg (1994) (denoted
C&G henceforth) work with the state space form for ARMA processes. Using the same time-
series regression models, both approaches of Chib (1993) and C&G are used to compare with
the proposed approach. The constraints on the parameter space arising from the stationarity
conditions are handled by a useful reparametrization which was not taken into consideration
by Chib (1993) or C&G. Simulation studies show that our method leads to better inferential
results when compared with the results presented in Chib (1993) and C&G.

This paper is structured as follows. Section 2 describes the Bayesian setup for time-series
regression models. A useful transformation enabling us to handle the stationarity constraint is
also given in Section 2. Section 3 illustrates the MCMC methods and shows how the simulation
is conducted. Simulation results comparing the performance of our Bayesian method with those
of Chib (1993) and C&G are given in Section 4. Applications of our proposed method to three
data sets are also given. Finally, Section 5 provides concluding remarks.

2 ESTIMATION

Suppose that φ = (φ1, . . . , φp)T. The relationship between ρ and φ follows the Yule–Walker
equations. Therefore, the time-series regression model in Eq. (1) is equivalent to

Y = Xβ + ε,

εt = φ1εt−1 + · · · + φpεt−p + at ,
(2)

where at is distributed as N(0, σ 2
a ) and is independent of other errors over time and εt is

distributed as N(0, σ 2
ε ) but is not independent of other errors over time.

We will focus on a general approach to estimate parameters, (β, σ 2
a , φ), from model (2).

The stationarity restrictions on φ can be applied as in Chib (1993) and C&G. However, their
constrained approach becomes more difficult in the absence of explicit constraints on each
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BAYESIAN TIME-SERIES REGRESSION 729

autoregressive component when the order of the AR(p) model increases (i.e. for p > 2).
Alternatively, we apply the following one-to-one transformation which reparametrizes φ in
terms of the partial autocorrelations ηj (Barndorff-Nielsen and Schou, 1973):

φ
(k)
k = ηk,

φ
(k)
i = φ

(k−1)
i − ηkφ

(k−1)
k−i , i = 1, . . . , k − 1,

(3)

where φ
(p)

j is the j th coefficient from anAR(p) process and η = (η1, . . . , ηp)T. The stationarity
condition of φ becomes |ηi | < 1, i = 1, . . . , p. Furthermore, we then apply a ‘Fisher-type’
transformation from η to γ (Marriott and Smith, 1992):

γj = log
(1 + ηj )

(1 − ηj )
, j = 1, . . . , p.

The parameter space of γ = (γ1, . . . , γp)T is the entire real line. Hence, we assume a multivari-
ate normal distribution for γ. In the case of AR(1), η1 = φ1 and γ1 = log{(1 + η1)/(1 − η1)},
which is assumed to be a normally distributed. For the AR(2) process, φ1 = η1(1 − η2) and
φ2 = η2, where −1 < ηi < 1, i = 1, 2. For the AR(3) process, φ1 = η1 − η1η2 − η2η3, φ2 =
η2 − η1η3 − η1η2η3, and φ3 = η3, where −1 < ηi < 1, i = 1, 2, 3. Again, γ = (γ1, γ2, γ3)

T

is assumed to follow the normality assumption. All random generation is done in the γ-space,
inverting back to φ at the end.

The exact likelihood function for the time-series regression in Eq. (1) is

L(β, σ 2
ε , ρ|Y) = (2πσε)

−(n/2)|V|−(1/2) exp

{
− (Y − Xβ)TV−1(Y − Xβ)

2σ 2
ε

}
. (4)

Let σ−2
ε V−1 = σ−2

a �−1, which is the exact inversion of the autocovariance matrix of a pth
order autoregressive process obtained by Wise (1955). The definition of �−1 is given later.

Therefore, Eq. (4) can be reparametrized as follows:

L(β, σ 2
a , γ|Y) = (2πσa)

−n/2|�|−1/2 exp

{
(Y − Xβ)T�−1(Y − Xβ)

2σ 2
a

}
. (5)

Suppose β, σ 2
a , and γ are a priori independent. That is,

π(β, σ 2
a , γ) = π(β)π(σ 2

a )π(γ).

The prior distributions used are as follows:

β∼Nk(βa, A0), σ 2
a ∼IG

(
υ0

2
,
δ0

2

)
, γ∼Np(φ0, �0),

where the symbol IG(υ0/2, δ0/2) stands for the inverse gamma distribution, which is equiva-
lent to δ0/σ

2
a ∼ χ2

υ0
. Also, it is assumed that γ satisfies stationarity conditions. It follows that

the complete conditional posterior distributions are given by

β | Y, σ 2
a , γ∼Nk(β̃, Ã), (6)
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730 C. W. S. CHEN et al.

where

β̃ =
(

A−1
0 + XT�−1X

σ 2
a

)−1 (
A−1

0 βa + XT�−1Y
σ 2

a

)
,

Ã =
(

A−1
0 + XT�−1X

σ 2
a

)−1

.

σ 2
a | Y, β, γ ∼ IG

(
n + υ0

2
,
δ0 + dB

2

)
, (7)

where dB = (Y − Xβ)T�−1(Y − Xβ),

p(γ | Y, β, σ 2
a ) ∝ |�|−1/2

× exp

{
−1

2

[
(Y − Xβ)T�−1(Y − Xβ)

σ 2
a

+ (γ − φ0)
T�−1

0 (γ − φ0)

]}
. (8)

The advantage of the above reparametrization in implementing the Gibbs sampler is clear.
Rather than sampling the awkwardly constrained conditional distributions for φ, we can sample
the unconstrained distribution for γ based on the posterior in Eq. (8) and invert back to φ. Note
that all conditional posterior distributions have closed forms except that of γ. As the posterior
of γ is nonstandard, we perform the sampling using the MH algorithm (Metropolis et al., 1953;
Hastings, 1970; Chib and Greenberg, 1995).

The exact inversion of the autocovariance matrix of an autoregressive process obtained
by Wise (1955) can be found in Chen and Wen (2001). Due to limited space, the inverse
autocovariance matrix for p = 3 is given below:

V−1

σ 2
ε

=




1 −φ1 −φ2 −φ3 · · ·
−φ1 1 + φ2

1 −φ1 + φ1φ2 −φ2 + φ1φ3 · · ·
−φ2 −φ1 + φ1φ2 1 + φ2

1 + φ2
2 −φ1 + φ1φ2 + φ2φ3 · · ·

−φ3 −φ2 + φ1φ3 −φ1 + φ1φ2 + φ2φ3 1 + φ2
1 + φ2

2 + φ2
3 · · ·

...
...

...
...

...

0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·

0 0 0

0 0 0

0 0 0

0 0 0
...

...
...

1 + φ2
1 + φ2

2 −φ1 + φ1φ2 −φ2

−φ1 + φ1φ2 1 + φ2
1 −φ1

−φ2 −φ1 1




= �−1

σ 2
a
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BAYESIAN TIME-SERIES REGRESSION 731

Note that �−1 is an n × n banded matrix with bandwidth 2p + 1, where p is the order of
the autoregressive process.

3 BAYESIAN INFERENCE

In order to make inferences about model parameters, we need to integrate over high-
dimensional probability distributions. The MCMC methods are very helpful for solving our
problems. The MCMC is essentially Monte Carlo integration using Markov chains. It draws
samples from the required distribution by running a cleverly constructed Markov chain for a
long time and then forms sample averages to approximate expectations. The Gibbs sampler
is used in conjunction with the MH algorithm to make inferences and to make predictions.
Let f denote the target density for notational convenience. In the simulation of γ, f (γ) is the
posterior in Eq. (8). Details of the MH steps for γ are as follows:

Step 1. At iteration j , generate a point γ∗ from the random walk kernel,

γ∗ = γ(j−1) + ε, ε ∼ N(0, a 
),

where γ(j−1) is the (j − 1)th iteration of γ.
Step 2. Accept γ∗ as γ(j) with probability p = min{1, f (γ∗)/f (γ(j−1))}. Otherwise, set γ(j)

= γ(j−1).

To yield good convergence properties, the choices of 
 and a are important and can be found in
So and Chen (2003). In summary, we use the following iterative sampling scheme to construct
the desired posterior sample:

1. Draw β from the multivariate normal distribution in Eq. (6).
2. Draw σ 2

a from the inverse Gamma distribution in Eq. (7).
3. Draw γ from the posterior in Eq. (8) using the MH algorithm.

We make an inverse transformation of φ after we draw γ. This completes one iteration.

4 ILLUSTRATIVE EXAMPLES

In this section, we illustrate the proposed methodology with a simulation study and three real
data sets. We analyze the simulated data to calibrate the results against the known situation.
The convergence of the Gibbs samplers are monitored by examining a procedure developed in
Raftery and Lewis (1992).

4.1 Simulation Study

We now apply our proposed methodology to three examples in this simulation study. For
comparisons, the first two examples follow the specification given in Chib (1993), and the
third one adopts the specification used by C&G. Following Chib (1993), the regression for the
first two examples is defined through

Yt = β0 + β1Xt + εt , t = 1, . . . , n,
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732 C. W. S. CHEN et al.

where β0 = 0 and β1 = 1. As mentioned by Chib (1993), the covariate Xt is generated
according to the autoregression

Xt ∼ N(0, 1/0.36),

Xt = 0.8Xt−1 + Vt ,

Vt ∼ N(0, 1), t ≥ 2.

In this experiment, two sample sizes, n = 100 and n = 500, with 500 replications are used for
demonstration. We generated the AR(1) and AR(2) processes for εt .

Example 1 Regression model with AR(1) errors, εt follows the process

εt − φ1εt−1 = at , at ∼ iid N(0, σ 2
a ).

The values of (φ1, σ
2
a ) are (0.2, 0.96) and (0.6, 0.64) generated for each case.

Example 2 Regression model with AR(2) errors, εt is given by a second-order stationary
autoregressive process

εt − φ1εt−1 − φ2εt−2 = at , at ∼ iid N(0, σ 2
a ),

where the parameters (φ1, φ2, σ
2
a ) are set at (0.2, 0.5, 1.59) and (0.7, 0.2, 4.44) to ensure

stationarity and a variance of unity in each of the models.

TABLE I Summary Statistics for Regression Model with AR(1) Errors Obtained from 500 Replications.

Real values Mean (Std. Dev.) Median (Std. Dev.) Chib (Std. Dev.)

n = 100
φ1 0.6 0.5953 (0.0776) 0.5949 (0.0763) 0.5431 (0.105)

β0 0.0 0.0589 (0.1826) 0.0573 (0.1873) −0.1035 (0.2013)

β1 1.0 1.0032 (0.0853) 1.0044 (0.0873) 0.9781 (0.0844)

σ 2
a 0.64 0.6368 (0.0848) 0.6338 (0.0854) 0.6782 (0.1103)

n = 500
φ1 0.6 0.6005 (0.0534) 0.5998 (0.0537) 0.5512 (0.083)

β0 0.0 0.0516 (0.0892) 0.0526 (0.0873) −0.0935 (0.1711)

β1 1.0 0.9753 (0.0347) 0.9753 (0.0345) 0.9832 (0.0612)

σ 2
a 0.64 0.6793 (0.0443) 0.6777 (0.00461) 0.6693 (0.0911)

n = 100
φ1 0.2 0.2027 (0.0911) 0.2047 (0.0934) 0.1421 (0.1091)

β0 0.0 −0.0084 (0.1243) −0.0118 (0.1222) −0.0951 (0.1134)

β1 1.0 1.0708 (0.074) 1.0695 (0.0812) 0.9841 (0.0911)

σ 2
a 0.96 0.9377 (0.1338) 0.9246 (0.1342) 1.0311 (0.1633)

n = 500
φ1 0.2 0.2003 (0.0636) 0.2004 (0.0671) 0.1423 (0.879)

β0 0.0 −0.0676 (0.0565) −0.0693 (0.0553) −0.0891 (0.0831)

β1 1.0 1.0472 (0.0312) 1.0452 (0.0331) 0.9877 (0.061)

σ 2
a 0.96 0.9652 (0.0636) 0.9628 (0.00612) 0.9835 (0.1351)
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BAYESIAN TIME-SERIES REGRESSION 733

We choose βa = 0.0, A0 = 10−1I, ν0 = 3, δ0 = σ̃ 2
a , φ0 = 0.0, and �0 = 10−1I, where σ̃ 2

a

is the residual mean squared error of fitting a pure regression model to the data. We carry
out 4000 MCMC iterations and discard the first 2000 burn-in iterates for each series. We
record every second value in the sequence of the last 2000 iterations in order to have more
clearly independent contributions. The simulations have been redone based on the approaches
of Chib (1993) and C&G with the same prior input for the parameters and with the same
stationarity assumption. The results are shown in Tables I and II. For each data set, we obtain
posterior means and posterior medians. Columns 3 and 4 contain the means and the standard
errors of 500 posterior means while columns 5 and 6 contain the corresponding values of 500
posterior medians. The posterior means and standard errors of Chib (1993) are reproduced in
columns 7 and 8. Histograms of posterior medians are given in Figures 1–4. The means of the
estimators are close to the respective true values, indicating that the posterior mean obtained
by our sampling scheme is a reliable estimator. We observe that the bias of posterior means
slightly decreases when the sample size increases from 100 to 500. Moreover, the standard
errors diminish substantially with the larger sample size.

Example 3 Following C&G, we simulate data from a regression model with AR(3) errors.
The construction is described as follows:

Yt = β0 + β1Xt + εt , t = 1, . . . , n,

Xt ∼ N(0, 1),

TABLE II Summary Statistics for Regression Model with AR(2) Errors Obtained from 500 Replications.

Real values Mean (Std. Dev.) Median (Std. Dev.) Chib (Std. Dev.)

n = 100
φ1 0.2 0.1897 (0.0917) 0.1901 (0.912) 0.1341 (0.0921)

φ2 0.5 0.4946 (0.0873) 0.4946 (0.0843) 0.5512 (0.093)

β0 0.0 −0.143 (0.2534) −0.1494 (0.2571) −0.3122 (0.4231)

β1 1.0 1.0882 (0.1122) 1.0864 (0.1219) 0.941 (0.1141)

σ 2
a 1.59 1.6081 (0.2405) 1.5749 (0.2425) 1.3411 (0.2031)

n = 500
φ1 0.2 0.2001 (0.0714) 0.2011 (0.0712) 0.1413 (0.0734)

φ2 0.5 0.5006 (0.0658) 0.4993 (0.0643) 0.5443 (0.081)

β0 0.0 −0.1092 (0.1783) −0.1179 (0.1771) −0.2956 (0.3621)

β1 1.0 0.9892 (0.0481) 0.9894 (0.0479) 0.938 (0.0943)

σ 2
a 1.59 1.6189 (0.1111) 1.6167 (0.1135) 1.3741 (0.1816)

n = 100
φ1 0.7 0.6826 (0.0687) 0.6816 (0.0682) 0.6421 (0.097)

φ2 0.2 0.1933 (0.0662) 0.1925 (0.0623) 0.1639 (0.098)

β0 0.0 −0.0039 (0.3142) −0.0057 (0.311) −0.3433 (0.4111)

β1 1.0 1.0827 (0.1676) 1.0898 (0.1561) 1.3313 (0.2123)

σ 2
a 4.44 4.2853 (0.6310) 4.252 (0.6292) 4.831 (0.6411)

n = 500
φ1 0.7 0.6867 (0.0698) 0.6902 (0.0683) 0.6333 (0.074)

φ2 0.2 0.1916 (0.0613) 0.1902 (0.0623) 0.1691 (0.075)

β0 0.0 0.3011 (0.3724) 0.3115 (0.371) −0.3114 (0.3312)

β1 1.0 1.1214 (0.0878) 1.1235 (0.0831) 1.2133 (0.1795)

σ 2
a 4.44 4.3838 (0.3604) 4.3387 (0.361) 4.613 (0.5314)
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734 C. W. S. CHEN et al.

FIGURE 1 Simulation results for the regression model with AR(1) errors for n = 100 when true values are
(φ1, β0, β1, σ

2) = (0.6, 0.0, 1.0, 0.64).

FIGURE 2 Simulation results for the regression model with AR(1) errors for n = 100 when true values are
(φ1, β0, β1, σ

2) = (0.2, 0.0, 1.0, 0.96).
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BAYESIAN TIME-SERIES REGRESSION 735

FIGURE 3 Simulation results for the regression model with AR(2) errors for n = 100 when true values are
(φ1, φ2, β0, β1, σ

2) = (0.2, 0.5, 0.0, 1.0, 1.59).

Xt = 0.8Xt−1 + Vt ,

Vt ∼ N(0, 8), t ≥ 2,

εt − φ1εt−1 − φ2εt−2 − φ3εt−3 = at , at ∼ N(0, σ 2
a ).

The true values are

β = (1, 1)T, φ = (1.2, −0.2, −0.2)T, σ 2
a = 1.

Results of C&G are used to make a comparison with the proposed approach. Table III
presents the summary statistics of comparative results from our approach and the approach of
C&G. Histograms for the posterior medians of each parameter are given in Figure 5. We can see
the estimates obtained by our sampling scheme are more accurate than those of C&G generally.
Note that the inversion of the autocovariance matrix for an AR(p) model with sample size n

in our procedure is an n × n banded matrix with bandwidth 2p + 1. Thus, the computation
burden is intolerable.

4.2 Applications

To illustrate the proposed procedure, three real data sets are considered in this subsection. In
what follows, the estimation is done using S-PLUS 2000.
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736 C. W. S. CHEN et al.

FIGURE 4 Simulation results for the regression model with AR(2) errors for n = 100 when true values are
(φ1, φ2, β0, β1, σ

2) = (0.7, 0.2, 0.0, 1.0, 4.44)

TABLE III Summary Statistics for Regression Model with AR(2) Errors Obtained from 500 Replications.

True Lower 95% Upper 95%
value Mean (Std. Dev.) Median limit limit C&G (Std. Dev.)

n = 100
φ1 1.2 1.1992 (0.0693) 1.2015 1.0579 1.3294 1.3521 (0.1131)

φ2 −0.2 −0.1894 (0.1230) −0.1872 −0.4286 0.052 −0.5211 (0.1726)

φ3 −0.2 −0.1994 (0.1036) −0.2028 −0.4084 −0.0051 −0.0721 (0.1181)

β0 1.0 0.8228 (0.2994) 0.7949 0.3162 1.4349 1.5218 (0.3107)

β1 1.0 0.9923 (0.0311) 0.9921 0.9319 1.0565 1.195 (0.0911)

σ 2
a 1.0 1.002 (0.2105) 0.9669 0.7085 1.5419 0.984 (0.144)

n = 500
φ1 1.2 1.2018 (0.0702) 1.1978 1.0575 1.3409 1.343 (0.093)

φ2 −0.2 −0.2026 (0.1249) −0.2011 −0.4427 0.0273 −0.477 (0.136)

φ3 −0.2 −0.2019 (0.1011) −0.2027 −0.4016 −0.004 −0.091 (0.098)

β0 1.0 1.1916 (0.2290) 1.2151 0.6634 1.5781 1.498 (0.217)

β1 1.0 1.0185 (0.0166) 1.0187 0.9844 1.0497 1.044 (0.0542)

σ 2
a 1.0 1.0774 (0.1908) 1.0264 0.8594 1.589 0.977 (0.1031)
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BAYESIAN TIME-SERIES REGRESSION 737

FIGURE 5 Simulation results for the regression model with AR(3) errors for n = 100 when true values are
(φ1, φ2, φ3, β0, β1, σ

2) = (0.7, 0.2, 0.0, 1.0, 4.44).

Example 4 Consider ice cream consumption measured over 30 four-week periods from
March 18 1951, to July 11 1953. The data can be obtained from the Data and Story Library
(DASL) at www.stat.cmu .edu/www/cmu-stats/DASL (datafile name ‘ice cream’). The vari-
ables that underlie the time-series regression model are as follows: IC and P denote ice cream

TABLE IV Estimation for Ice Cream Consumption Data.

Lower 95% Upper 95%
Parameter Mean (Std. Dev.) Median limit limit

φ1 0.6799 (0.0973) 0.6824 0.4828 0.8593
β1 0.0754 (0.2621) 0.0648 −0.4313 0.625
β2 0.0022 (0.0009) 0.0022 0.0005 0.0039
β3 0.0034 (0.0006) 0.0034 0.0021 0.0043
σ 2

a 1.11E−3 (0.0003) 1.11E−3 0.0006 0.0018
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738 C. W. S. CHEN et al.

TABLE V Parameter Estimates for Retail Sales Data.

Lower 95% Upper 95%
Parameter Mean (Std. Dev.) Median limit limit

φ1 0.9829 (0.0031) 0.9828 0.977 0.9891
φ2 −0.0134 (0.0097) −0.0135 −0.0327 0.0038
β1 0.0196 (0.0014) 0.0195 0.0172 0.0223
β2 −0.0088 (0.0022) −0.0089 −0.0135 −0.0048
β3 0.0026 (0.0009) 0.0027 0.0008 0.0044
σ 2

a 0.1191 (0.0357) 0.1137 0.0699 0.1882

consumption in pints per capita and the price of ice cream per pint in dollars, respectively, and
I is weekly family income in dollars, and Temp is mean temperature in degrees F. The model
is specified as

ICt = β1Pt + β2It + β3Tempt + εt ,

εt = φ1εt−1 + at ,

where |φ1| < 1 andat ∼ N(0, σ 2
a ). The results are summarized in Table IV.We find a significant

autoregressive dynamic in error terms. φ̂1 = 0.6799 which indicates positive autocorrection
in the error terms. To check model adequacy, we examine the residual ACF and PACF, which
are small and exhibit no patterns.

Example 5 In this example, the data are also obtained from the DASL (datafile name ‘predict-
ing retail sales’). The datafile contains quarterly sales for four kinds of retail establishments
together with nonagricultural employment, wage and salary disbursements. The goal is to
develop a model that predicts retail sales. Variable names for data from the first quarter of 1979
to the fourth quarter of 1989 are

WS = national income wage and salary disbursements($ billions),
EMP = employees on payrolls of nonagriculture establishments (thousands),
BLD = building material dealer sales($ millions),

AUTO = automotive dealer sales($ millions),
FURN = furniture and home furnishings dealer sales($ millions),
GMER = general merchandise dealer sales($ millions).

FIGURE 6 Level of Lake Huron in feet, reduced by 570 (1875–1972).
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TABLE VI Regression Model with AR(2) Errors for Lake Huron Data.

Lower 95% Upper 95%
Parameter Mean (Std. Dev.) Median limit limit

φ1 0.9850 (0.0140) 0.9848 0.9576 1.0132
φ2 −0.2582 (0.0241) −0.2575 −0.3054 −0.2109
β0 10.0253 (0.2644) 10.0271 9.5122 10.5519
β1 −0.0205 (0.0058) −0.0204 −0.0319 −0.0091
σ 2

a 0.4654 (0.0668) 0.4596 0.3530 0.6179

After first fitting a full model, results showed that two explanatory variables, FURN and
GMER, are insignificant. Therefore, the model is specified as

WSt = β1EMPt + β2BLDt + β3AUTOt + εt ,

εt = φ1εt−1 + φ2εt−2 + at .

Parameter estimations are given in TableV. Note that the parameter φ2 is marginally insignif-
icant, its 95% confidence interval is (−0.0327, 0.0038). Moreover, the estimate of φ1 is 0.98,
which is close to 1. The goodness-of-fit for time-series regression models can be found in
Chen and Wen (2001). The results of goodness-of-fit tests given in Chen and Wen (2001) for
the two data sets used in Examples 4 and 5 indicate model adequacy.

Example 6 We consider series A in Brockwell and Davis (1991), which consists of lake levels
in feet (reduced by 570) of Lake Huron for July of each year from 1875 through 1972. A time
plot of the level of Lake Huron is shown in Figure 6. The level appears to fluctuate around an
average level that decreases over time in a linear fashion. A time-series regression model with
an explanatory variable t (time) is given as follows:

Yt = β0 + β1t + εt ,

εt = φ1εt−1 + φ2εt−2 + at .

The results, with t = 1 for 1875, are given in Table VI. All parameters are significantly
different from zero. The sign of β̂1 is negative which indicates that the water level of Lake
Huron is descending as time progresses.

5 CONCLUDING REMARKS

We propose a Bayesian estimation procedure for a simple but most frequently used model in
practice – namely, time-series regression models. Following Wise (1955), we use the exact
likelihood instead of the likelihood conditional on initial observations. With the application
of a useful reparametrization, the stationarity condition of φ becomes |ηi | < 1, i = 1, . . . , p.
Consequently, the proposed procedure is valid for any order of the AR(p) process. Therefore,
there is no difficulty in dealing with the AR(p) model for orders p > 3. We obtained better
inferential results on simulations when compared with those of Chib (1993) and C&G. Results
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740 C. W. S. CHEN et al.

from real data sets show that the fitted models are adequate for the data sets. The proposed
methodology can be extended in the following directions.

1. The Bayesian estimation procedure can be extended to regression with ARMA errors. The
exact likelihood function of a general ARMA model can be found in Newbold (1974) and
Hillmer and Tiao (1979).

2. To allow heteroscedasticity in the error variance, we can assume GARCH-type conditional
variance, a model that has become very common in econometric and financial research.

3. When we deal with financial data, typical empirical evidence in the literature indicates that
the distribution of errors is usually fat-tailed. In future work, we could consider leptokurtic
distributions for the error terms, such as a student t-distribution or a generalized error
distribution.
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